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Previous theoretical results on the influence of a laser on the line shape of a coupled transi-
tion —laser-induced line narrowing —have been restricted to the case where the laser is de-
tuned from the center of its atomic gain profile or is in the form of a traveling wave. This
paper extends those results to include the case where the laser is an intense standing-wave
field tunable to the center of its atomic gain profile (conditions for Lamb dip). The effect may
be observed either in transmission, by probing the coupled transition with a weak traveling-
wave field coaxial with the laser field, or else in spontaneous emission from the coupled
transition viewed along the axis of the laser field. It is now well known that for a laser de-
tuned from the center of its atomic gain profile, two narrow Lorentzian resonances of differ-
ent widths appear superimposed upon the broad background signal at frequencies symmetri-
cally located about the corresponding line center. When the laser is tuned to the center of its
gain profile, however, additional fine structure develops. This structure, which is partic-
ularly significant when the laser field is intense, may have important applicatioris in high-
resolution spectroscopy and laser-frequency stabilization. In this paper the laser frequency
may be smaller or larger than the frequency of the coupled transition. In the latter case an

intense laser introduces additional splitting effects, even when the laser is detuned. Splitting
effects due to weakly saturating laser fields are also discussed. The problem is formulated by
expanding elements of the ensemble-averaged density matrix in an infinite series of spatial
Fourier components. A perturbation technique is employed, valid for a weak probe field and

a standing-wave field of arbitrary intensity. One obtains an expression for emission induced

by the probe field due to atoms moving with one velocity, written in terms of continued frac-
tions in the general case and with Bessel functions in an important special case. This expres-
sion is integrated over the atomic velocity distribution by means of a computer to obtain the
total emission due to atoms moving with all velocities. In some cases the integrated expres-
sions may be written in closed algebraic form. A detailed discussions oflineshapesandof the
physical processes involved is included.

I. INTRODUCTION

The line shape of a Doppler-broadened transition
is dramatically altered by the presence of a stand-
ing-wave laser field resonating with a second Dop-
pler-broadened transition sharing a common level
[Fig. 1(a)]. For a laser detuned from the center
of its atomic gain profile, two narrow Lorentzian
resonances of different widths appear superimposed
upon the broad background signal of the coupled
transition at frequencies symmetrically located
about its line center [Fig. 1(b)]. ' Recent observa-
tions of this effect, ' called "laser-induced line
narrowing, " confirm the predictions of the theory.
The line-narrowing produced, which can be 100-
1000 times narrower than the Doppler background,
has been utilized in a variety of ways as a high-
resolution spectroscopic technique for determining
isotope shifts, ' fine' and hyperfine"' ' structure,
g factors, ' ' and linewidth parameters. ' ' The
effect may be observed either in transmission, by
probing the coupled transition with a weak travel-
ing-wave field coaxial with the laser field, or else
in spontaneous emission from the coupled transition
viewed along the axis of the laser field (Fig. 2).

Note that identical line shapes will be observed in
both cases since the spontaneous emission line
shape is equivalent to the line shape of emission
induced by a probe field containing a single photon
in each mode. '

The over-all features of the line-narrowing effect
may be understood in terms of the velocity selection
of moving atoms by the standing-wave laser field.
The field selectively interacts with atoms whose
velocities Doppler-shift one of its traveling-wave
components into resonance. This produces changes
in the laser-level populations over two narrow
intervals symmetrically located about the center of
the velocity distribution. These changes reflect
themselves in the gain profile of the coupled transi-
tion. The above explanation does not account for
the different widths of the two change signals, nor,
as shall be seen, for the other striking line-shape
features to be described below. The formulation,
analysis, and interpretation of these effects form
the content of this paper.

Previous theoretical results' on the influence
of the laser on the line shape of a coupled transition
have been limited to the case where the laser is
detuned from the center of its a'tomic gain profile
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FIG. l. (a) Energy-level scheme
considered in this paper. Note that
o)t/o)p is variable and may be greater
or less than unity. (b) Typical gain
at G~ for standing-wave field at 0&
detuned from resonance. The broad
and narrow dips in the laser transi-
tion gain profile will be treated in a
separate paper. The dips in the cou-
pled transition are treated here. The
insert depicts the dips as they occur
in the absence of the background
((Rp&) of the text). In the example
shown, the background ((Rp))) is un-
altered by the standing-wave field.
In other cases both terms may be in-
fluenced by it.

(b) Gain Profile

(or is weak). A detailed treatment was given in
Ref. 4, the first paper in this series (which shall
be referred to hereafter as I), using a method of
calculation in which the EM fields are treated
classically. The present paper extends this ap-
proach to the important case in which the laser is
of arbitrary intensity and may be tuned to the center
of its gain profile (conditions for Lamb dip). This
case is of particular interest in view of the fact
that recent theoretical studies' ' ' predict that under
these conditions the laser-induced change in the
velocity distribution departs from a simple Lorent-
zian-like curve. Instead, additional fine structure
develops for atoms with low velocities [Fig. 3(a)].
This fine structure does not manifest itself in the
Lamb dip. We shall show below that related fine
structure does appear in the gain profile of the
coupled transition. This structure is particularly
significant when the laser field is intense. An

example is shown in Fig. 3(b), where the fine
structure is clearly discernable on the wings of the
central dip. The additional central feature of Fig.
3(a) results from other spatial interference effects
to be described below.

When the laser field is intense other related
line-shape effects can occur, even when the laser
is detuned from the atomic center frequency. For
example, when the laser frequency is higher than
the frequency of the coupled transition under study,
the narrow resonance splits in two (Fig. 4). This
new effect should not be confused with another
splitting effect which occurs for weak fields.
Both of these effects are treated below.

It should also be noted that the line-shape details
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FIG. 2. Possible experimental arrangements for ob-
serving laser- induced line narrowing. (a) Transmission:
A tunable probe field Et (Q~) is coaxial with standing-
wave laser field E2(G&). A filter blocks E&. The output
intensity of the probe field is monitored as a function of

(b) Spontaneous emission: The fluorescence spec-
trum E&(Q&) emitted along the axis of the laser cavity is
studied by means of a high-resolution scanning Fabry-
Perot inteferometer. The filter transmits only E~. The
line-shape effects will be observed in both arrangements.

analyzed here are of importance in considering
stabilization schemes based on laser-induced line-
narrowing effects.

This paper is divided into five sections. In Sec.
II we set up the problem using the ensemble-aver-
aged density-matrix equations of motion. We ob-
tain an expression for the small-signal gain profile
of a transition coupled to a laser transition, valid
for arbitrary values of laser intensity, laser de-
tuning, level lifetimes, Doppler width, and relative
frequencies of laser and coupled transitions. These
expressions are given in terms of continued frac-
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FIG. 3, (a) Plot of the spa-
tially averaged population dis-
tribution vs axial velocity for
the upper level of a two-level
system interacting with an in-
tense standing-wave field on
resonance. Note the fine struc-
ture appearing in the central
dip over a narrow range of ve-
locities about v = 0. (b) Typ-
ical curve of gain at 0& as a
function of b~, the detuning
from the atomic center fre-
quency of the coupled transi-
tion for the same case. as Fig.
3 (a) . Comparison indic ates
that structure similar to the
population fine structure oc-
curs at the wings of the narrow
central dip of the profile. The
central dip itself originates
from complex interference ef-
fects discussed in Sec. IV.
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tions in the general case and Bessel functions in
important special cases. In Sec. III computer
methods of evaluating these expressions are dis-
cussed. In Sec. IV we present the results in a
number of special cases which emphasize the dif-
ferent physical effects which come into play. These
results are compared with a simplified expression
obtainable from a rate-equation approximation,
and also with the independent field appro-ximation
A brief discussion of the area (integrated intensity)
properties of these results is given in Sec. V.

