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A transmitting window is used to weakly couple two resonant optical cavities.

When active

medium is placed in one cavity, the system describes a laser coupled to a resonant cavity,

while active medium in both cavities describes two coupled lasers.

Equations of motion for

the fields in the two cavities are found. These equations are solved in the steady state
when the cavities are sufficiently closely tuned that the lasers in the two cavities oscillate
with the same frequency. In the locked situation, the second cavity tends to stabilize the fre-
quency of operation against changes in length of the first cavity. When there is no active
medium in the second cavity, and that cavity becomes very long, the laser acts as if it were

looking into free space.

I. INTRODUCTION

This paper forms the sequel to the preceding
paper! in which the effects on a laser of one partial-
ly transmitting mirror were studied. In that case
the output from the laser escaped into free space
without returning. In the present situation another
mirror on the axis of the system reflects back all
the radiation leaking through the window. Thus the
entire system may be considered as two cavities
coupled by a partially transmitting window. When
active medium is put in both cavities, the model
describes two lasers weakly coupled and interacting
with each other. If only the left-hand cavity en-
closes active medium, the model describes a single
laser coupled to a resonant cavity. In the limit
when the resonant cavity becomes very long with
some loss, the system approaches the case of a
laser oscillator looking through the window into
free space described in Ref. 1.

II. TWO CAVITIES

The laser axis is taken along the z direction with
the totally reflecting mirrors at z=-L; and z=L,,
and the dielectric window at z=0. The complex
fields? in the two cavities are given by

E(z, t)=8,(t)sink(z + L,) , -L;=z=0
(1)
E(z, t)=8,(t) sink(z - L,) , 0=z=L,
and
H(z,t)==(i/Zy) 8,(t)cosk(z+L,), —L,=z=0
(2)
H(Z’ t)="'(i/Zo)ga(t)COSk(Z—Lz), 0=z SLZ

which satisfy the cavity boundary conditions at the
mirrors. Zg=(ke/€y)/? is the impedance of free
space. As before, the electric field is polarized
along the x direction, and the magnetic field is along
the y direction, while

gl(t)=E1(t) e-i[vtml(t)] s

|

gz(t) =E2(t) e-itvirea(t)] ,

with the amplitudes and phases varying slowly in
the optical period 27/v.

As in the preceding paper the window is described
by a dielectric “bump” of the form

€(z)=€[1+ m/k) 6(2)] (3

with dimensionless parameter n, which is related
to the reflection coefficient of the window. Accord-
ing to Maxwell’s equations the boundary conditions
at the origin are

E(0%, )=E(0, 1), 4

H(0', t) - H(03t)=i(n/Z,) E(O, 1) . (5)
From these conditions we see that

é’l(t) COSkLl —gz(t) COSkL2=T)81(t) SinkLl N (6)

8.(2) sinkLy = — 8,(t) sinkL, . (7)

On elimination of the field strengths we find the
equation

cotkL,+cotkLy=1n, (8)

which determines eigenfrequencies kc for the whole
cavity.

The field at the mirror, E(0, £), acts as a source
term in the equation for the time dependence of the
electric field in either cavity, as shown in Ref. 1:

81+ (01/€) 8, +9% 84+ (=1)™ (2/L;) Q,cE(0, #)
=-®(0/€e, (9
.8.24‘ (02/60) (‘;’24—92 é’z - ( - l)m" (Z/Lz) Qz CE(O, t)
= - &2(t)/€0 .

The extra factors (—-1)" and (-1)"" arise from the
different definition of the spatial basis functions in
the cavities. The derivations of Egs. (9) and (10)
assume an approximately integral number of half-

(10)
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wavelengths in each cavity, or
kLl ~m'm ’ (1 1)
ELy~m"7 . (12)

The extra minus sign in (10) arises from the fact
that the window is at the opposite end of the second
cavity. Solving Eq. (5) for E(0, #) in terms of
8,(¢) and 8,(¢), we find

E(0, t)=[8,(¢) coskL, — 8,(¢) coskLy]/n . (13)

With the same assumption used in the derivation of
(9) and (10), Eq. (13) becomes

E(0, )= (-1)" [8,()=8,(1))/n . (14)

The assumptions (11) and (12) will certainly be
valid when the two cavities are approximately the
same length. The second cavity can be lengthened
in steps of one-half wavelength and the only result
will be an alternation in sign in (14). For simplici-
ty we consider the case where the two cavities are
the same length to within less than one wavelength.
In this case the sign in Eq. (14) is negative.

