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Measurements of the density p versus pressure P along isotherms for six He -He solutions
(X3=0.960, 0. 886, 0. 800, 0.600, 0.400, and 0.200) near their liquid-vapor critical point
are presented. For a given mole fraction Xs, it was found that the boiling and dew curves in
the p-P plane could be represented by a relation similar to that for the coexistence curve of
a pure fluid. Here the point at the extremity of the two-phase region, which we call the sym-
metry point with the parameters P~, p~, and T~, takes the place of the critical point for a pure
fluid. The dew curve is given by {p~-p) ~ (P~-P)~ with P'=0. 375+0.02, independent of X3.
The determination of the line of critical points in the P-T plane from the dew and boiling curves
at various mole fractions is described. The pressure, density, and temperature for the
critical and the symmetry points are presented and discussed. From the dew and boiling curves,
the true coexistence curves were constructed in the p-P plane at constant T and in the p-T
plane at constant P and could be described approximately by (px, -p~)cr: (P~-P)T and (pl. —pz)
~ {T—T~) & with an average value for the various isotherms and isobars considered of Pz
=0.42+0. 06 and Pp=0. 39+0.05. Here pJ, and p~ are the densities along the coexistence curve
on the liquid and the gas side, respectively. The measurements of the compressibility kz, x
along the critical isochore in the one-phase region seem to exclude a strong" divergence with
(T —T~), but do not extend close enough to T~ to either support or disprove the "weak" diver-
gence as predicted by Griffiths and Wheeler. These measurements are compared with those
of the normalized compressibility (pip/ kr r along the dew and boiling curves. Comparisons
are also made with the behavior of the compressibility for a pure fluid along the coexistence
curve and above T~. A brief addendum to the analysis for kz in pure He is presented.

I. INTRODUCTION

Recently there has been a great deal of theoreti-
cal and experimental work done on static and dy-
namic properties of pure fluids in the neighborhood
of their liquid-vapor critical point. One of the
important results has been the verification of scal-
ing laws for the critical exponents (at any rate for the
static properties) and the proposal of several eiiua-
tions describing the static properties close to the
critical point using the scaling relations. So far,
no such precise predictions have been made for
binary mixtures near their liquid-gas critical point,
but very recently their qualitative behavior was
yredicted by Griffiths and Wheeler from a unified
geometrical point of view. Much experimental work
has been done by chemical engineers to determine
the mole fraction of the liquid and vapor phases of
industrial binary mixtures. The critical param-
eters P„V„and T„ the pressure, volume, and
temperature at the critical point, were however
obtained by rather long extrapolations, and in
practice no work has been done in the critical re-
gion that could be of use to theorists interested in
the modern aspects of critical phenomena.

We have attempted to fill this gap by carrying
out a systematic investigation of the P-V-T rela-
tions of He -He solutions in their gas-liquid crit-
ical region. This system offers a number of ad-

vantages for such a study. First, one would ex-
pect such an isotopic mixture to be "well behaved"
and not to show critical azeotropy. It could, there-
fore, serve as a model for solutions where the be-
havior is close to being ideal. Second, the pres-
sures involved are only of the order of 2 atm. This
simplifies the design of the apparatus and it per-
mits the use of high resolution commercial quartz
pressure gauges. Third, the atomic polarizabilities
8 of liquid He and He' are almost identical' and
one can expect this to be nearly true in the critical
region. Furthermore, 8 for fluid He is almost
independent of density near T„and we can assume
this to hold for mixtures. This reasonable as-
sumption then leads to the convenient use of the di-
electric constant method for density measurements.

II. EXPERIMENTAL PROCEDURES AND ERRORS

A. Cryostat and Experimental Considerations

The cryostat and other experimental arrange-
ments used in this work are generally the same as
those in a previous paper by the same authors' ex-
cept for the density cell which is shown in Fig. 1
and the capillary leading to this cell. Therefore,
we will give here only a brief discussion of the ex-
perimental details, emphasizing the changes neces-
sary in studying He -He mixtures rather than pure
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FIG. 1. Capacitor for measuring mL~tures. Not shown
are the copper wires which thermally anchor the filling
capillary at the elbow to the 4. 2 K bath. Horizontal tem-
perature gradient is over a 12-in. length. The capacitor
fits into the setting shown in Fig. 1 of Ref. 7.

He and we refer the interested reader to the additional
discussion of measuring techniques, errors, etc. ,
given in Ref. V.

