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The pressure dependence of dd", P„,and Po (or
velocity), which are structure dependent, suggests
that the structure of alcohols changes to a greater
extent at lower pressures than at higher pressures.
In the beginning, the number of hydrogen bonds
broken increases abruptly with pressure, but as
the pressure is increased, the tendency of hydrogen
bonds breaking is reduced resulting in a slow pres-
sure variation of structural absorption and associ-
ated parameters at high pressures. In case of
water, on the other hand, the pressure variation

of these quantities is not so brisk at lower pres-
sures, while at higher pressures, the variation is
similar to that of alcohols.
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Excitation Spectrum of Liquid Helium by Small-Angle Scattering of Nuclear Gamma Rays
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Considerable difficulty has been evidenced recently in determining and understanding the
excitations in liquid helium and their interactions. Small-angle scattering of nuclear gamma
rays is suggested for studying the excitations, which should complement the investigations using
inelastic neutron scattering. The theory is presented and experimental problems are dis-
cussed. The differential cross section for small-angle scattering of nuclear gamma rays for
single excitations is related to the x-ray liquid structure factor. The shift in energy of the
nuclear gamma rays is expressed in terms of a Doppler shift which is shown to be comparable
to the velocities used in nuclear resonance fluorescence. Scattering angles, linewidths, count
rates, and resolution are evaluated.

I ~ INTRODUCTION

The energy-momentum relation of an elementary
excitation in liquid helium was first deduced by
Landau~ predicting that the energy E(P) of an ex-
citation should rise linearly with slope v (v is the
speed of sound), pass through a maximum, drop
to a local minimum at some value po, and then rise
again. For small p the excitations are phonons and
the excitations near po are called rotons. A
Landau-type curve has also been obtained from
the substitution of a, trial function into a variational
principle for the energy. ~ The measurement of
the excitation spectrum by inelastic neutron scat-
tering by Henshaw and Woods, suggested previously
by Cohen and Feynman, ' substantiated the general
predicted features. A good four-term fit to the
data of Henshaw and Woods up to momenta

P-2. 4 A ' at a temperature 1.12'Kis
E =Agp +A2p +Asp +A4p

with Ag = 328, A~= —189, A3 = 36.6, A4= —2. 17.
Large variations of the excitation spectrum as a
function of temperature, however, were observed.
E(PO) was found to vary by almost a factor of 2 as
the temperature varied from 1.12'K to the A. tem-
perature, the change of Ego) at the X temperature
being discontinuous. The linewidth also was found
to change rapidly as the temperature varied, again
changing discontinuously at the A. temperature.

In the long-wavelength limit where only phonons
should be important, the excitation spectrum can
be written as

E=vy(l —yP'+ ~ ~ ~ ) .
The main effort until now for studying the long-



924 RAYMOND FOX

wavelength region has been centered on investigating
the properties of the propagation of sound. The
simplest assumption theoretically is to treat sound
attenuation as the scattering of sound phonons by
thermal phonons, vaM for ~7» 1 where 7' is a re-
laxation time. From energy and momentum con-
servation it is easily shown from (2) that for
y 41 the three-yhonon process is forbidden. If,
however, the phonon lifetime is taken into account
and 3yp 2tg7 «1 where p is the average thermal
momentum p = 3k T/v, the three-phonon process
is allowed and the attenuation of sound is given
byv

@3 }} }}}[tan- }d7 —tan (22 yt} 1}}r)],
7} (u+1) (kT)4

pS
(3)

where p is the density, and

p ~v
Q

Bp

When (d«&1 the general formalism of the Boltz-
mann or kinetic equation is needed which is valid
for co7 «1 as well as for the simpler situation
cu7'» 1. In studying the collision integral,
Kbalatnikov and Chernikova employed a wide-angle
scattering time 7» and assumed that the collinear
scattering time t» is very much smaller, or

happ

«7'». For co7»»1, the temperature and frequen-
cy dependence of the sound velocity was determined
as

m' (u+1) kT ' I+(21dr„)2
60 pII' v 1 1+ (3yp (d7'q~)

Disatnick, ' in studying the collision integral, em-
ployed a general phonon-phonon relaxation time

If 7 = 7» he obtains the relation (5). Similarly
f0r 7 = Tpp Di satni ck' and Kbalatnikov and
Chernikova2 obtain (3).