This expression can be substituted in (9) and (10)
to give the equation of motion of the electric fields

.8.14'21—‘18.14'9?814'(6/141) (291/77) (81—82)

:”@l/i()’ (15)
§2+2I‘282+Q§82+(C/L3) (2Q2/1) (82 - 8y)
=—®y/ey. (16)

In the slowly-varying-amplitude and -phase approx- '

imation these become
8, +[Ty+i(Q,+ M) 8, -iM, 8 = (4 iv/ey) @, ,
(17)
with j=1, I=2 or j=2, I=1. The coupling coeffi-
cients are given by

My=c/nL;, (18a)
and the internal cavity losses by
Ty=0,/¢. (18p)

III. TWO COUPLED LASERS

The complex polarization @®; in either cavity due
to the active medium was shown in Ref. 1 to be
given by

(pjz‘2igj(€0/y)(l_i£)fj(lj)’ _’i=l,2 (19)

for stationary atoms. We have written the detuning
of v from the atomic frequency in the dimensionless
form £=(w-v)/y, and

fi)=12e,/1;&w-v){1 - [1+1;£(w - v)]""/?},

(20)
where

a;=(vp?/2¢piy) N; £(w - v) (21)

is the gain parameter,
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Llw=-v)=1/(1+£?) (22)
is a dimensionless Lorentzian, and
I=92E5/R* v, 7, (23)

is the dimensionless intensity.
Using expression (19) for the polarization, Eq.
(17) becomes

&+ [Ty +i(Q,+ M) 8, —iM; 8 = (1—ik) £,(1,) §,. (24)

For simplicity we assume that the active media in
each cavity are identical, so that the parameters
w and y describing the atoms are equal in each
cavity. Assuming also that the rates of excitation
of the medium are the same in each cavity, we set
ay=ay. A different rate of excitation in either
cavity would merely multiply the right-hand side of
(24) by a constant factor. With these assumptions
we can drop the subscript on the f in (24).

Rewriting (24) in terms of the amplitudes and
phases of the electric fields, we obtain the four
equations of motion

E1:[f(11)—r1]E1+M1Ezsin¢ ) (25)
Ep=[f ;) - T3] B, - My B, sing (26)
$1=Qy+ My —v+Ef (1) - (MyEy/Ey)cosg ,  (27)

<}52= Qo+ My —v+Ef () ~ (MyE/Ey) cosp , (28)

where ¢ = ¢, — ¢, is the phase difference between the
fields in the two cavities. These equations can be
solved in the stationary state by iteration. Picking
a value for ¢ and assuming a value for £ we can
iterate (25) and (26) to find solutions for I,, I,, and
E,/E,. Using these values, we can solve (27) for

3
_w _QI_M1+(M1E2/E1) COS¢)
- v+f(Iy)

and use this in (25) and (26) to find new values for
I, I,, and E,/E,. In this manner we can iterate
(25)—(27) to find self-consistent values for I, I,
E,/Ey, and & for each ¢. Subtracting (27) from
(28) in the stationary state, we find

3 (29)

0=Q+¢ [f({a) —f )]+ [M{Ey/E| - My Ey/Es] cos¢
(30)
where
Q=8 — Qg+ My - M, (31)

is the relative cavity frequency. Equation (30) al-
lows us to find Q using I, I,, E,/E,, and £ from
the assumed value of ¢.

The iteration procedure can be started at ¢ =0
or 7, when Egs. (25) and (26) become single-laser
equations which can be solved exactly in the station-
ary state. For the particular choices taken for the
M; and T';, stationary-state solutions exist only for
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very small values of sin¢. For each set of param-
eters two curves are found, one with ¢~ 0 and the
other with ¢~n. These correspond to the two very
close normal modes of such a double cavity. Thus
the choice of one particular sign in (14) is not im-
portant, since the opposite choice merely adds 7 to
b.