The experiment consisted in measuring the molar
volume of a sample of a He3-He4 mixture by means
of a capacitive technique. The sample serves as
the dielectric medium between the plates of a ca-
pacitor and the dielectric constant E is determined
by the Clausius-Mosotti relation

(e —1)/(e+ 2) = 4w 8/3 V,

where V is the molar volume and 8 is assumed
to be constant and equal to 0. 1234 cm'/mole. '
Although Kerr and Sherman have shown that
there is a small variation of 8 with density,
the correction to the experimental data is less
than 0. 1% and comparable with the uncertainty of
the experiment. For the analysis of properties
near the critical temperature, the mass density
p= M/V (g/cm ) or the particle density p/M (cm 3)

will be used instead of V. Here M is the molar
mass of the mixture of composition Xe, where X3
denotes the mole fraction of He3.

It is well known that for a mixture, the mole
fractions of the components in the liquid and vapor
phases in equilibrium are different, except at an
azeotropic point. Since there was no convenient
and reliable way to measure simultaneously the
mole fractions for the two coexisting phases, it
was decided to prepare gas mixtures of known com-
position and to determine the boiling- and dew-point
curves for each composition.

For the P-p-T measurements, care must be taken
to insure that the mole fraction X3 of the fluid in
the density cell is equal to the nominal one of the
gas mixture at room temperature. Since, under
equilibrium conditions, mole fraction gradients

might be expected in the capillary leading to the
cell, it is necessary to have the amount of helium
in this capillary small in comparison with that in
the cell.

B. Density Measuring System

The sample fill capillary was surrounded by a
vacuum space over its entire length through the
cryostat. The top portion was copper of 0. 020-in.
i.d. , which was then soldered to a 0. 012-in. i. d.
stainless-steel capillary 15 cm above the top of the
vacuum can that surrounded the density cell and its
temperature control system (see Fig. 1 of Ref. 7).
The only thermal anchor to the main 4. 2 K He bath
was by copper wires soldered to the elbow of the
filling capillary. There was evidence that the tem-
perature of the capillary was above 6 K everywhere
except between this elbow and the cell. This ar-
rangement had the purpose of keeping the capillary
at a relatively high temperature, thereby filling it
with as little gas as possible. Assuming a reason-
able temperature profile in the copper and stain-
less-steel capillary, it was calculated that near the
critical point of He, the amount of helium filling
the capillary was less than 3% of that in the cell.

The density cell, shown in Fig. 1, was a compro-
mise between the desirability of having a large
amount of fluid in order to control X3accurately, and
having a small height to lessen gravitational effects.
The four grooves insured that the sample was no
more than 0. 4 mm from a copper wall and hence
thermal equilibrium was rapidly obtained at least
in the one-phase region. The sample covered a
height of 1. 5 mm and the density was measured at
approximately the midplane. The effective area
between the plates was 1.2 cm and the total sam-
ple volume amounted to about 0. 25 cm . The cell
was calibrated with pure He as before and the cal-
bration was checked by measuring the density of
He' at several temperatures along the coexistence
curve. Excellent agreement within the combined
experimental uncertainty was found with the previ-
ous data. '

The uncertainty in the absolute value of the den-
sity was estimated to be less than approximately
0. 2% in the region of the critical density. This
estimate is based on considerations of the long-term
stability in the dielectric -constant measurement
and on possible systematic uncertainties in the
calibration as well as those due to the slight den-
sity dependence of C. Because of the difficulties
inherent in the experiment, a density at a given T
and P could only be reproduced to about 0. 01% in
the course of an experiment lasting several days.

C. Pressure Measurement

The pressure of the sample was measured by a
Texas Instruments fused-quartz Bourdon gauge that
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had a stated resolution of 0. 025 Torr. This gauge
is expected to have very closely a linear read-out
in terms of pressure, and this was indeed observed
over the range of calibration (400-1400 Torr)
against a mercury manometer.

Just as in earlier work, ' a calculation was made
to estimate the difference OP between the pressure
inside the cell at low temperature and between that
measured at room temperature. Using the cal-
culated temperature profile along the copper capil-
lary, we obtained (5P)/P=3x10 4.