The measured experimental attenuati. on'~ "'"
is larger than (3) when the measured value of p, is
used. The change of the sound velocity with
temperature also disagrees with theory although
in this case the measured change is smaller than
the predicted value. " This change is observed to
be smaller at higher frequencies which is opposite
to that predicted by theory. The calculation of
the velocity shift has been extended recently and
is now in better agreement. However, the fre-
quency effect still remains at variance with ex-
periment. In order to make experiment agree
with theory it was pointed out recently that a
negative value of y with )3yp m7 j»1 would lead
to twice the attenuation. However, recent inelastic
neutron scattering measurements'~ indicate that
the magnitude of y is less than 10' in cgs units,
which in the low-temperature and frequency range
makes the inequality only marginally satisfied.

II. THEORY

The vector potential A„ofa photon in second
quantization is

2mnc' "'
„A „=Z — ~„'(C„-,e'""+Cf, e-'""),

kX
(6)

where kx= (dt -k ~ r, V is the normalization volume,
and E„is the g component of the A. polarization vec-
tor. The creation and destruction operators, re-
spectively, obey the Bose commutation relation
[C„-„,C„-.1.] = 6gp 6}„}„.. The interaction Hamiltonian
of the electromagnetic field with nonrelativistic
electrons is (e/mc)p A +(e /2mc )A . In photon
scattering, to lowest order, the A2 term predom-
inates, and the transition matrix element is

M/5 = (e /2mc )(f(t) kxlA li(t)koho),

where I i(t)), If (t)) is the initial and final states of
the liquid helium, respectively, k0, k, are the en-
ergy momentum of the initial and final gamma,
respectively, and A0, A. their polarizations.

Introducing (6) into (7) and carrying out the
necessary operations (taking 8= 1), we obtain

(}d}d )1/2 ~~}},e 2''c
ff mc2 y 0

Using I i(t) ) = e ' }'
I i ), I f(t) ) = e ' }"

I f), &co = &u 0
—cu, 1l=ko —k, (8) becomes

&& 6(E& —E; —&}d), (9)

where E; is the initial energy of the liquid helium
and E& its final energy.

From Fermi's golden rule, the transition prob-
ability is 2z)M«l p&, where p& is the density of
final states given by Vd k(2}}) =dQd&o & V/(2}})'c,
where dO is the differential solid angle of the

Also, the high-frequency data show that the at-
tenuation is increasing less than linearly with
frequency, whereas a negative value of y would
require a higher than linear dependence. The
pressure dependence of the attenuation has been
recently studied and again it was found that theory
and experiment are in disagreement.

It is obvious from the above that the excitations
and their interactions in liquid helium are far from
being understood. We suggest the use of small-
angle scattering of nuclear gamma rays for studying
the excitations which should compliment the in-
vestigations which have and will be done using in-
elastic neutron scattering. In Sec. II the theory
is presented and in Sec. III experimental problems
are discussed.
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F»(q) = Z ge(rk) e""(He(rk) d rk
k=i

and ~p is assumed to obey cop» 5.
Assuming iti, is the liquid-helium ground state

and single excitation predominates in the sum over
final states in (12), we obtain, after integrating on
40q

F„',(q) NS, (q), (14)

where

S,(q)= Z $, (Rg' ' RN)e' '

scattered gamma and & its energy. The cross sec-
tion do is equal to the transition rate divided by
the incident flux, where upon using (9) we obtain

2 2 2
k )2

d(d dQ &Lc p

x~ l(fl e"'l') l'5«/-« —~oi) . (10)
f

The term (e /mc ) (P e o) is just the Thomson
cross section, do'r /dQ. Averaging over the initial
polarizations and summing over the final polariza-
tion, we have ((e ' e o) ),„=—,

' (1+cos 8), where 6

is the angle of scattering.
The wave functions Ii) and lf ) are the electronic

wave functions of the liquid helium in the initial and
final states, respectively. The vector r is the
position of one of the electrons, equal to R&+r»,
where 0, is the position of the center of the jth atom
and r» is the relative position of the kth electron
(k =1, 2) of the jth atom. Assuming that r» is in-
dependent of 8&, or r»= r„,we can write the initial
wave function in the form

= (i(R1 ' ' '
Ri%) SHe t

where ignis, is the helium atomic electronic wave
function and g, (R& ' R„)is the initial wave func-
tion of the liquid helium.