Lengthy mathematical discussions which would
interrupt the continuity are deferred to appendices.

II. THEORY

The theoretical problem under consideration is
the interaction of a coupled Doppler-broadened
three-level system with two coaxial applied fields,
an intense standing-wave field resonating with the
'laser" transition, and a weak traveling-wave probe
field resonating with the coupled transition. To be
concrete we shall deal with the folded level con-

O

FIG. 4. Gain at 0&, background
omitted, for the case && —&&/2 as in-
fluenced by an intense standing-wave
field E2 detuned from resonance. Note
that the dip on the right is split. For
weakly saturating values of E&, the split-
ting disappears. This new effect should
not be confused with another effect
which appears in the background term
even for weakly saturating values of E2
[see Fig. 7{d)].
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figuration of Fig. 1(a). However, the results may
be easily extended to the cascade configuration.

In formulating the problem it is most convenient
to treat the applied fields classically. It is im-
portant to note, however, that the resulting line-
shape expression is also applicable to the case of
spontaneous emission at the probe frequency.
The formalism of the ensemble-averaged density
matrix is adopted. In this formalism one con-
siders the interaction of the applied fields with
atoms moving with a given axial velocity. Having
obtained the response at the probe frequency, it is
necessary to sum over the entire distribution of
atomic velocities. Note that in the ensemble-av-
eraged formalism the initial conditions at which
individual atoms are produced have already been
averaged over, a considerable simplification.

Consider, first, the interaction of the atoms
in a narrow velocity band with the applied fields.
The problem is solved by means of a perturba-
tion technique. In the absence of the probe field
the problem reduces to the interaction of a stand-
ing-wave field with a two-level system. We then
consider the influence of the probe field as a small
perturbation on this "unperturbed" system. The un-

perturbed problem has already been solved for
arbitrary intensities and detuning of the standing-
wave field in Ref. 21. Thus, we may directly sub-
stitute the required terms into the perturbation
equations. In the unperturbed solution it is im-
portant to include spatial variations of high har-
monic content produced by the standing-wave field
in the level populations and the induced polariza-
tion, and in Ref. 21 the unperturbed solution is
expressed as an infinite series of spatial Fourier
components. In the present problem it is also con-
venient to expand the perturbation solution in spatial
Fourier series. This immediately leads to an
infinite set of coupled nonhomogeneous linear dif-
ference equations which may be solved subject to
the appropriate boundary conditions. In the general
case the solution may be expressed in terms of
continued fractions and in important special cases
in terms of Bessel functions. One then obtains
an expression for the emission induced by the probe
field due to atoms moving with one velocity. This
expression is integrated over the atomic velocity
distribution by means of computer to obtain the
total emission due to atoms moving with all veloci-
ties. In some cases the integrations may be per-
formed analytically.

The three-level system under study is of the type
shown in Fig. 1(a). Level 0, the common level,
is coupled to levels 1 and 2 by electric dipole ma-
trix elements p, ,o and p», respectively. From
parity considerations, p.» = 0 and there are no
diagonal matrix elements. Denote the energy of
level j by h;W, , and let Wo —W,. = ~,. ; ~, and ~~

fall in the optical-infrared region. The system
interacts with a strong standing-wave laser field
E,(z, t) at Qz, a frequency close to &u, . The reso-
nance at co, is probed by the weak field E,(z, t) at
variable frequency Q&. (We shall assume that

l (d&- +& l is large compared to the Doppler widths
so that E& does not resonate with » nor E2 with
&u, . ) Specifically,

Eg(z, t) = Eg cos(Q, t —k,z+ (f)i),

Ez(z, t) = 2E2 sink, z cos (Qzt+ Q2),

with

kq = Qq/c,

(»)
(lb)

(1c)

and Q, and $2 are constantphase factors. The ad-
ditional condition

kq ——mv/L (ld)

(L is the cavity length, m is an integer) is imposed
on E~ by the laser resonator. The total Hamiltonian
for the system is

H=HO+ V, (2)

where Ho is the Hamiltonian of an unperturbed atom
with stationary states of energy hW&, and V is the
interaction Hamiltonian,

V= —pE(z, t),
E(z, t)=E, (z, t)+E,(z, t),

(3a)

(3b)

where p~ is the relaxation rate of level j. Also, p
describes the steady-state ensemble, assumed
spatially uniform, in the absence of applied fields:

(6)

n~(v) being the steady-state population density per
velocity interval in level j in the absence of applied
fields. We may write

n&(v) = N~G&(v),

with electric dipole operator p..
The problem is most readily treated by means

of the ensemble-averaged density matrix p(v, z, t),
which describes an ensemble of atoxns at coordi-
nates (z, t tmoving with axial (z axis) velocity v.
The equation of motion of p, derived in Ref. 21,
is given by

+v p= ——[II, p] —, (p p, rj—, -8 8 i, p

et ez h
(4)

where [ ] and {] are commutator and anticom-
mutator brackets, respectively. The left-hand
side is the total derivative of p. Relaxation is
accounted for in the second term on the right-hand
side through F, which has elements
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with N& the total population density of level j and

G1(v) its normalized velocity distribution:
P21 PQ1

g+
p&a= pa~

(16c)

(16d)

J G, (v) dv= 1 . (7b)

P(z, t) = f Tr[ pp] dv . (9)

To formulate the perturbation approach, let us
rewrite the Hamiltonian of Eq. (2) in the form

H=H" +H',

with

H"= Hp —pE2

(10)

H' = —j[LE1 . (12)

Thus, H" is the unperturbed Hamiltonian, describ-
ing the interaction of the standing-wave field with
the atomic system in the absence of E,. The cor-
responding unperturbed density matrix p" is the
solution to Eq. (4) with H' equal to zero:

+v p"=-—' H", p" --,' p"-p', Z

(18)

For further details regarding Eq. (4) see Ref. 21.
The partial induced polarization due to the atoms

moving with velocities in the interval between v and
v+ dv 1s

P(v, z, t)dv= Tr[p,p]dv.

The net polarization is obtained by considering con-
tributions from all velocities;

poo(v, z, t)=no+n02 Q [a„(v)e'"'2'+c. c. ],
evenn & 0

(16e)

p22(v z t) n2+ n02 + [5.(v)e'"""+c.c. ] .
evenn&0

(16f)

(16g)Q
P11 +1 y

where

(16h)Sf 6) ~

[In obtaining Eqs. (16) it is assumed, as stated
above, that E2 does not resonate with 10, . ] For
convenience, a„, b„, and II„', obtained in Ref. 21,
are given in Table I. Note that Z„[Eq. (T14)] is a,

continued fraction which is to be evaluated subject
to the boundary condition Z„-0 for n- ~. The
computation of Z„ is discussed in Sec. III.

Let us now consider Eq. (15). The weak probe
field does not perturb the level populations, so
that

P~~=O, k=O, 1, 2. (17)

[ P'01E1 (POO 1) P02 E2 P21 ]

Therefore, using Eqs. (16c) and (16g), the equa-
tions of motion of the off-diagonal matrix elements
of p' may be written as

8~ 8
I

~

I8 8
+V +S~1+y1P PP1Bz

The additional term H', due to the weak probe field,
is taken to be a small perturbation on H". Thus,
H' produces a small correction p' to p": 8z

I8 8
St

+ v
S +2(011 +2)+ ~21 P21

(18a)

p=p +p (14)

Inserting Eqs. (10) and (14) into Eq. (4), subtract-
ing Eq. (13), and neglecting the [H', p' ] term,
which does not contribute to p' to lowest order in
H', one obtains

[ POl E1P20 tl20E2 P01 ] i (18b)

8 8
+ v —z(d2+ y2p. pBf Bz

u+v . P'= — [H'i P"]- [H" I P']
Bt Bz h ' h

-lip', I'] (15)

[ P20@2 (P22 POO) + 410E1P21 1

(18c)
This set of equations may be solved by inserting
E, and Z2 [Eq. (1)] in complex form:

P20(v, z, t) = x"(v, z)e'"2', (16a)

Assuming p" is known, p' is completely specified
by Eq. (15).