D. Thermometry

The temperature of the density cell was measured
by means of a germanium resistor thermally bonded
to it by Apiezon J Oil and electrically connected to
a 200-Hz Wheatstone bridge which could resolve
temperature changes of 5 p,K at 3. 5 K. The phase
sensitive detector of the bridge was connected to a
heater circuit making possible the temperature
regulation of the density cell to within 20 p.K for the
various isotherms. The thermometer was cali-
brated by the T&8 He vapor-pressure table. Below
4 K, the vapor pressure of the He in the pot above
the cell (Fig. 1 of Ref. 7) was read on a combination
of mercury and oil manometers, using a cathetom-
eter. The reading uncertainty of +0. 1 Torr cor-
responds to a temperature uncertainty of 0. 3 mK
at 3. 3 K. Between 4 and 5 K, the vapor pressure
of He in the density cell along the critical isochore
was used to calibrate the germanium resistance
thermometer. The temperature -vs -resistance
readings were then fitted by a least-squares pro-
cedure to the equation

ln(T —C~) = C, lnR+ Cz,

where C3 was determined by iteration. The devia-
tions between the experimental points and the fit
were random, giving a meRn-square temperature
deviation of 0. 3 mK. The accuracy of the so ob-
tained calibration is estimated to be within 0. 5 mK
of the T,e scale for T&4 K and within 2 mK for T
close to 5 K. The larger uncertainty results from
possible inaccuracies in the absolute calibration of
the quartz Bourdon gauge.

E. Experimental Procedure

All the data were taken along isotherms and the
amount of fluid in the cell was changed by means
of a movable piston at room temperature. The time
that elapsed between two data points was usually
of the order of 15 min, with the last 5 min spent
insuring that the pressure and the dielectric con-
stant had reached their equilibrium values. The
possible uncertainty of representative isotherms
due to inhomogeneities of the solution throughout
the pressure system was carefully investigated
by taking successive series of measurements with

increasing and decreasing pressure. It was found
that in the one-phase region, excellent consistency
and reproducibility were obtained for the density
along the same isotherm. Very close to the two-
phase region, however, some irreproducibilities
between the data taken by increasing and decreasing
P were found. After some experimenting, it was
concluded that such effects were kept at a minimum
if the isotherms were taken in steps of always in-
creasing pressure. This is to be expected since by
increasing the pressure, a mixture of well-known
composition is forced into the cell. On the other
hand, withdrawing fluid from the cell can lead to
sorn preferred enrichment of one of the compo-
nents inside the cell for temperatures very close
to and below T,.

To determine the dew curve, the gas was com-
pressed isothermally until the first droplet of liquid
was formed, which was evidenced by a break in the
P-vs-p plot. When the cell was being filled with li-
quid, the disappearance of the last bubble of gas
was shown by another break in the P-p plot. The
locus of these points determined the boiling curve.
The dew point for a given isotherm was found to be
clearly defined and well reproducible, just as for
a pure fluid. However, the boiling curve was in-
creasingly irreproducible as T, was approached.
The region in temperature T, —T over which such
irreproducibilities occured increased to a maxi-
mum for X3 near 0. 5. For X3= 0. 8, this region
extended over 50 mK.

To insure that measurements were always carried
out at the nominal mole fraction, all the fluid was
removed from the cell after taking data along an
isotherm, and the gas was thoroughly remixed in-
side a Toepler pump.

III. RESULTS AND DISCUSSION

Density measurements along isotherms at con-
stant mole fraction were taken for six mixtures,
namely, X3= 0. 960, 0. 886, 0. 800, 0. 600, 0. 400,
and 0. 200. The amount of data, including approxi-
mately 3000 readings, is too large to be presented
in this paper. A list of most of the measured P- V-T
points is available on request from the authors in
the form of a technical report. The number of iso-
therms taken ranged from 16 for X3= 0. 960 to 33 for
X3= 0. 886. Very close to T„ isotherms were taken
every 2 mK, and then progressively further apart
as l T —T, l was increased. For the isotherms
greater than the critical one, the measurements were
taken at density interva, ls of about 7 x 10 4 g/cm, but
for T & T„ the data points near the dew and boiling
curves were much more closely spaced. The mix-
tures X3= 0. 886 and 0. 800 were studied first and
by far the most extensively. After the properties
of the "symmetry point, " to be discussed in Sec.
IIIA, were realized, only limited. data on the boiling
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curves were taken for the remaining solutions, the
main effort being concentrated on the dew curves
and on the homogeneous region above T,.