We assume that E/ —E, in (11) is sufficiently
small ( I E& E, I & 5) su—ch that the wave function
i)i„,is unchanged in the scattering. Thisthenneglects
processes in which in the final state an electron
is transferred to an excited state of the helium
atom or is expelled from the atom. It does allow
for all forms of bulk excitations (e.g. , phonons and
rotons) The f.inal state then can also be writt'en
in the form (11), and (10) becomes
do'e dor Fo

dc' d d~ f
~e

x Q ll p/ (R ~ ~ ~ R„)e""/p, (R~ ~ ~ ~ R„)
g=1 J
xdR ~ ~ - d R '5(E -E,. —a~), (12)

where I'„,is the helium atomic structure factor
defined as"

x ifio(%, .~ R„)d R, " d0„.(15)

The liquid structure factor is defined as

Fs,(q)NS (q), (16)

where do„„/dQis the coherent differential cross
section. It has been measured recently for small
momentum transfers. o Comparing (14) and (16)
we have in general S,(q) & S(q). If the assumption
that single excitation predominates is a good one,
then S,(q) = S(q). The assumption that the initial
state is the ground state is strictly true only at
absolute zero. It should be a fairly good assump-
tion at finite temperatures, however, if (E& E,)-
» kT such that the Bose statistical factor obeys
(eef zi/kr -I) -1 « I

For single excitation, conservation of energy
and momentum gives

(op —co —&& —E —Ef -E],
kp k=q=p

q = 2 k, sin(8/2) = p .

(17)

(18)

(19)

Similarly from (2) we obtain

V= 2v sin(8/2) —rv8 sin'(6/2) (oio/c)'

—5v16 sin (8/2)(&o/c), (21)

where a term —5p has been included in the expan-
sion. It is to be noted in (21) that for y and 5

zero, the velocity Vis independent of the incident
energy ~p, and is equal to the velocity of sound
times 2sin(6/2). Thus at a given scatte. ring angle
and using two incident energy gamma rays, y and
6 become sensitive functions of the difference of
the Doppler velocities.

III. EXPERIMENTAL

Let us first estimate the velocity V and scatter-
ing angle 6 needed in (20) and (21). A q of order
1.0 A ' and an incident gamma ray of order 10
keV corresponds to a scattering angle of 10' and
a Doppler velocity of order 25 m/sec. Such Doppler
velocities of nuclear gamma-ray sources have
been used in experiments of nuclear resonance
fluorescence. In general when a nucleus emits
a gamma ray it recoils and when a nucleus absorbs
a gamma ray it also recoils. Thus for a nucleus

E can be expressed in terms of the Doppler
velocity V necessary to cause an energy shift &~.
Using (17)—(19) in (1), we obtain

I/o = A&4 sino(6/2)+Ak16 sin (6/2)(oio/c )

+A, 64 sin'(8/2) (g/2) '

+A4256 sin (8/2)(oio/c)' (20)
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of mass M emitting a gamma ray of energy ~0,
the gamma source must be Doppler shifted by an
energy &uo/Mc for it to resonantly scatter. For
gamma ray energies of order 500 keV in heavy
nucleii, this amounts to Doppler velocities of
several hundred meters per second. Moon
achieved these Doppler velocities and thereby
resonance fluorescence by using a centrifuge.
Typical arrangements can be seen in Moon and

Storruste and Knapp.
A typical velocity spectrum of resonance fluo-

rescence using the centrifuge method can be seen
in the measurement of Davey and Moon of the
411-keV level of ' Hg. The peak resonance effect
occurs at 700 m/sec and the spectrum has a width
of 500 m/sec due to the thermal motion of the source
and resonant scatterer.

In using nuclear resonance fluorescence for
studying the excitation spectrum of liquid helium,
the liquid helium is placed between the gamma
source and the resonant scatterer. The count rate
can be appreciably increased by using recoilless
Mossbauer transitions. " The observed Doppler
shift is then just due to the excitation energy of the
helium. The width of the velocity spectrum is de-
termined by the angular resolution. For example,
an angle 8 of 10 and —,

'' resolution would give a
velocity width of order 1 m/sec.