Equation (18) has been studied in detail in Ref.
21. Its solution, p" valid for arbitrary values of
E2, has elements which can be written in the form

E,(», t) = A, e "1'e'"1'+c.c. ,

E2(z, t) =22(e"2' —e "2') e'"2'+ c.c. ,

with

A = —'E e'~',1 2 1

A2= —2iEz e1 ~ Q

(19a)

(19b)

(20a)

(20b)

&"(v, z) = n02 Z [ri„'e'""21'+11„e' "], (16b)
odd n & 1

The various spatial and temporal Fourier com-
ponents of E1 and E2 drive the off-.diagonal elements
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TABLE I. Definition of symbols appearing in Eq. (16).

1
yzo= —.(yo+yz),

62= 02 - (dp (T2)

General expression for y„:
1

1+(4p&&/y ) Re(Z, )

3n+y= ~n3np +=0& 1~ 2~. . .
&

(T12)

go
p

pozEz e-&oz
2h

(T4)

Z =
n

with

Fn+i +
1

Fn.a+
Fn.3+ ''' (T14)

y =ypy2/ym,

1 idz P*
rr„'= —— 1-

2 yzo+ inkz v P&&

(T6)

1

Fn

Po[(yo+z&zkzv) '+(y, +ink, v)-'], &z=0, 2, 4, .

po&[yzo+ z(skav+ ~z)] '+ [yzo+i(nk, v —~,)] '],
n=1, 3, 5, . . .

odd zz

4 Xn
y20 —znk2 v pa

evaluated subject to the condition
(TV)

lim Z„=O
OQ

(T16)

Expression for y„when y, =y, =-y, ~,=0:

1
a =—

n

y2+ inkzv

y20+ ink2v
&

even n ~ 2

(T8)

z"~, &,&(z))/~, &o&(z))

1+(4Po/y) 1m[~, &»(n)/~. &0&(V)]

r& =4 Po/kzv (T18)

1
b = ——

n
yo+ ink2v

y20+ 'EÃkpv (T9) v(n) = n —i y/kzv (T19)

with J,(z) equal to the Bessel function of order v,
argument z.

pate-equation approximation to y„:

ao+ a[ = ( yz/2y2o) [$o 1] (T10)
RE A

Jo
1

1 (4P /y) Re(1/F, )
(T20)

RE A RE A/yJi = Xo (T21)

b + b$ = ( —y /2y zo) [y p 1] REA 0 go 2 (T22)

of p'. Let us consider the variations of the p', &.
Of special importance are the coefficients of p',

&

on the left-hand sides of Eqs. (18). These are
associated with the resonant behavior of the in-
duced polarization. The only important frequency
components of a p'&& are those for which Bp'z&/Bt

cancels the i~ factor for appropriate values 0&
and 02, thereby reducing the coefficient of p',

&
to

y, &+ v&&/sz. Therefore, a nearly complete solution
to Eqs. (18) will be of the form

p'„=A(v, z)e '"&',

pI D(vg)e&&ozo&&z

p,', = X(v, z) e'"2',

(21a)

(21b)

(21c)

where &~, D and X are time independent. Inserting
Eqs. (16a), (19), and (21) into Eqs. (18) and equatin8
like coefficients of the complex frequency factors,
one finds that X(v, &.) = 0 and that
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(
8

61+iv + iy10 A
az

= n* e"1'(p" —n1)+if(e' &' e —"P')D,

(22a)
~ ~8

+12 + 2v + Zy21

where X= 2z/kz is the wavelength of the intense
standing-wave field. Since y/l « I, the additional
terms are negligible as long as the ~'„do not di-
verge for large n. As shown in Appendix A, the
convergence of the A„' as n- ~ is a necessary con-
dition for a physically acceptable solution. Ac-
cordingly, the additional terms may be neglected,
and we obtain

—~s e&&1~ y" +i@I (e&&2~ e &&a*)A

(22b)
W=-2kn, u ~'im(Ap&. (32)

where"

o.'= l11pA.1/ti,

P = —imp pA*p/t1,

Ag= Qg —g p

(23)

(24)

(25)

Note that only Ao contributes to the net emitted
power.

We now solve for Ap. Inserting Eqs. (16b),
(16e), and (27) into Eqs. (22) and equating like
harmonics of k2z, we obtain a set of equations
which can be written in the following compact
form:

&12= ~1 —&2 ~ (26)

We may proceed by expressing A and D in Fourier
expansions in kpz. Note in Eq. (16) that ppp is ex-
panded in the even harmonics of k2z, whereas X"

is expanded in the odd harmonics. It directly fol-
lows from Eq. (22) that A will consist of the even
harmonics of k2z, and D of the odd harmonics.
Therefore, the required solution will be of the form

&y eia1S

iP [x,(1) -x (1) ]+L(0)x(0) = l(0) .

The following definitions have been made:

(33b)

( li/Po)D.',
x,(n) =

A„, n=2, 4, 6, . . .

(34a)

(34b)

+ iPp [x,(n+ 1) —x,(n —1) ]+L(a n)x, (n) = nppi&(n),

n& 1 (33a)

& fnk2s+ P- &-fnk2c

even n~2

(27a)
)k1g g [D+ ( ) llglpc+D (V) e tll!Pt]

055 n 1

(27b)

The induced polarization at 01, obtained from
Eq. (8) and (21), is of the form

P1(v, z, i) = Re [2p1pAe '""]. (26)

AE(v z)dv (.P1(v z i) @1(z, &) ) 11,,~, ,dv ~

The average power increase per unit volume at 01
induced by E„due to atoms located at z and moving
with axial velocity v, is given by

x,(0) = x(0) = Ap,

(P/P, )ll„, n=1, 3, 5, .. .
i (n) =

a*„, 8 2p 4y 6p ~ ~ ~

i(0) = 11p z[ep+ ized ] + np1,

(P/P )II„', n=1, 3, 5, . . .
t, (n) =

a„, n=2, 4, 6, . . .

(34c)

(35a)

(35b)

(35c)

(35d)

(35e)

~f=(1/l) f „, dz j dvW(v, z). (30)

Making use of Eqs. (29) and (27a), and indicating
velocity averages by ( ), i. e. , (0)=f" 0(v)dv,
we obtain

~l= -2an,
~

n ~'[lm(A, )

+,additional terms of the form ( X/nl) (A'„)], (3l)

(29)
The net power increase per unit volume is obtained
by integrating this quantity over the distribution of
atomic velocities and averaging it over the length
l of the active medium, centered at position a:

+1p (kl + nk2)v + i&21

L(+ n) = (36a)

&, .—(k, ~nk, )v+iy, p,

n=O, 2, 4, 6, . .. . (36b)

Equations (33a) and (33b) constitute an infinite set
of coupled nonhomogeneous linear difference equa-
tions, in which the i,(n)'s, known quantities deter-
mined by the unperturbed solution, act as driving
terms for the x,(n)'s. We are particularly inter-
ested in obtaining Ap, since, from Eq. (32), the
emitted power is proportional to ImAO. It is shown

in Appendix A that the solution for Ao is
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u, (j)= g W,(k), (38)

and W, (k) is the continued fraction

W,(k) =

+ ipo
I.[+ k]

p' 1
L[+k ] L[a (k+ 1) ]

F01+ no 2(ao+ a5 + Z&.) ( —)' [t (j)u, (j) + t (j)u (j) ])
iPo [u,(l) - u (1) ]+L,(0)

(37)
where

value of the ratio of the last value to the first is
less than 10~. The convergence of this sum is a
consequence of the boundary conditions, which re-
quire A„ to approach 0 for large n (Appendix A).