A. Symmetry Point (P, p, T )
The results for a few representative isotherms

for X3=0.800 are shown in Fig. 2. Two of the obvi-
ous differences between the boiling and dew curves
at constant X shown here and the coexistence curve
for a pure fluid are (i) the isotherms are not vertical
in the mixed phase region, a well known property
for solutions, and (ii) the critical point (CP) which
marks the place where the liquid and gas densities
become equal for each component does not occur
at either the maximum pressure or maximum tem-
perature of the two-phase region. The hatched
areas connecting the p~ and p~ points are not tie
lines, but binodals. The representation by hatched
areas indicates that the shape of the binodals is
somewhat uncertain and not necessarily a straight
line. This is because of irreproducibility and
drifts of the recorded density in the two-phase re-
gion —an experimental effect caused by the geometry
of the cell. The phenomenon that an isotherm such
as T = 3. V20 K cuts the dew curve twice is known as
retrograde condensation and has been discussed by

Bowlinson, for instance. The critical point cannot
be determined from the measurements at one iso-
lated isotopic composition, but is found from a
graph that incorporates data from all other mix-
tures (see Sec. IIIB). It is obvious that as Xs tends
to unity or to zero, the critical point moves to the
maximum pressure of the mixed-phase region. At
the same time, the isotherms in this region be-
come vertical.

For an arbitrary composition X it was found that
the point at the extremity of the two-phase region,
which we call the "symmetry point, " could be used
in several critical point-type relations similar to
those for a pure fluid. The symmetry parameters
(P„p„and T,) could be determined rather Pre-
cisely by several methods that were simply exten-
sions of those used for pure fluids. In He for in-
stance, it was found that the maximum of M(sp/
8 p. )r = p kr occured at p, for all isotherms with T
& T,. Here p. and k~ are, respectively, the chemi-
cal potential and the compressibility. For the mix-
tures, the same relationship for p k& ~ was found
around the value p, as is shown in Fig. 3. In pure
He~ the rectilinear diameter p = —,'(p~+ po) was found
to be almost constant and equal to p, at a given T
and P. For the mixtures, it was found empirically

20% He -80% He MIXTURF: BOILING and DEW CURVE
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FIG. 2. Boiling and dew curve for X3=0.800. Solid lines are part of the 33 isotherms taken. To avoid confusion,
several isotherms near T, have not been plotted. Lines connecting the p~ and pz points are not tie-lines, but
binodals. Because of some irreproducibility in these lines, they are hatched, and are not necessarily exactly straight.
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where hp = ( p —p, )/p, and t = (T —T,)/T, . Since
close to T, one has

BT
T —T=c 8P c(P —P) + ~ ~ ~

~c
(5)

one can rewrite Eq. (4) in the limit ) P —P, l -0 as
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FIG. 3. Determination of symmetry density p~. Values
of p kz z vs p are plotted for four representative isotherms
to show that this quantity has its maximum value at p~,
not at pc.

that

2 [pz(P)+pc(P)] = p~+A (P, —P)/P, ~ ~ ~

(X~= const) (3)

from the lowest temperature 2 K up to the region
close to T, where irreproducibilities on the boiling
curve became significant.

The parameter A that characterizes the effective
slope of the "rectilinear diameter" in Eg. (3) was
found to vary, with X3 taking values intermediate
between those observed for the pure fluids. From
recent work, ' '~ A is = —3x10 g/cm3 for He,
while for He, A=lx10 g/cm. For the helium
isotopes the slope A is unusually small compared
with other fluids.

For pure He and He, the coexistence curve near
T, is given by

~p ( —~P)', (6)
where nP= (P —P,)/P, . Over a larger range of
nP, where the higher-order terms in Eq. (5) be-
come important, one expects the same relation,
but with an "effective" index P' not very different
from J3. Such a plot is shown in Fig. 4. This rep-
resentation of the data is extended to the mixtures,
where, however, p, andP, aresubstitutedfor p, and
P, and this is also shown in Fig. 4. Note that only
the dew-curve data are being used for this analysis,
and no assumption of symmetry of the two-phase
region around p, is being made. It can be seen that
all the data seem to scale, the effective slope of
the lines for all compositions being P' =0. 375. As
stated before, however, the limiting slope for (T,
—T)- 0 must tend to P for the pure fluids. The in-
dex P' for the mixtures is obviously in good agree-
ment with that for pure fluids, and this is also found
to be true for the three solutions not presented in
Fig. 4. It is found that p, as determined from the
fit to Eq. (6) is the same as that from the other two
determinations to within an experimental error of
0. 5%. The P, value chosen is that giving the best
fit to Eg. (6) and, finally, the T, value is that cor-
responding to p, and P,.

Table I shows the results for the symmetry pa-
rameters" for the mixtures, along with the values'
for pure He' and He' where these parameters are
identical with the critical ones. Within the 0. 5%%uq

uncertainty in its determination, p, (X) was found to
agree with the linear interpolation formula p„,
=X p, (He ) + (1 -X ) p, (He ).