Figures 1 and 2 show the intensities I; and I,
plotted against the relative cavity frequency Q. The
stationary solutions were investigated for stability
(see Appendix) and the unstable portions of the
curves are shown dotted. The only stable locked
solutions occur when the cavities are closely tuned
to each other. When the cavities are sufficiently

different in length, the lasers no longer oscillate
J

in phase but tend to act independently of each other.

The second laser cavity has a stabilizing effect
on the frequency of the system when the two are
locked. For a single laser with a window the fre-
quency of operation is given by?

. =(Q1+ Q) v+ w(ly+T,) .

o y+T+T, (32)

Variations in length of the resonant cavity result in
frequency changes described by

14 Y

982, Tyt I+, ° (33)

For the coupled lasers, the frequency in the locked
state is given by

v ={[1"1 -f (11)] [7’(92 +My) + wf(Iz)J + [rz -f (Iz)] [7’ (Q1+M1) + wf(Ix)]} (34)
¢ Iy +f WLy = f U]+ [y +F UL = f T2)]}

or

v =7(91+M1)+wf(11) _ Y
¢ v+f () v+f )

My g—i cos¢.

(35)
To find the equivalent variation of v, with @,;, we
differentiate Eqs. (25)—(28) with respect to £, in
the steady state. After some algebra this gives

_ov fU)+f )
l-ﬁ?(h l‘y 2)

M M
+£211 [g (M1+7§->sin¢+ (Ml ——;f—) cosqb]

3
L $=0
2+ .o
= |
1=
i ’
L ,
,/
L PR {.¢=1,-
- \\
L P | B 1 L
-100 -50 0 50 100

FIG. 1. Two coupled lasers. Plot of the dimensionless
intensity in the first cavity vs relative cavity frequency in
the stationary state. Unstable solutions are shown dotted.
The two solutions correspond to different relative phases
between the fields in the two cavities. Losses in the
cavities are taken to be equal, Ty=Ty=1 MHz, M;=M,
=20 MHz, o;=0,;=1.6 MHz, y=99 MHz, and w— Q; —M;
=99 MHz.

|
M M .
+V§$—%[5 <M1 ——1-f—§—>cos¢> —(Mﬁ—;ﬁ—)sm(p] s

(36)
where 7= E,/E,.

In the particular case I'y=T'y, =1 when sing =0
and 2=0. Since the cavities are the same length,
My=M,, and

v L _ v g (37)

1
8521 2 Y+ rl 2 Bﬂl :

Thus for two identical lasers tuned to equal lengths,
movement of one end mirror changes the frequency
by only half as much as for a single cavity.

Figure 3 shows the frequency changes brought
about by moving the end mirror of cavity 1. The
solid curve shows the frequency of the coupled
lasers, while the dotted lines show the frequencies
of single lasers in cavities equal to cavities 1 and
2. If we neglect I', compared to y+I'y, Eq. (34)
shows that the solid curve tends to the dotted lines
as E;~ 0 or E,~ 0. (Neglect of I',, in the comparison
is necessary because the extra cavity prevents the
loss of radiation represented by I', in a single
laser with a window.)

IV. LASER COUPLED TO A RESONANT CAVITY

Removal of the active medium from the right-
hand cavity simplifies Eqs. (24) by removing the
nonlinearities from one of the two equations:

81+ [Ty+i(@+ M8 -iMi8,=(1-i8) f (1) 81,
(38)
8+ [T+ i(Qp+My)] 8, —iMy8,=0 . (39)

In the stationary state (39) gives a relation between
the complex fields in the two cavities,

82={iM3/[r2+i(Qa+M2—V)]}(gl . (40)
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FIG. 2. Two coupled lasers. Plot of the dimensionless

intensity in the second cavity corresponding to the two
solutions shown in Fig. 1.

Substituting this in (38) gives the steady-state elec-
tric field intensity in the laser cavity in the form

£ty Ty +i(Qy+ My =v)+ M My/[Ty+i(Q+ My —v)]
! T

=G(@) . (41)

This can be solved if we note that the right-hand
side must be real. Setting ImG(v)=0 gives a cubic
equation for v, independent of intensity:

[(@y+ M)y +wDy =v(Ty+7)] [(Qp+ My - v)? + T3]

+ MMy [ (R + M)y — wI'y —v(y =T3)]=0. (42)

Real solutions of (42), v;, can be put into (41) to
give

f{I)=ReG(v,)=G . (43)
For all G the nonzero solution of (43) is

40 -G -[G(G +8a)]*/?