The number of reported Mossbauer transitions
are relatively plentiful. ' We are interested in the
low-energy Mossbauer transitions in order that the
scattering angle should not be too small. There
are seven reported transitions less than 23 keV.
They are '4'Sm(22. 5), '"Eu(21. 55), ' Fe(14.39),
"'Ba(12.29), 8'Kr(9. 3), '"Tm(8. 42), and'8'Ta(6. 21).
For a scattering angle 8 in the liquid helium of

10', the corresponding momentum transfers are
(in units of A ') Sm(2. 06), ~ Eu(1. 96),' Fe(1.28), "Ba(1.10) ' Kr(0. 84) "Tm(0. 76),
and ~8'Ta(0. 56). (A scattering angle of 5' would
give half the above momentum transfers. )

It is of interest to estimate the expected count
rate. Since it is small, it is advisable to use a
ring counter. Assuming a 100 mCi source, a 10'
scattering angle, and —,

' ' resolution, the expected
count rate is of the order of a count per second.
If 1 resolution is taken, the count rate is increased
by an order of magnitude.

It is to be noted that, in principle, knowing the
velocity of sound v and using just one scattering
angle, both y and 5 can be obtained from (21) using
just two gamma sources.

It is also to be noted that not only the parameters
y and 5 or A&, A» A3, A4, . . . and their tempera-
ture dependence can be obtained in the experiment,
but also the lifetime of the excitations ~. Though
the center of the velocity spectrum is given by (20)
and (21), the width of the velocity spectrum is
given by c/v+0.

From the above, the small-angle scattering of
nuclear gamma rays is seen to be competitive with
the inelastic scattering of neutrons for studying
the excitations in liquid helium. In particular it is
to be noted that since a neutron scatters from the
helium nucleus while the gamma ray from the
electrons of the atom, we can expect that the cou-
pling to the excitations will not be exactly the same.

ACKNOWLEDGMENTS

I would like to thank Professor B. Rosner,
Professor Y. Eckstein, and Dr. M. Ron for helpful
discussions.

~L. Landau, J. Phys. (USSR) 5, 71 (1941); 11,
91 (1947).

'B. p. Feynman, Phys. Rev. 94, 262 (1954).
3B. P. Feynman and M. Cohen, Phys. Bev. 102, 1189

(1956).
4D. G. Henshaw and A. D. B. Woods, Phys. Rev. 121,

1266 (1961).
M. Cohen and R. P. Feynman, Phys. Rev. 107, 13

(1957).
B. M. Abraham, Y. Eckstein, J. B. Ketterson, M.

Kuchnir, and J. P. Vignos, Phys. Rev. 181, 347 (1969).
P. C. Kwok, P. C. Martin, and P. B. Miller, Solid

State Commun. 3, 181 (1965).
C. P. Pethick and D. ter Haar, Physica 32, 1905

(1966).
SI. M. Khalatnikov and D. M. Chernikova, Zh. Ek-

sperim. i Teor. Fiz. 49, 1957 (1965); 50, 411 (1966)
[Sov. Phys. JETP 22, 1336 {1966); 23, 274 (1966)].

' Y. Disatnick, Phys. Rev. 158, 62 (1967).
' B. M. Abraham, Y. Eckstein, J. B. Ketterson, and

J. M. Vignos, Phys. Rev. Letters 16, 1039 (1966).
B. W. Waters, D. J. Watmough, and J. Wilks, Phys.

Letters 26A, 12 (1967).
B. M. Abraham, Y. Eckstein, J. B. Ketterson, M.

Kuchnir, and P. R. Roach, Phys. Rev. A 1, 250 (1970).
S. G. Eckstein, Y. Eckstein, J. B. Ketterson, and

J. H. Vignos, in Physical Acoustics, edited by W. P.
Mason and R. N. Thurston (Academic, New York, 1970),
Vol. 6, and references therein.

' A. F. Andreev and I. M. Khalatnikov, J. Low Temp.
Phys. 2, 173 (1970).

'6H. J. Maris and W. E. Massey, Phys. Rev. Letters
25, 220 (1970).

"A. D. B. Woods and R. A. Cowley, Phys. Bev. Let-
ters 24, 646 (1970).

' P. B. Roach, J. B. Ketterson, and M. Kuchnir,
Phys. Rev. Letters 25, 1002 (1970).

IBA. H. Compton and S. K. Allison, X-Rays in Theory
and Experiment (Van Nostrand, New York, 1935).