I 0
i

I 1 I I

P, -pg—

0.5—

FIG. 4. Dew-point curve in He —He
mixtures. To avoid overcrowding, we
have not shown the data for X3 = 0. 960,
0.400, and 0.200, which also lie between
the pure He~ and pure He4 curves. Slope
is the index P' as defined in Eq. (6).

0) I I I I I I
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ps 9
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0.05 O. l
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TABLE I. Critical and symmetry parameters for Hes-He4

mixtures.

P, (Terr) T,(K) V, (cm /mole) P,VERT,

1.000
0.960
0.886
0.800
0.600
0.400
0.200
0.000

860
898. 5
968

1049.5
1229
1406
1558.5
1708

3.310
3.393
3.545
3.717
4. 100
4.487
4. 837
5.193

72. 87
68.84
65.74
63.65
59.75
57.65
56.64
57.78

0.304
0.292
0.288
0.288
0.287
0.290
0.293
0.305

P~(Torr) T,(K) V, (cm3/mole) P~V, /RT,

1.000
0.960
0.886
0.800
0.600
0.400
0.200
0.000

860
899
969

1051
1231.5
1408
1559.5
1708

3.310
3.395
3.549
3.723
4.109
4.495
4. 841
5.193

72. 87
71.74
70.32
68.68
65.23
62.17
59.71
57.78

0.304
0.305
0.308
0.311
0.313
0.312
0.308
0.305

B. Critical Parameters P, , p, ,T,

The thermodynamic conditions that define the
critical point in a mixture, Bg/BX~ = B~g/BX~ = 0 and

B3g/BX33& 0, where g is the molar Gibbs function,
have been derived in a number of textbooks (see for
instance, Ref. 4) but are not straightforward to ap-
ply. Therefore, it was decided to determine the

critical parameters by a graphical technique such
as pictured in Ref. 4, p. 194. The first step is to
construct large graphs for all the mixtures similar
to Fig. 2, and which include all of the isotherms
taken. We then make the assumption that if the
boiling and dew curves are symmetric about p, over
a large temperature range (see Sec. IIIA), they con-
tinue to be so all the way to the symmetry point, ex-
cept possibly for a small region around the critical
point. Hence, missing parts of the boiling curve
that were not well located because of experimental
difficulties can be constructed from the dew curve.
This method is only intended as a first approxima-
tion to locate T,. Then, interpolating temperatures
in 0. l K steps far away from T, and in 2 mK steps
close to T„ the P, T values necessary to construct
accurately Fig. 5 for the six mixtures are obtained.
The line of critical points is then just the envelope
of these curves. The results of this interpolation
may also be used to construct Figs. 6 and 7 which
show a succession of constant-T and constant-P
planes, respectively, together with the relevant
critical line. ' This line is determined by (dP/
dX)r ...„, „,= 0 and (dT/dX)~ ...„,„,„.= 0 for each
composition. ~

From Fig. 5, the P, and T, values for a given X
are determined. Finally, using them together with
the boiling curve, the value of p, is obtained, and
the results are given in Table I. We note that the
ratio P, V,/RT, only changes by a few percent as

1600

1400

(Torr)—

1200

1000

600

3.0 3.4 3.8 4,2

W(K)
FIG. 5. P vs T for He3-He mixtures. These loops were interpolated from the six large graphs similar to Fig. 2 as

discussed in the text. Critical line is the envelope of the tangent points.
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FIG. 6, Phase diagram for constant-
temperature projections. Critical line
intersects the P-X loops at the maximum
pressure as given by the equation (dP/
dX)~, aoex eave=0.
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a function of X3. For mixtures such as Ar-N2 and
CH4-Ns, "this ratio can change by the order of 50%.
In Figs. 8 and 9, the departure from a linear inter-
polation for the critical and symmetry parameters
is shown as a function of X3. A review of theories
that calculate this departure from a linear interpo-
lation for solutions has been presented by Prigo-
gine. These theories apply to solutions where the

critical parameters of the pure components are al-
most the same, and cannot apparently be used for
He3-He solutions, where the ratios for the critical
pressures, temperatures and volumes are very dif-
ferent from unity.

C. Isothermal Compressibility kz x

Griffiths and Wheeler have predicted the diver-
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FIG. 7. Phase diagram for constant-
pressure projections. Critical line inter-
sects the T-X loops at the minimum
temperature as given by the equation
{d~~~)J', oosc Curve
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FIG. 8. Deviation of the critical parameters from a
linear interpolation between the pure Hes and pure He4

values given in Bef. 10.