L= 2GE(w —v) ’ (44)
which reduces to the familiar form
I, 4 a-G a-=-G (45)

"3 Gelw-v) B

near threshold where a~ G. Thus G as it appears

in (43) and (45) is the total effective cavity bandwidth

as seen by the active medium in the first cavity.
It includes losses in the second cavity as they are
reflected into the laser cavity.

The frequency equation has at least one real root.
In the limit of a very highly reflecting window when
M;~ 0 the only real root v-v;, the natural fre-
quency of the laser in a windowless cavity. In this
limit G-I’y and the intensity approaches its ex-
pected value in a windowless cavity.

The intensity in the second cavity is obtained from

I, using

I={M2/[T%+ (Qy+ M, - v)?]} 1, . (46)

Figures 4 and 5 show the intensities I; and I, for
different I'; as a function of the relative cavity fre-
quency .

Equations for the time dependence of the ampli-
tudes and phases are obtained by removing terms
in f (I;) from (25)-(28). Stability of the stationary
states is determined as before.

Where solutions are above threshold (I;>0, I,
>0), there is at least one stable state for each f2.
If we change © until a solution becomes unstable,
the laser will evolve to the other stationary state
which is stable.

For sufficiently large loss in the second cavity
both solutions are below threshold for small .
This occurs because tuning the cavities close in
frequency results in more loss being reflected into
the laser cavity from the right-hand cavity.

The resonant cavity has a stabilizing effect on
the frequency of the laser similar to the case of
coupled lasers.

V. LASER RADIATING INTO LINEAR MEDIUM

The case when the laser is radiating into the
passive cavity (or any linear medium) can be treated
in a more general manner. We consider only the
field in the laser cavity, and introduce the effect
of the external linear cavity by its “impedance” as
seen by the laser just outside the window.

Defining the impedance just outside the window
as

Z '_‘E(O*’ t)/H(0+y t)r (47)

we can rewrite Eq. (5) as

SINGLE LASER

50— IN CAVITY 1
L \
| \\ COUPLED LASERS
; -
= \
N | N SINGLE LASER
T IN CAVITY 2
= o -=
ho |
:
oL

|
a
o

T

COUPLED LASERS
$=0
PRI I I P S B L

=50 o 50
O (MHz)

FIG. 3. Curves showing the frequency of operation as
the mirror at z=—L, is moved. The solid line corre-
sponds to the coupled lasers while the dotted lines show
the frequency of single lasers in cavities equivalent to
cavities 1 and 2. The parameters used are the same as
in Figs. 1 and 2.
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FIG. 4. Steady-state intensities in the laser cavity for
a laser coupled to a resonant cavity. The two pairs of
curves correspond to different amounts of loss in the reso-
nant cavity. (Unstable solutions are shown dotted.) The
parameters used for these solutions are I'y=1 MHz, M,
=M,=20 MHz, o;=1.6, y=99 MHz, and w~— Q; —M;
=99 MHz.

-i(Zo/Z) E(0, t) + 8 4(t) coskLy=1E(0, 1) , (48)

which can be solved for E(0, ¢) in terms of 8,(¢):

E(0, )= (-1)™ 8;(8)/[n+i(Z,/2)] . (49)
Substituting this into (9), we find the equation of
motion of the electric field in the laser cavity:

gl+2r1g1+QigI'}‘"—zgl—"C/_l_L 81.:"&1/50.

n+i(Zy/Z) (50)

In the slowly-varying-amplitude and -phase approxi-
mation this becomes

8+ [(Ty+T,) +i(Ry+9,)] 81 = (iv/2¢) @, (51)
where
. c/L
r.=%, G;jj;:yﬁ;37§, (52)
B ¢/L
=~ m ) (53)

where Y=Y,+iY;=Z,/Z is the normalized admit-
tance of the load seen from the window. Thus the
loading of the laser effects the cavity bandwidth and
cavity resonance frequency.