As a check, when yo=y2 and ~&= && we have
compared our continued-fraction results with the
Bessel function expressions and find agreement
to six places of accuracy.

To simplify the interpretation of our results,
we have chosen a rectangular population distribu-
tion,

k2/89 8y20 for
I

))
I

34 9yoo/ko
G~(v) =

for
I

g
I

) 34, 9yoo/ko

2' 1 1

L[a(k+1)] L[+ (k+ 2)]

evaluated subject to the condition

lim W,(k)=0.

(39a)

(39b)

For the special case yo= ya, 62= 0 we find

i'Z, &„(-2Pgk, ~)
~, (o)(- 2Polko&)

(40a)

~(j) =+ L(+j)/kov, (40b)

III. COMPUTER EVALUATION OF M

The calculation of AI, the emitted power at 0, ,
from Eqs. (35), (3V)-(39), and (32), requires the
evaluation of continued fractions and velocity in-
tegrals. The computations have been performed
on the MIT 360 computer using double-precision
complex arithmetic. Continued fractions were
evaluated by comparing the value obtained by trun-
cating the continued fraction after j terms with the
value obtained by truncating after j+1 terms. The
algorithm used in calculating a truncated continued
fraction of j terms is given in Appendix C. If the
absolute value of the fractional difference between
the two calculated values is less than 10 6, the
j+ 1th value is taken as the numerical answer. The
u, 's and y's represented as convergent continued
fractions have been calculated from Eqs. (38) and
Table I with all the continued fractions com-
puted independently to ensure that small errors
did not propagate. In the summations in Eqs. (3V)
sufficient terms were included so that the absolute

where J,(z) represents a Bessel function of complex
order o' and (real) argument z. The final expres-
sion for M may be obtained from Eqs. (32), (37),
and (38). The numerical evaluation of W, (k) is
discussed in Sec. III.

for all values of j. This wide distribution leads to

intensity profiles in which effects due to finite ve-
locity distribution are greatly x educed. It would,

of course, be easy to insert any desired form of

G&(v) into the program.
The velocity integrations are evaluated using

Simpson's rule with intervals of 0. 2kov/yoo. The
accuracy of the integration is better than 2%. The
accuracy of our calculations was checked by de-
creasing the step size and increasing the limits of
integration. Our numerical results are in excel-
lent agreement with the limiting case of a weakly
saturating standing-wave field (third-order po-
larization) and with the case in which the laser is
of arbitrary intensity but significantly detuned,
cases for which we have obtained analytic expres-
sions (see discussion below).

IV. RESULTS

Equation (32) may be written in the following
form:

M(Q, ) = SQ) ( (no —n, ) Zo, + (no —n) )elo) ) (41)

1+ao+a)+ Q, ) ( —1)~ [t,(j)u.(j)+ t (j)u (j) ]
ipo[u, (1) —u (1)]+L(0)

(42b)
Expressions in the same form for the off-reso-

nance case &o/yoo & (1+ —,'I) were previously dis-
cussed in Paper I, where it was shown that Jz& repre-
sents the double-quantum transition rate per atom, in
which atoms produced in level 2 subsequently decay
from level 1 by the net exchange of two photons
with the applied radiation fields, one absorbed at

(as before, ( ) indicates velocity average), where

Zo) = 2 a

ao+ag+ g", , ( —1) [t,(j)u,(j)+ t (j)u (j) ]
iPo[u. (1) -u (1)]+I,(0)

(42a)
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A2 and one emitted at 0&. Jo& was introduced as
the single-quantum transition rate per atom, due
to atoms produced in level 0 which subsequently
decay from level 1, emitting a single photon at 0&.
In this paper, however, we find it more convenient
to express our results for &f(Q, ) in terms of np —np

and np —n, . We thus have, equivalent to Eq. (41),

W(II, ) = an, [(R„)+(R„)],
where

&O2= —2&O2
2

(43a)

I=8Po/r pro (44)

as a measure of the intensity of the standing-wave
field (Ep). In Figs. 5, 7(a), and 7(b) the standing-
wave field is on resonance (&p/yop = 0). In Figs. 6,
7(c), and 7(d) the standing-wave field is off reso-
nance [hp/yop» (1+ 2I)'t ]. In Figs. 8(a) and 8(b)
the standing-wave field is near resonance
[~,/„, = (1.,'I)' t' ]. —

Briefly, the general behavior of the curves is
as follows.

(Rpp) curves. When the laser is detuned a Pair
of resonances, one broad, one narrow, but of equal
area, occurs symmetrically located about +&. In
the folded configuration discussed here [Fig. 1(a)]
the narrow resonance and the laser are always de-
tuned to the same side of their respective Doppler
profiles. [In a cascade configuration the positions
of narrow and broad resonances would be inter-
changed (Paper I).] When ko & k, the narrow reso-
nance splits into two for intense laser fields. As
the laser is tuned to line center the resonances
overlap and additional complex structure develops.

(Rpg) curves (background) The background is
unaffected by the laser when detuned, except in the
ease k2 & k&, in which structure develops on the
same side of the Doppler profile as the narrow
resonance in the (Rop) curves. (In no case does
structure occur on the opposite side of the Doppler
profile. ) As the laser is tuned to line center,
structure emerges for all values of k, /kp. This
structure becomes more pronounced as the laser
intensity increases. In every case the area under
the background curve is unchanged by the presence
of the laser field.

ao+ a)+ Q~", (-I)' [t,(j)u, (j) + t ( j)u (j) ]
' iPp [u, (1) —u (1) ] + L(0)

(43b)

R01 3no1
I

&
I
2™bPo[u,(I) —u (I)]+L(0)) '

(43c)
In Figs. 5-8, (Rop) and (Rp, ) are plotted for
various parameters. For convenience we have in-
troduced the usual saturation parameter

The additional features occurring on resonance
are due to the standing-wave nature of the intense
field, whose oppositely propagating traveling-wave
components simultaneously interact with atoms
moving in the same narrow range of velocities. Off
resonance, where the traveling-wave components
of Ep no longer couple to the same atomic velocity
band, the line shapes can be analyzed in terms of
the two oppositely directed traveling waves at Q2

which do not couple to one another. It will be
shown below that in the detuned case the line shape
expressions considerably simplify and can be writ-
ten in closed algebraic form.

A.. Intense Standing-Wave Field: On Resonance
(6, =0)

Typical results obtained from Eqs. (43) are shown
in Figs. 5(a)-5(f). Some of the line-shape effects
of Figs. 5 are traveling-wave effects and also oc-
cur when the laser field is detuned. Others are in-
herently standing wave in nature and do not occur
in the detuned case. To gain some understanding
of the latter class of effects, let us consider the
on-resonance and detuned line-shape curves for the
special case k, =kp [Figs. 5(a) and 5(b), and Figs.
6(a) and 6(b), respectively].