FIG. 9. Deviation of the symmetry parameters from
a linear interpolation between the pure He3 and He4 values
given in Bef. 10.

p
i

=Sr=I'f" for T&T, , p=p,BP 'II

jT
(fa)

=T f ' for T&T,(p
I pc

(vb)

along the coexistence curve, where for the helium
isotopes y = y' = l. 2. Griffiths and Wheeler suggest

gence of k~~, the isothermal compressibility at
constant composition for a binary liquid mixture,
and their arguments should be applicable to the He'-
He mixtures near their liquid-gas critical point. "

The compressibility along the critical isochore
for a pure fluid is usually given by

that for a mixture, k» for T & T, diverges "weakly"
with an exponent n characterizing the divergence of
C„ for a pure fluid. For He and He, this expo-
nent ' is of the order of O. l. In Fig. 10, the
compressibility 0» for T & T, has been plotted
along the critical isochore as well as for p= p, since
the magnitude of k~~ is larger along p, . The re-
sults for several mixtures are shown in Fig. 10 to-
gether with those for He3 and He . Clearly the
asymptotic divergence of k~~, if any, is weak. Be-
cause of the difficulties in achieving reproducible
measurements of k~~ very close to T„especially
at temperatures where the phenomenon of retro-
grade condensation is observed, the limiting be-

Compressibility of He -He Mixtures ot pc
4 Cp &p ress( b( l (t y p f He -He Mixtures at Ps4

I 0'- ~ I I (111 I I I I I f ll( I I

0.1 0 I=

I
L

XI-

o.ol O.OI—

o,~ , (. . . , I

0.0001 0.001 —C
Tc

0.01 0.1 0.00l
O.OOOI

I I IiIII I I I l

Idyll

O.OOI O.OI
S

Ts

I I I I I Ill'
O, l

FIG. 10. Isothermal compressibility, k~ x(pc} and k& z(p~}, for He -He' mixtures. Pure He and He values were taken

as stated j.n Ref. 10.
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FIG. 11. Isothermal compressibility (p/p, ) Pz X. at the
dew curve for He~-He4 mixtures. Pure He and He

values were taken as stated in Ref. 10.

havior of k~x is difficult to assess. However, the
results are not inconsistent with the divergence
predicted by Griffiths and %'heeler.

It will be noted that for the pure fluids, ' ~ the
compressibility follows approximately the asymp-
totic behavior [Eq. (7)] already for t= 0. 05. At this
reduced temperature, k» for mixtures is inter-
mediate between the k~ for pure Hes and He . But
as t becomes smaller, a "crossover region" 10 3

& t & 5&&10 shows the transition to the possibly
weakly diverging behavior. As the composition of
the mixtures tends to that of a pure fluid, the cross-
over region tends to shift to lower values of t, as
evidenced best by the results for X3= 0. 96. This
is in agreement with the parameter scaling theory
of Riedel and Wegner, applied to mixtures in the
neighborhood of the liquid-gas critical point.

We point out here the absence of any observable
behavior that distinguishes k~x along p, from that
along the symmetric isochore on the vapor side,
namely, p= p, —(p, —p, ). Hence it is only very
close to T„say t & 10, that k~~ is expected to
reach values larger than those shown in Fig. 10.

As mentioned before, density measurements
along isotherms became irreproducible below T,
on the side of the boiling curve for temperatures
close to T,. Therefore only the compressibility
data p k& x along the dew curve extended from the
lowest temperatures up to T,. Over the tempera-
ture region where both the dew and the boiling
curves were well defined, it was found that for a
given pressure, p k~ ~ on both the boiling and the
dew curve were equal, just as for a pure fluid.
Note that here again, just as for the density rela-

He'

He

0 I

0.001 0.002

kvx(»Ts't's)
2

(P/Ps) "~{T~Ts devil curve)

0.005 0.01 0.02
liTs- T)/Ts I

X~
~ 0.960
& 0.886
& 0.800
+ 0.600
o 0.+00
~ 0.200

I

0.05

FIG. 12. The ratio (R=kr x(p„T &T,)/[(p/p, )2kr x(dew
curve, T&T,)J for a given value of l(T,- T)/T, ).

The exponent P is usually taken as relating to the
vanishing difference pl. —p~ along the coexistence
curve for a pure fluid. Here the subscripts L and
G denote the density on the liquid and the gas side
of the coexistence curve. We used Eq. (6) to at-
tempt to describe the boiling and dew curves (Sec.
IIIA) at constant X. These curves, of course, do
not represent coexistent phases, since at a given
pressure and composition, the dew point and boiling
point do not occur at the same temperature. By in-

tion [Eq. (3)], the equality is for a given pressure
rather than temperature. This equality can then
presumably be assumed to extend until not too far
from T„at which point, however, k~ „along the
critical isochore should become infinite according
to Griffiths and %heeler.