In the simple case of a laser oscillator looking
into free space Y,=1, Y,;=0, and

ro= 54, (59
_(e/Lyn
92_72__%1— ) (55)

which are just the window loss T',, and frequency
shift 6 derived in Ref. 1.
When the laser is looking into the lossless tuned
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cavity described in Sec. II above, we see that

Z=—iZytankL,,
making
Y,=0 and Y;=cotkL,.

(56)

In this case I',=0, and the extra cavity introduces
no further losses, but
¢/Ly

°~n —cotkL, ’ (57)

which is highly frequency dependent.
Introduction of loss into the right-hand cavity
through a conductivity o, results in an impedence

Z=—iZy(1+2iTy/v)Y 2 tankL, (1+2iT,/v)/2

(58)
where I';=0,/2¢, If the external cavity is long
enough so that I'y L,/c> 1,

tankL, (1 +2:T,/v)t 2=

and Z -~ Zo/(1+2iT,/v)}/2, which is just the impe-
dance looking into “free space” with loss. In this
limit the loss in the right-hand cavity has absorbed
the wave before it could be reflected back to in-
fluence the laser. When the system is above
threshold, and in a steady state, Eq. (51) may be
written

(59)

Using the expression (19) for the polarization in the
laser cavity, (59) becomes

(w=v)(T1+T,)==7(Q+ 8, ~v) .

(Q+Q,-v)/(T'y+T,)=~Re®/Ime .

(60)

In the above example, looking into free space, T,

and €, are independent of v, and we can solve (60)

for the frequency of operation, v=v, [see Eq. (32)].
If we remove the loss from the right-hand cavity

as in (56), (60) may be written
Y [4 1
L7y+I; L; n-cot(vLly/c)’ (61)
2+
WL
=1
1k
0_ T | T T P B
-100 -50 9 50 100
Q(MHz)
FIG. 5. Intensities in the resonant cavity corresponding

to the solutions in Fig. 4.
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with
vp= (ol +92,7)/(Ty1+7) . (62)

This transcendental equation, which is valid only
when the system is above threshold, has solutions
for an unlimited range of frequencies v, separated
by about mc¢/L,. The stability of the different solu-
tions has not been investigated since it is not clear
that the system would oscillate with only one fre-
quency, particularly when L, becomes large. In-
troduction of loss in the external cavity reduces the
number of such solutions by reducing the excursions
of the right-hand side of (61).

APPENDIX: STABILITY OF STATIONARY STATES

Subtracting (27) from (28), we obtain the equation
for the time dependence of ¢:

¢=0+£[f () - U))] - (M Ey/Ey My Ey/Ey] cosg

(63)
The other equation, obtained by adding (27) and (28),
gives the time dependence of ¢+ ¢,. However this
equation is effectively decoupled from the other
three, since variations in ¢, + ¢, have been ne-
glected in factors such as £(w -v) and &,

Equations (25), (26), and (63) are linearized by
expanding to first order about their stationary val-
ues, to obtain a set of linear coupled equations of
the form

AEI a b ¢ AEI
AE, |=| d e f AE, |. (64)
N g h j) \Eia¢

The stationai‘y state will be stable if the eigenval-
ues of this matrix have negative real parts. The
criterion for this to occur is

7,>0, 7 7,>73, and 73>0,
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where
n=-(a+re+j),

vs=ale+j)+ej —hf-bd-cg,
vs=a(hf —ej)+ b(dj —fg) +cleg - dh) .
From (25), (26), and (56) we find
, 3
a=f({I;)-I'1+E, 3_EI; ’
b=M,sing ,

c=My(E,/E{)cos¢ ,

d=-M,sing ,
9
e=fU) =Ty By L,
f=-M;zcos¢ ,
9 My, E M E
g=_gE1§g- ( —21, 0t 2>c0s¢>,
Bf | (MpEy  MiE;\ By
h=tE1 55, g, E, ) B, c°5¢>
j:(———lMEE __;___a_MEE ) sing ,
2 1

with the restrictions

[fWy) -Ty]Ey= =M, E; sing ,

[f{T2) - T3] E,= M, E; sing ,

Q=¢[ fUy) —f U2)]+ (M Ey/Ey — M Ey/Ey) cosg ,
from which it can be seen that

J=fU)+fUz) =Ty =T, .

When the right-hand cavity is empty, the stability
criterion is obtained by removing terms containing
f () in the above.
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