When the laser field Ep(z, t) is in the form of a
traveling wave, only a single resonance occurs on
the (Rop) curve, narrow if E, is parallel to E„
broad if Ep is antiparallel to E,. The (Rp, ) back-
ground curve is unaltered by the field. No addi-
tional structure appears as E, is tuned through
resonance. (A detailed discussion of the narrow
and broad resonances in the traveling-wave case
is given in Paper I. )

Next, consider the case in which Ep(z, t) is in the
form of a standing wave. This field may be decom-
posed into two traveling-wave components of equal
amplitudes propagating in opposite directions. Let
us denote the component of E2 propagating in the
+s direction by E2. Note that E, also propagates in
the +s direction. To a group of atoms traveling
with axial velocity v, the frequency of E2 appears
Doppler-shifted to ~2+ k2v. Since E2 resonantly
couples to atoms for which ~2 =02' k2v, if E, is de-
tuned from co2, E2 and E2 resonate with atoms in
different velocity bands. In other words, E2 and

E2 act independently. Accordingly, when E2 is de-
tuned from (d&, then E, and E2 resonate with atoms in
the broad and narrow traveling-wave resonances,
well resolved from each other and symmetrically
located about v& [Fig. 6(a)]. As before, the (Rp, )
curve shows no structure [Fig. 6(b)].

As the laser is tuned to line center the (Rop) reso-
nances merge, but the resulting curve is not a
simple superposition of broad and narrow signals:
Additional complex structure occurs [Fig. 5(a)].
Now, for the first time, the (Rp, ) curve also ex-
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FIG. 7. Weakly saturating standing-wave field. (a) (pp2) vs &~ for 42=0. In the weak-field limit the resonances
at ~&

——0 are essentially the sum of two Lorentzians of widths I', and I', (b) (&p~) vs 4~ for 4& = 0. Note that for k& ~k2,
the background curve is unaffected by E2. However, for ki &k~, a non-Lorentzian structure appears about 6& =—0. (c)
(Rpp) vs 6& for 6& ——7. 5k&/kt. The two resonances at D, =O are of widths I' . (d) (Ro~) vs h& for 6&

——7. 5k2/k&. These
curves are the same as the background curves of (b) except that the non-Lorentzian resonance at 0, =0 in the k& =&k»
curve is shifted.

hibits structure [Fig. 5(b)]. These new features
arise because at line center E& and E2 resonante with
the same velocity band of atoms (in the vicinty of
v =0). Thus, viewed in the atoms' rest frame, the
response at 0, is due to the simultaneous interac-
tion of three fields, E2, E~, and E&. The coupling
of E&, at frequency O~ —42v, and E2, at 02+4&v,
produces sidebands in the atomic response at
harmonics of k2v —viewed in the rest frame of the

moving atoms. Note that in the laboratory frame
a time variation of the type (Qa —nkav)t will appear
as the space-time variation 02t —k'~z, since z =vt. '
Thus, in Eq. (16) it can be seen that the unperturbed
density matrix elements p()0, p22, and p2o all contain
harmonics of 42~. The resulting induced polariza-
tion at II, [which is proportional to &(v, z)j is driven
by both p,"p and pap [Eqs. (22)j. In addition, the pa,
term, which is due to coherent transitions between
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FIG. 8. Plots of (Ro2) (a) and (R&&) (b) vs b& for I=16,
k& =02, for the case in which E2 is near resonance, 62/
pp2 =3, 0 These curves show features common to both
the off-resonance and on-resonance conditions, indicat-
ing the complexity of the line shape resulting from the
interference effects treated in this paper.

levels 2 and 0 and level 1, also contains harmonics
of 4', even in the absence of the driving terms.
Note that po, also contributes to A(v, z). Therefore,
the induced polarization at 0, contains components
modulated at spatial harmonics of k2z. The on-
resonance inherently standing-wave line-shape fea-
tures are thus seen to be due to spatial interference
effects. It should be pointed out that although the
final intensity expressions depend directly only on

Ao, the dc spatial fourier component of A(v, z), high
spatial harmonics considerably influence the form
of Ao through the recurrence relations, Eqs. (33).
Indeed, if these spatial interference effects are
neglected the complex structure does not appear.
This limit, known as the "rate-equation approxima-
tion, " is discussed below.

The structure in the (Roo ) line shape is due to
spatial variations which enter through the unper-

turbed terms p~o and poo, and also through the inter-
ference term p», which is due to the direct non-
linear interaction of E, and E2 occurring even in the
absence of a population difference between levels 0
and 2. In contrast, the structure on the (Ro, ) back-
ground line shape is exclusively due to the p» term.
Hence the characteristic behavior of the background
term is distinct from that of the (Roz) term. Note
that background structure can occur even when
there is complete transparency at the laser transi-
tion (no=no). It is also interesting to note that the
area under the background curves remains unaf-
fected by the laser field in all cases, a consequence
of the fact that the area of the response of each
atomic velocity ensemble is unaltered by the laser
field. A comprehensive discussion of this fact
will be presented in a forthcoming paper.

It is worthwhile to reexamine the above line-shape
features from another point of view. In Refs. 20
and 21 it was shown that when an intense standing-
wave field is tuned to the center of the Doppler pro-
file of a two-level system, fine structure occurs in
the spatially averaged population distribution. An

example is shown in Fig. 3(a). This structure re-
sults from the coherent ringing of slow atoms
moving through the spatial nodes of the standing-
wave field (see Ref. 21, Sec. '7 for detailed discus-
sion). This curve is compared with a correspond-
ing (RM) curve, Fig. 3(b). The influence of the de-
formations in the spatially averaged velocity dis-
tribution is clearly evident on the wings of the cen-
tral dip. No such fine structure appears in the
central tuning dip of the two-level gain Profile (or
the Lamb dip), obtained by tuning the intense field
through the center of the atomic resonance. Thus
experimental observation of curves such as (Ro, )
of Fig. 3(b) would not only confirm the present re-
sults but would also provide evidence of the popula-
tion structure predicted in Hefs. 20 and 21.

Indeed, a major incentive of this work has been
to determine the extent to which the structure in
the population distribution would manifest itself in
the radiation at the coupled transition.

This behavior was anticipated on the basis of a
simple argument ignoring field interactions between
E, and E„ the "independent-field approximation"
(IFA). In this limit the spontaneous emission per
unit frequency interval at 0, is given by

~I(„) „„cform I( o+soo ho+4 l)
7T (&g —I tv)'+r to

(46)
where no+ noo (ao+a~o ) is the spatially uniform com-
ponent of poo(v), Eq. (16e), in the presence of the
standing-wave laser field. One would expect the
fine structure to wash out for y&0» y20 since in this
case the broad Lorentzian cannot follow the narrow
structure within the population curve (whose fine
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FIG. 9. Comparison of (Rp2) vs
~& for I= 16, k1=k2 for the exact so-

- lution [Eq. (43b)], the IFA [Eq. (45)1,
and the REA [Eq. (A23)]. Note that
structure in the exact curve on the
wings of the central dip coincides
with the residual structure inthe IFA
arising because of the fine structure
in the population distribution of level
2, although the structure in the ex-
act curve is significantly enhanced.
This enhancement results from spa-
tial interference effects and does
not appear in the REA. curve. The
narrow central dip in the exact
curve is in part due to the field in-
teractions be~veen E& and E2 in the
absence of spatial variations in the
population of level 2, as can be seen
by comparison with the central dip
of the REA curve. The exact curve,
however, is further influenced by
spatial interference effects.

structure is of the order of y2p) However, with

y»& y20 fine structure would occur. Needless to
say, the IFA expression is not rigorous, and the
IFA does not predict the deep central dip obtained
from the exact expression. For purposes of com-
parison the IFA results are plotted together with the
exact expression for (RM) [Eq. (43b)] and the cor-
responding rate-equation approximation (REA),
discussed below, in Fig. 9,

For the case k& &k& additional line-shape features
develop. These features are also observed when

the laser is detuned from resonance, where they

can be separated from the standing-wave interac-
tions discussed above. We turn now to a discussion
of these traveling-wave effects, which can be given
in terms of simplified expressions for (Rom) and

(Roq), valid for a detuned standing-wave laser field
of arbitrary intensity.