R. B. Hallock, Phys. Rev. Letters 23, 830 (1969).
2~P. B. Moon, Proc. Phys. Soc. (London) A64, 76

(1951).
P. B. Moon and A. Storruste, Proc. Phys.

(London) A66, 585 (1953).



EXCITATION SPECTRUM OF LIQUID HELIUM ~ ~ ~ 92'7

23V. Knapp, Proc. Phys. Soc. (London) A70, 142
(1957).

24%. G. Davey and P. B. Moon, Proc. Phys. Soc.
(London) A66, 956 (1953).

H Frauenfelder The Mossbauer Effect (Benjamin
New York, 1963).

Mossbauer Effect Data Index, edited by J. G. Stevens
and V. E. Stevens (Plenum Data Corp. , New York, 1970).

PH YSICA L REVIEW A VOLUME 5, NUMBER 2 F EBRUARY 1972

Quantum-Mechanical Transport Equation for Atomic Systems

Paul R. Berman~
Physics Department, Yale University, Nezv Haven, Connecticut 06520

(Received 14 July 1971)

A quantum-mechanical transport equation (QMTE) is derived which should be applicable
to a wide range of problems involving the interaction of radiation with atoms or molecules
which are also subject to collisions with perturber atoms. The equation follows the time
evolution of the macroscopic atomic density matrix elements of atoms located at classical
position R and moving with classical velocity v. It is quantum mechanical in the sense that
all collision kernels or rates which appear have been obtained from a quantum-mechanical
theory and, as such, properly take into account the energy-level variations and velocity
changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms.
The QMTE represents a somewhat different formulation of the problem than that considered
in earlier works. The present formulation is better suited to problems involving high-inten-
sity external fields, such as those encountered in laser physics.

I. INTRODUCTION

In two previous papers'2 (hereafter referred to
as QMI and QMII), a theory of pressure effects
was developed which enables one to follow the time
evolution of a moving atom which was interacting
with some external radiation field and undergoing
collisions with perturber atoms. Quantization of
the atom's center-of-mass motions proved to be a
key feature of this theory since it permitted a con-
sistent treatment of both the energy-level varia-
tions and velocity changes of the active (emitting
or absorbing) atom caused by collisions with per-
turber atoms. One drawback of the approach of
QMII was that it was formulated in terms of a per-
turbation expansion in powers of the external field
so that, in its present form, the approach was not
well suited to problems involving high-intensity
fields. In this paper, based on the results of QMI
and QMII, we shall derive a quantum-mechanical
transport equation (QMTE) which will not possess
this drawback.

The equation to be derived is termed a transport
equation because it will describe the evolution of
the macroscopic density matrix (or distribution
function) of the ensemble of active atoms specified
by the classical variables 8,, v, f. On the other
hand, the equation will be quantum mechanical in
the sense that all collisions kernels and rates
which appear will have been obtained by inference
from the quantum-mechanical collision results of
QMI and II. The fact that all our collision kernels

are well-defined quantum- mechanical quantities
distinguishes our theory from others3 which make
use of a similar equation with phenomenological
(and sometimes incorrect) kernels based on a
classical rather than quantum- mechanical descrip-
tion of the atomic center-of-mass motion. 4

Of what use is the QMTEP Typically, transport
equations enable one to determine the approach to
equilibrium of an ensemble of atoms initially de-
scribed by a nonequilibrium velocity distribution.
However, although applicable to problems of this
kind, the QMTE will be developed in a manner di-
rected towards application to a different class of
problems. Specifically, we have in mind a situa-
tion where the active and perturber atoms are per-
mitted to reach some sort of thermal equilibrium.
At that point, an excitation or external field inter-
action is "turned on" and tends to alter the equilib-
rium distribution of the active atoms. The QMTE
will trace the evolution of the active atom density
matrix from the original equilibrium to the new
steady state.

In turn, the macroscopic density matrix ele-
ments obtained as solutions of the QMTE will, in
general, enable one to calculate values for quan-
tities of physical interest in a given problem. For
example, in laser problems, the atomic polariza-
tion which serves as a driving function for the
classical laser electric field is directly related to
off-diagonal density matrix elements. '3 Similarly,
spontaneous-emission spectral profiles are deter-
mined by the diagonal density matrix elements