Along the dew line, the compressibility (p/p, ) kr&
for T & T, stays finite at T, on the "gas side, "but
continues to increase with T for T, & T & T„which
is in the region of retrograde condensation. The
normalized compressibility (p/p, ) kr is plotted in
Fig. 11 against (T, —T)/T, . In Fig. 12, the role
of the symmetry point is again illustrated by plot-
ting the ratio of the normalized compressibilities
along the dew line and for p = p, (T & T,) at equal val-
ues of l(T, —T)/T, l. For comparison, this ratio
is also plotted for pure He and He'. At high values
of (T —T,)/T„ the results for the mixture tend to
an intermediate value between He and He, but as
(T —T,)/T, becomes smaller, there is a gradual
drop of this ratio. Pure He and He have, at least
for I t! & 0. 03, a temperature independent ratio (R

shown on Fig. 12, which indicates the equality of
the critical exponents y and y'. These exponents
have the value of 1. 1V' and 1.24~' for He3 and He',
respectively.

D. Coexistence Curves for Constant-P and Constant-
T Planes



962 B. WALLACE, JR. AND H. MEYEB

O.IO—

0.08-

(, .)
0.06—

0.04—

o Xg=0.960
o Xg=0.886
~ Xp =0.800
& Xy =0.600
+ Xg =OAOO
~ Xg =0.200

Xc =0.96
Tc =5 &955 K

~c =C.0444 /

FIG. 13. Coexistence curve
for P=898. 5 Torr. This curve
was found by interpolation on the
p-vs-P isothermal data for each
concentration as discussed in the
text.

0.02—

gQS

I

3.4
I

3.5
I

3.6
I

3.7
I

3.8
T( K)

I

3.9
I

40
I

4, 1 4.2

(p~ —p~) ~ (T —T,) & (P= const),

(p~ —po) ~ (P, —P)~r (T = const) .
(8)

(9)

Figure 13 shows a density-vs-temperature plot for
the coexistence curve at P= 898. 5 Torr. The cri-
tical point occurs at the minimum temperature as
expected from Fig. 7 and vertical lines joining the
liquid and the vapor sides are true "tie lines" as
for a pure fluid. Not shown is a "p vs P at constant
T" plot, which from Fig. 6 has its critical point at
the maximum pressure and therefore is similar to
the usual p-vs-P plot for a pure fluid. We remind
the reader that the coexistence curve plots and con-
sequently the exponents P~ and Pr are affected by
the symmetry assumption of the boiling and dew

terpolation on the large boiling- and dew-curve
graphs, several plots such as "density vs tempera-
ture at constant pressure" and "density vs pres-
sure at constant temperature" were generated. For
these two coexistence-curve plots, one can foresee
relationships of the type

Pp = 0. 39 + 0. 05, 0. 002 ~ t ~ 0. 2

Pr = 0. 42 a 0. 06, 0. 003 ~ n,P & 0. 3 .

(10)

(11)

It is obvious from Fig. 13 that the coexistence curve

curves close to T, (Sec. IIIB).
Equations (8) and (9) were used to fit the curves

just mentioned, and the results for several pres-
sures are shown in Fig. 14. Comparison with the
analogous curve' for pure He shows that there is
more scatter in the mixture data, probably caused
by interpolation errors and the difficulties in mea-
suring accurately the boiling curve close to the
critical point. It is felt, however, that there is
no systematic tendency for P to change over the
measured P, T, or X3 intervals.

We have also made similar plots where the num-
ber density (1/cm ) was used instead of the mass
density (g/cm'). The effective exponents Pr and

P~ were not significantly changed and in summary,
the coexistence curves are described by the critical
exponents

0.1 i
I

I I 1 I I I I I I

( P 898.5 Torr
CfYI~I a P= 1025 Torr

~ P 1220 Torr

0
CL

no

FIG. 14. Coexistence curve for
three constant-pr essure curves. Slope
is the index P& as given in Eq. (8) and
for all constant-P curves was 0.39
+0.05.
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at constant P is not symmetric about p„and that
the equation of the "rectilinear diameter" is given
by