B. Intense Standing-Wave Field: Off Resonance

(~2/720» (1+-,'I)" ]

Next consider the case when the laser field is
detuned [Figs. 6, 7(c), and 7(d)]. Inthis limit, Roz
and Ao& reduce to

x Im
L(1) y02, +ikzv y, L( 1) yoa —+2-~

—pa [1/L(1) + 1/L( —1) ]+L(0)

2L(- 1)+iyo

Yo

(46a)

R() 2
= R02(+ ) + Roa( —)

Ro, = Rog+ Rag (+ ) + Rof ( )

with

(47a)

(47b)

Ro = —2rco & l'im( —P'o [1/L(1)+1/L(-1) ]+L(0)J-',
(46b)

where y& "is given in Table I, Eq. (T21). These
results are equivalent to the HEA, in which the
spatial harmonics induced by the standing-wave field
are neglected (see Appendix A and Table I). Since
we are restricting our considerations here to the
detuned case, Eqs. (46) further simplify to

where

yo Re(I/E~)+i [/2 L(+1)F~]

[1+(4 pao/y) Re(1/E, )] [L(0) —pa/L(v 1)]

2(y2O/yo) L(+1)+iF,
[IE,I'+4(ypo/y) Po] [ —L(+I) L(0)+ P',] '

(48a)

(48b)
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1
1-(0) [1(0)L(~I) — ',]

'

(49a)

(49b)R'„= —2np(
~

(2
~

'Im[l/I, (O)] .

The terms naturally break into pairs (+ and —) as
a consequence of the fact, discussed above, that
when E2 is detuned from resonance, its oppositely
directed traveling-wave components, E2 and E2,
couple to distinct bands of atoms moving with op-
posite velocities. In fact, the Ro&(+) line-shape ex-
pression is due to E2 interacting with E,. (Recall
that E 2 propagates parallel to Ej, whereas E 2 prop-
agates antiparallel to E,.) Note that R p1 represents
the usual background term in the absence of E2.
These results were previously obtained in Paper I
[cf. Eqs. (I33) and (I34)], where the intense field was
assumed to be in the form of a traveling wave.

In the Doppler-broadened limit the velocity
integration of Eqs. (48) and (49) may be carried
out analytically. ' The results for the two cases
k, & k2 and k, & k, differ qualitatively.

Case 1. k& k2. In this case we find that

(Ro1) = (Ro1+Ro1(+))= R1Wo1(+1/k1)Im(T/Y),

(52a)

(52b)

(52c)

(Ro1(-) &
= o,

(Rpo( —) ) = same as for k, ~ k2 [Eq. (50c)],

P() k1
(Rpp(+) ) = —2 R2 Wp2(+1/k1)

Q kp

) (+i), k& —k~
(A il))~Im Y '

+ )
+i ' ' (Awk))

1 I'1 —Q . k —k

where

the interaction of E1 with the parallel (E2) and anti-
parallel (E2) components of E2, respectively. The
(Rp, ) curve exhibits no structure, in accord with
Eq. (50b), and is identical to the background that
one would observe if E2 were absent.

Case 2. k, & k2. In this case we find that

(Ro1) = R1Wo1(&1/k1),

(R. (~))=o,

(+) ) R W (+1/k1)
k

™
fl

2k1 pp 1

k2ypq n, +-2ir',

(5Oa)

(5ob)

g2 4 kl k2 k1 p2
k k

T = 0, + 2i(y, + y1),

y= [S' T2]')'2

(53a)

(53b)

(53c)

where

n, &( h1/k1) = N, G(( 61/k1) N~G~(b, /k-1 ),

( /„) n„(,/k )
(p 1 1

(50c)

(5la)

(51b)

and

R = —„~ ~
(0),

1

~=(I 4i 2/y, y.)"',
&,= &1+ (k,/k2)b, 2

I A=y1+yAQ

~k I k2+ kg I

&2+
k &0 '

2 2

(51c)

(51d)

(51e)

(51f)

(51g)

Equations (50), valid for large values of E2, were
first given in paper I. Curves of (Rp, ) and (Rp2)
for the detuned case with k, ~k2 are plotted from
Eqs. (43b) and (43c) in Figs. 6(a), 6(b), 6(e), 6(f),
7(c), and V(d). It is found that the results agree
with the analytical expressions, Eqs. (50). The

(Rp2) curves exhibit a pair of Lorentzian reso-
nances of equal area at 0,= 0, of widths 1"„asin
Eq. (50c). Note that I', are significantly power
broadened for intense laser fields (Q» 1), as in
Eq. (51f). The + and —resonances correspond to

where Y is always chosen to be on the left-hand
side of the complex plane,

A, = [-k2/2(k2 —k, ) ]( T+ iY) +(4, + iy o),

Bk = +AA+ (k,/k2)(i'y2()Q+ 62),

kl/( 2 k1)]( 21 2y21)

(53d)

(53e)

(53f)

As an example, curves of (Rpp) and (Rp1) for the
case k, = —,

'
k2 are plotted from Eqs. (43b) and (43c)

in Figs. 6(c) and 6(d) and V(c) and V(d). The re-
sults agree with curves plotted for the analytic
expressions, Eq. (52), and differ significantly
from those for the case k, ~ k2. The (Rp2) curves
still exhibit a Lorentzian resonance at 0 = 0 of
width I' corresponding to the interaction of E, with

E2, just as for the case k& & k2. However, the reso-
nance at 0,= 0, corresponding to the interaction of
Ej with E2, exhibits a splitting which increases with
increasing field strength E2 and vanishes in the lim-
it of weakly saturating fields, where the resonance
reduces to a Lorentzian of width I', (see following
paragraph) In addit. ion to the features in (Rpo),
structure in (Rp1) also manifests itself. We see
that a distinctly non-Lorentzian resonance ap-
pears at 0, = 0. This resonance features a cen-
tral dip and broad wings peaking off center, in
such a manner as to leave the area of the (Rp1)
background curve unaltered by the presence of E2.
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The resonance is a result of the interaction of Ej
with E2, and as such is a traveling-wave effect.
This effect, which occurs even for weakly satu-
rating values of E2, has recently been observed
in Ref. 9. The splitting of the (Roo) resonance,
which appears only for a strongly saturating value
of E2, is a new effect and has not yet been observed.

C. Intense Standing-Wave Field: Near Resonance

[&2//20 =(1+2I)'"j

In the near-resonance case interference effects
produce additional line-shape alterations. Ex-
amples, plotted from Eqs. (43b) and (43c), are
given in Figs. 8(a) and 8(b). Note that these curves
combine features of the off-resonance and on-res-
onance cases, leading to complex asymmetric
line shapes.

D. Limit of Weakly Saturating Laser Field (Q.= l)

The results for the case of weakly saturating
laser are plotted in Fig. 7. The analytical ex-
pressions for the case k, k, are the same as in
Eqs. (50) but with Q = 1, indicating that the Lorentz-
ian resonances of different width but of equal
area occur in (Roo) even in this limit. It follows
from Eqs. (43b) and (43c) that in the weak satura-
tion limit Eqs. (50) are valid even when the laser
is tuned to the line center.

In this limit it follows from Eqs. (52) that the
analytical results for the case k, & k2 are identical
to the results for k, k2 with the exception of
(Roi(+)), which is given by

'

&Roi(+)) = 2Ri &oi(&i/ki) po
~k k2 —kg

2 2

"2
x Re .

