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With these expressions for I&„(l) up to second or-
der, we can evalute T(l):

I

get

T(l) = expI- rL'+Imp(l) +ID'(l)], (A70)

T(l) = expI- yL +Idio(l) +ID'(l) +Ig)(l) +Ioq(l) +Ipse(l)] .
(A69)

If we omit the last three terms in the exponent we

. which is referred to as the first approximation to

T(l). Then in this sense the second approximation
to T(l) is given by Eq. (A69).

*Work supported in part by the National Aeronautics
and Space Administration.

~Based on a dissertation submitted by J. T. 0 Brien
to the University of Florida in partial fulfullment of the
requirements for the Ph. D. degree.

E. W. Smith, Phys. Rev. 166, 102 (1968). Refer-
ences 1-3 are meant only as illustrations of the several
line broadening theories and are not intended to be ex-
haustive.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill,
New York, 1964); P. Kepple and H. R. Griem, Phys.
Rev. 173, 317 (1968); J. R. Grieg et al. , Phys. Rev.
Letters 24, 3 (1970).

E. W. Smith, J. Cooper, and C. R. Vidal, Phys. Rev.
185, 140 (1969).

M. Baranger and B. Mozer, Phys. Rev. 115, 521

(1959); 118, 626 (1960).
C. F. Hooper, Jr. , Phys. Rev. 149, 77 (1966); 165,

215 (1968); 169, 193 (1968).
Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. StegLIn (U. S. GPO, Washington,
D. C. , 1964), Appl. Math. Ser. 55, Chap. 10, p. 443,
formulas 10.2.2, and 10.2. 4.

J. Holtsmark, Ann. Physik 58, 577 (1919); Z. Physik
20, 162 (1919).

A. A. Broyles, Z. Physik 151, 187 (1958); Phys. Rev.
100, 1181 (1955).

~W. J. Swiatecki, Proc. Roy. Soc. (London) A205,
283 (1951).

Phillip M. Morse and Herman Feshback, Methods of
Theoretical Physics (McGraw-Hill, New York, 1953),
Vols. 1 and 2.

PHYSIC AL R EVIEW A VOLUME 5, NUMB ER 2 FEBRUARY 1972

Laser with a Transmitting Window*

Martin B. Spencer and Willis E. Lamb, Jr.
Department of Physics, Yale University, Nese Haven, Connecticut 0652o

(Received 10 May 1971)

The effect of transmission of radiation through one mirror of a laser is investigated. For
a laser oscillator the result is to change the effective resonance frequency and Q of the cavity.
Using the same model for the cavity, a signal is injected into the active medium through the
transmitting window, and its effect on the system studied. When the external signal is strong
enough and sufficiently close to the natural frequency of the laser oscillator, the laser locks
its frequency to the input signal. The equations describing the system are solved over the
range of input frequencies where the laser is locked, and the resulting gain found. In the
high-intensity limit the medium saturates, and the gain tends to that of a lossy cavity. As the
input intensity vanishes, the gain approaches infinity and the system tends to a laser oscillator.

I. INTRODUCTION

It is the purpose of this paper to investigate the
effects on the operation of a laser arising from the
fact that to some extent it is in communication with
the rest of space outside the resonant cavity; i. e. ,

some of its internal energy is escaping through the
windows. As a result the effective cavity Q is
lowered, and there is a slight change in operating
frequency. Furthermore, using the same tech-
niques it is possible to consider the case of an ex-
ternal signal applied to the laser through one of its
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windows. The reflected wave may be amplified or
otherwise modified by the active device. Under
certain circumstances the applied signal may cause
the laser frequency to lock to the applied frequency,
giving a single-frequency amplified output.

A one-dimensional model for the laser cavity is
taken to consist of one totally reflecting mirror,
and one partially transmitting window consisting
of a "bump" in the dielectric constant. The win-
dow is taken to have a reflection coefficient slightly
less than unity to simulate the leakage through, and
diffraction around, a real laser mirror.