P = 3 (PI, + P G) = P, + Ai, [(T —T,)/ T,) + ~ ~ ~ (12)

with Ai, = 0. 1 g/cm3 Similarly for the coexistence
curve at constant T one has

p = p, +Ar [(P, —P)/P, ]+ ~ ~ ~ (g/cm'), (13)

with Ar =0. 05 g/cm'. This is to be compared with
the situation in pure He3 and He where p —p, =0.
This is also to be contrasted with the "rectilinear
diameter" p=-,' [p~ (P, X)+ po(P, X)] defined from
the boiling and dew curves, which appears to be
nearly independent of P, as discussed in Sec. IIA.
Perhaps this implies that the P' defined by Eq. (6)
may be more directly related to the p found from
the shape of the coexistence curve for a pure fluid
[Eil. (4)] that may be p~ and pr defined by Eils. (8)
and (9). It might be mentioned at this point that
measurements of the particle density of each com-
ponent in both phases along the critical isochore in
the two-phase region would be the logical extension
of the density measurements along the coexistence
curve for the pure fluids. One could then expect a
similar asymptotic behavior near the critical point,
with the critical exponent not too different from
that in pure He3 and He . Unfortunately, such an
experiment is not feasible with the equipment de-
scribed here.

IV. CONCLUSIONS

The study of the pressure-density-temperature
relationship near the critical line for He'-He' mix-
tures has led to the following observations:

(i) For each mixture of composition X, the point
at the maximum pressure of the dew curve in the
density-pressure plane which we call the "sym-
metry point" seems to deserve special attention.
The properties around this symmetry point, char-
acterized by the parameters P„p„and T„are
similar in some respects to those of the critical
point of a pure fluid. Except in the close vicinity
of the critical point, where irreproducibilities made
the experiments difficult, these properties can be
summarized as follows for any given composition
X3 (a) (p. -p(P)dew linn) (p(P)boilinn linn
-P)3'3~; (b) p kr» at P along dew line = p kr» at P
along boiling line; (c) p kr, » is maximum at p = p,
for T & T,. However p k~ ~ does not diverge at T

S'

(ii) The critical point for a mixture of given com-
position occurs at a lower temperature, pressure,
and molar volume than the symmetry point. The
critical parameters are smoothly varying functions
of X with T, and P, always higher than the values
given by a linear interpolation between the values

for pure He and He, while V, is always lower than
the linearly interpolated value. The ratio P, V,/
AT, is nearly independent of X.

(iii) It was not possible in this work to investigate
the isothermal compressibility close enough to the
critical locus either to support or disprove the pre-
dictions of Griffiths and Wheeler that it should di-
verge weakly there.

(iv) The exponent P describing the coexistence
curves for constant-P and constant-T planes was
found to be somewhat higher than the P for pure
He3 and He .

Throughout this work, the tendency has been to
explore the similarities between mixtures and pure
fluids. The "symmetry point, "which is more
precisely located than the critical point, seems to
have some attractive properties for scaling among
the mixtures. The properties of the critical point
in terms of scaling and divergences are less evi-
dent experimentally than for a pure liquid.

The theoretical as well as the experimental prob-
lem for liquid-gas transition in mixtures is much
more complicated than for pure liquids, since

' fluctuations in both density and composition near
T, have to be considered, and these fluctuations
are not independent. Their relative importance is
a function of the average composition and of P and
T as well. For a complete study of the phase dia-
gram, one would need a systematic set of data for
a number of closely spaced compositions in order
to be able to express variables such as P~ —P, as
a function of (X~ —X,) at constant T along the true
coexistence curve. Under the described experi-
mental conditions, it is not possible to measure
simultaneously the composition of both coexisting
phases.

So far, then, only a beginning has been made in

the study of this complex problem, and although
one would like to have more data on several dif-
ferent mixtures, we believe that the analysis of
the data presented above is a useful first step and

we hope that it will stimulate further work, both
experimental and theoretical. It is also hoped that
these experiments will encourage a new theoretical
effort to calculate the critical parameters P„V,
and T, for the helium mixtures.
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Pressure and density measurements along the boiling and dew curves for Hee-He mixtures
for several temperatures above 2 K are presented. From these data, the excess chemical
potentials and the excess Gibbs energy are calculated.

Taconis and De Bruyn Ouboter' give a review of
the most recent measurements which are used to
define the P-T-X3 phase diagram of He -He mix-
tures below 2 K, where X3 is the mole fraction of

Hes. The most extensive are the data of Sydoriak
and Robertsa (SB), who determined the boiling curve
at 10%%uc steps in the mole fraction over the tempera-
ture range 0.6-2. OK. Sreedhar and Daunts have