( 2, ko&k, . (54)
1

n, +f y, +y, 2

Therefore, even for a weakly saturating laser field,
structure appears on the background line shape when

ko &k„although the area under (Ro, ) remains in-
dependent of E2. No such structure appears when

k, & k2. Note also that the splitting of the narrow
resonance of the (Roo) curves, which occurs at
intense laser fields for k2&k„disappears in this
limit. All these remarks are contingent upon the

assumption that the Doppler widths are much
greater than the natural widths.

Computer plots of Eq. (43) for I= 0. 1 are given
in Figs. V(c) and V(d) for the off-resonance case
and Figs. V(a) and V(b) for the on-resonance case.
Note that the latter curves are just the super-
position at ~,=0 of the detuned resonances, in-
dicating that spatial interference effects between
components of the induced polarization at 0, are
not significant here.

V. EQUAL AREA PROPERTY

This work has benefitted from discussions with
Professor Ali Javan and his support of the research.
We are grateful to Irving P. Herman for a careful
reading of the manuscript.

APPENDIX A: SOLUTION TO EQS. (33)

Consider the coupled nonhomogeneous linear
difference equations, Eqs. (33) of the text, which

may be written in the form

x,(n+ 1) —x,(n —1) +A, (n) x,(n) = P,(n), n & 1 (Ala)

x.(1)—x (1)+A(0)x(0) = y(0),
x.(o) = x (o) =- x(o),
where

A, (n) =+ (1/iP, )i(+n),

p, (n) = (anoo/ipo) t, (n),

A(o) = (I/fP, )f,(0),

0(0) = (I/iPo)f(0) .

(Alb)

(A1c)

(A2a)

(A2b)

(A2c)

(A2d)

Note that adjacent x,(n)'s are coupled together in
three's. The Q, (n)'s are prescribed driving terms
Equations (Alb) and (Alc) serve to join the x,(n)
with the x (n). Henceforth, the + subscripts will
be deleted when convenient.

The solution to Eqs. (Al) may be formed from the

solutions to the associated homogeneous equations,
x"(n). The homogeneous equations are obtained by
setting the Q(n) = 0:

Some interesting properties of the laser-induced
change signals emerge from the results presented
here. First, as stated above, the area under the

(Ro, ) background is always independent of Eo.
Secondly, the area under the (Roo) line shape is
independent of the field interactions between E, and

E2. From this consideration it follows that when

the laser is detuned the broad and narrow resonances
are always equal in area, even when the narrow
resonance splits in two. In fact, it may be shown

that in each case the area under the exact line-
shape curve [Eq. (43a)] is identically equal to that
under the corresponding IFA curve [Eq. (45)].
This property is a manifestation of the fact, first
pointed out by Javan, that the area under the

response of each individual atomic velocity en-
semble is equal to that obtained from the corre-
sponding IFA, even though the actual frequency be-
havior differs significantly. These results can be
shown to follow from an elementary quantum-
mechanical analysis of the transition rates of three-
level systems coupled to applied fields. A detailed
discussion will be deferred to a later paper.
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x"(n) = Cu(n) +Dv(n), (A4)

x"(n+1) —x"(n —I)+A(n)x"(n) = 0, n~ 1 . (A3)

Solutions to equations of the type (A3) are discussed
in detail in Sec. 5 of Ref. 21. Abrief account is
given here in Appendix B, where it is shown that
the most general solution for x"(n) may be written
in the form = (- 1)"[u(l) —v(1) ] .

(The last step follows by induction. ) Thus,

(A13)

These expressions may be simplified by means of
the following identity, obtained from Eq. (A3):

u(n+ 1)v(n) —v(n + 1)u(n)

= —[u(n)v(n —1) —v(n)u(n —1)]

where u(n) and v(n) separately satisfy Eq. (A3),
and C and D are arbitrary constants independent of
n T. he u(n)'s and v(n)'s are distinct classes of
solutions characterized by their behavior at large
n. The u(n)'s, which we call B-type solutions,
have the limiting behavior

5 D(n) =—

(- 1)"y(n)v(n)
u(1) -v(1)

(- 1)"(I) (n)u(n)
u(1) —v(1)

(A14a)

(A14b)

u(n) -—
t

. , n large.1 Po
n t ik~v

(A5a)

Accordingly, for n ~ 1
n-1

C(n) = C(l)+ Z (—l)j(t)(j)v(j),

The v(n)'s, called N-type solutions, have the limit-
ing behavior

(A15a)

v(n)- (n —1)! (k2v/iPO)", n large (A5b)
D(n) =D(1) — Zi (-1)'P(j)u(j) .

(A15b)

u(O)=v(O)=1 . (A6)

Solutions to the nonhomogeneous equations
(Ala) may be constructed using the method of varia-
tion of parameters. sa Let us assume x(n) to be of
the form

x(n) = C(n) u(n) +D(n) v(n), n ~ 0 . (A7)

Inserting Eq. (A7) into Eq. (Al), and eliminating
terms containing A(n) by means of J'q. (A3), one

obtains, for n&1,

5C(n)u(n+ 1) + |)D(n)v(n+ 1)

+ 6C(n —1)u(n —1) + 5D(n —l)v(n- 1)= (t)(n), (A8)

with

5C(n) = C(n+1) —C(n),
5D(n) =D(n+ 1) —D(n) .

(A9a)

(A9b)

Trial solution (A7) does not uniquely specify the

C(n)'s and D(n)'s, and in Eq. (A8) we are free to

choose

5C(n)u(n) + 5D(n)v(n) = 0, n ~ 0

whereupon for n ~ 1,
5C(n)u(n+ 1)+5D(n)v(n+1) = Q(n) .

Combining Eqs. (Alo) and (All), we find

(t) (n) v (n)
u(n+1)v(n) —u(n)v(n+ 1) 8 n

!
—P (n)u(n)

u(n+ l)v(n) -u(n)v(n+ 1)

(A10)

(A11)

(A12a.)

(A12b)

Accordingly, in the limit n- ~, u(n) vanishes where-
as v(n) diverges In .subsequent discussions it will
be convenient to normalize u(n) and v(n) such that

An additional equation, obtainable from Eq. (Alo)
for n=0, is

C(0)+ D(0) = C(1)+D(l)

since, by Eq. (A6),

u(0) = v(0) = 1 .

(A16)

(A17)

Therefore, using Eq. (A6), we can write down the

sequence

x(o) = C(1)+D(1),

x(1)=C(1)u(1)+D(l)v(l),

(A18a)

(A18b)

n-i

x(n)= [C(()+ Z (-() j(j)u(j) l u(n)

1
n-y

+ D1 — —1 ju j vn,

n ~ 1. (A18c)

Thus the x(n)'s may be expressed in terms of two

quantities independent of n, C(1) and D(1), as yet
undetermined.

The value of D(1) may be established by con-
sidering the behavior of x(n) as n-~. Recall
from Sec. II that the x(n)'s are the coefficients
of Fourier expansions in k~z for p» and p 0,. The
latter quantity is essentially the induced polariza-
tion at Q„consequently the emitted power ~I may
be expressed as a sum of x(n)'s (n even) [Eq. (31)].
For all physically possible (i.e. , finite) values of
P(n), r I must remain finite; hence the x(n)'s may
not diverge. [It was shown in Ref. 21 that the
Q(n)'s themselves strongly converge to 0 as n-~;
see also Table I. ]

This requirement on x(n) places a restriction on
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the coefficient of v(N) in Eq. (A18c). Note first
that in Eq. (A18c) both summation terms [including
multiplication by u(n) or v(n), respectively] con-
verge rapidly to zero for n large. Thus, since
u(n) itself converges -1/n! [Eq. (A5a)], the entire
first bracketed term of Eq. (A18c) converges.
But, as can be seen in Eq. (A5b), v(n) diverges- (n 1)!, p—lacing a restriction on its coefficient.
In fact, the required boundary condition can only
be guaranteed by setting

APPENDIX 8: SOLUTION OF EQ. CA3}

Consider Eq. (A3):

x, (n + 1) —x, (n —1) +A,(n)x,"(n) = 0, n ) 1

where

&,(n) = +(I/iPO)L(yg),

pa
—(k|6 sk a)8 + fy 2 g 8 odd

L(+n) =

&, —(k, ank2)v+iy, o, n even

(Bl)

(A19)

x,(l) —x (1)+A(0) x(0) = P(0),
from Eq. (A18b)

x,(l) = C,(1)u.(1)+D,(1)v, (l )

x (1)= C (1)u (1)+D (1)v (1)

and from Eqs. (A18a) and (Alc)

x(0) = C,(1)+D,(1),
x(0)=C (1)+D (1) .

(A20a)

(A20b)

(A20c)

(A20d)

(A20e)

The remaining constant, C(1), may now be de-
termined. Displaying the subscripts as in Eq.
(Al), we have from Eq. (Alb)

L(+n)-ink, v,
so that

A, (n) - (ikav/po)n .

(B4)

(B5)

To obtain the first class of solutions, assume that
for large n

x,"(n+1)»x,"(n —1) .

Then

(B6)

In second-order homogeneous difference equa-
tions, such as Eq. (Bl), one may distinguish two
classes of solutions, characterized by the behavior
of x"(n) for large values of n. ' In the present
case the nature of these types of solutions is
readily ascertained, noting that for large enough
n (for v4 0),

These equations may be routinely combined to ob-
tain

0 4 (o) +y„.", (- 1) (y.(j) ,(j) —4 (j)~ (j)]
u, (1) —u (1)+A (0)

x,"(n+ 1) &a&

x,"(n) ipo
(BV)

(A21)
Substitution of definitions (A2) gives the result of
Eq. (37) of the text.

Rate-Equation Approximation

The rate equation approximation (REA) for a
two-level system interacting with a standing-wave
field is that approximation in which spatial popula-
tion variations arising from the interaction are
neglected. In extending this approximation to a
three-level system we ignore contributions of the
polarization arising from these terms (i. e. , x„
=O, n) 1). The difference equations [Eq. (Ala)-
(Alc)] considerably simplify and we have

x,(n) ~ (n —1)! (k,v/iPO)". (B8)

x,"(n —1)» x,"(n+1) .
Then

Po 1

ik2v n

(B9)

(B10)

Note that x,(n) ~for -large n, in accord with ini-
tial assumption (B6). We denote solutions of this
type by v, (n). Because of their close connection
with Neumann functions we refer to solutions of
the latter type as N-type solutions. '

The second class of solutions is obtained by
assuming

—x(0) + A, (1)x,(l) = P," "(1)

x,(1) —x (1)+a(0)x(0)= y"'"(0) .
Solving these equations directly, we find

(A22a)

(A22b)

so that

(B11)

(A23)

where the P" "(n) are obtained from Eq. (A2) and

Eq. (35), using the REA values from Table I, Eqs.
(T20)-(T22).

Note that x,(n)- 0 for large n, in accord with ini-
tial assumption (B9). These convergent solutions
are denoted by u, (n). Because of their close con-
nection with Bessel functions we refer to solutions
of this type as 8-type solutions. '

To express u, (n) in a form convenient for com-
putation we define the quantity
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W, (n) = u, (n)/u, (n —1) . (B12)

Then from Eq. (B1) we obtain an expression for
W, (n) in continued-fraction form:

+ i&o /L[~n]B
P'o/L [+~] L[+(n+ 1)]

P'o/L [+(n+1)]L[~(n+2)]

1 + iPo W, (n+ S)/I [+(n+ 2)]

(Bls)
Then

C
a2

a3
1+

Define

Pn

n 1ya2
1+ '3

1+

(cl)

u, (n) = g W, (k) (B14)

(
i"J,(„)(—2Po/koU)

~~&o& ( —2Polko&)
(B15)

where we have set u, (0) = 1 without loss of gen-
erality.

Special Case: y2=yo and 42=0. For the case
po=po and &o= 0, u, (n) may be written analytically
in terms of Z, (z), the Bessel function of real ar-
gument z and complex order 7:

1+an
(c2)

n n$+ n n2

Qn Qn-1+ ~n Qn-2

with

(csa)

(csb)

One can then show that P„and Q„obey the follow-
ing difference equations:

where

~(n) =+L(+n)/k, v . (B16)

P j=1 Pp=O )

9 &=0, Co=1

(csc)

(csd)

As before, Eq. (B15) is normalized such that
u, (0) =1. Equation (B15) follows from Eq. (Bl)
which, in this special case, reduces to the well-
known recurrence relation for cylindrical func-
tions.

APPENDIX C: ALGORITHM FOR COMPUTING
CONTINUED FRACTIONS

n+1/@n+1 Pn/@n
& 10-B

P./e. (c4)

%e then set

From the recurrence relations for P„and Q„one
can readily compute P„and Q„ for any value of n.
The computation is halted when

Let C = Pn+i/Qn+i ~ (c5)
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Hall's modified theory of structural relaxation is applied to explain the pressure dependence
of excess absorption in water, methanol, and ethanol in the pressure range 1-5000 kg/cm .
An excellent agreement has been found between the theoretically calculated structural absorp-
tion and experimentally observed excess absorption for these three associated liquids. The
values of structural compressibility P„, structural relaxation time 7, and the free-energy dif-
ference ~ between the two states assumed nearly coincide with their corresponding values in
the range 1—2000 kg/cm predicted in previous papers, and beyond this (p &2000 kg/cm ) the
values are the same as would be expected by extrapolation of earlier curves up to 5000 kg/cm .
This gives strong support to the two-state model and the assumptions made therein to explain
absorption results in water, methanol, and ethanol.

I. INTRODUCTION

The occurrence of excess ultrasonic absorption
in associated liquids has been successfully ex-
plained by attributing it to a structural relaxation
mechanism, first proposed by Hall. ' By assuming
two types of structures which differ in molal vol-
umes by an amount b V cm /mole and in molal free
energy by an amount bF cal/mole, Hall explained
the excess absorption in water in terms of transi-
tion of molecules from one type of structure to
another under the influence of periodic variations
of pressure and temperature associated with the
ultrasonic waves propagating through the bulk of
the liquid. A finite time is involved in the transi-
tional jumps and hence the process is a relaxation-
al one. For water, the two types of structures
assumed are (i) icelike or open-packed structure,
and (ii) close-packed structure. The former is
supposed to be endowed with relatively higher molal
volume and lower molal free energy than the latter.
This assumption gave excellent agreement between
theory and experiment for the temperature depen-

dence of absorption in water, ' heavy water, ~ and
alcohols. ' Litovitz and Carnevale measured
ultrasonic absorption in water as a function of pres-
sure. Their results showed a decrease in excess
absorption with increasing pressure while Hall' s
theory in its original form predicts an increase in
excess absorption with pressure. The observed
pressure dependence could, however, be explained
if the open-packing state is tacitly assumed to be
the higher energy state (which was provisionally
assumed by Hall to be the lower energy state).
With this modification and assumed linear variation
of ~V and ~ with pressure, Litovitz and Carne-
vale successfully explained absorption results in
water at 0 and 30'C for the pressure range 1-2000
kg/cm'.

Later, Carnevale and Litovitz tried to explain
their experimental results in methanol on similar
grounds, but their calculated values were nearly
40k higher than the experimental values at inter-
mediate pressures. This anomaly was removed by
Kor et al. '

by considering a nonlinear variation of