The calculation of the field in the laser cavity is
similar to that used in earlier laser theory with
the difference that the "leaky" mirror introduces
an extra term into Maxwell's equations. This extra
term results in the field being "driven" not only by
the polarization of the inverted medium, but also
by the field at the window. The polarization is
calculated quantum mechanically using an assumed
field strength and frequency, and the usual self-
consistency requirements determine the actual field
strengths and frequencies.

II. MAXWELL'S EQUATIONS APPLIED TO ONE-

DIMENSIONAL CAVITY WITH A PARTIALLY

TRANSMITTING WINDOW

k„=nv/L . (la)

Since the window will be taken to be only slightly
transmitting, it will be convenient to consider the
leakage through the mirror as a small perturba-
tion, and that the field inside the cavity can be
well represented by its expansion in normal modes
of a closed cavity of similar dimensions.

The cavity of length L may be taken to lie along
the z axis between -L and 0, with the electric
field polarized in the x direction and the magnetic
field polarized in the y direction.

As discussed by Slater, basis modes suitable
for expansion of the electric and magnetic fields
are

u„(z) = sink„z and v„(z) = cosk~,

with

from the above definitions:

(5)

=j.„u„(z)k„a„(t). (6)

The polarization of the medium in the cavity can
also be expanded interms of the u„:

P(z, t) =Z.„P„(t)u„(z),

where P„(t) is the projection of the polarization
on the nth cavity mode,

P„(t)= (2/I )j u„(z)P(z, t) dz .
Maxwell's equations in conjunction with (5) and

(6) become

k„A„(t)+p H„(t)+(2/L)E(0, t) =0,

k„H„(t) —~,A„(t) = Z„+P„(f),

(9)

(lo)

where, as usual. , we set J„=oA„ to provide some
loss in the cavity. Ne then obtain the wave equa-
tion

Eo(((,OA„(f) + 0' poA„(i) + k„A„(t)

= —(2/L) k/(0, t) —uo P.(t) (ll)

The first term on the right-band side expresses the
fact that although the main electric field in the
laser will have the space dependence of the basis
modes u„(z) which vanish at the mirrors, a small
amount of radiation leaking through the window

means that the electric field is not quite zero at
the origin.

Since the window will be taken to be strongly re-
flecting, the resulting field at the origin will be
small, thus minimizing the convergence problems
of (3). With this in mind we can consider a single
mode and from now on drop the subscript n, writing

They satisfy the relationships

su„(z)
( )

Bz
(»)

A(t)+ (a/e, )A(t)+ n'A(t)

= —(2/L)«~(0, &) —(l/~o) P(&), (l2)

sv„(z)
( )~Q~ Z

but are unnormalized. Fields in the cavity are
expanded as

Z(z, t) =j „A„(t)u„(z),

a(z, t) =&„a„(f)v„(z),

while the expansion of their derivatives follows

(3)

(4)

where 0= k(cop, o)
'~' is the cavity resonance fre-

quency. The field at the window provides a "driv-
ing force" in the equation for the field in the cavity
in addition to the usual term provided by the laser
medium.

III. MODEL FOR TRANSMITTING WINDOW

The window at z = 0 is taken to be a "bump" in
the dielectric permittivity given by
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a (z) = co [1+A5(z)] . (13)

A is a parameter, with dimensions of length, that
determines the ref lectivity of the window.

In order to find how the window modifies the
field, we integrate Maxwell's equation across the
bump. From

is the positive frequency part of the electric field,
and also satisfies Eq, . (12) with E(0, t) and P(t)
suitably defined.

Thus the off-diagonal term in the density-matrix
equation may be written

P'.b= —(i(d+ r)p, b
—i(p —Pbb) A(t) b u( z)/tf,

sE(z, t) ~

= —POH(z, t), (14)
where (22)

we find that

E(o', t) =E(o-, t),
while from

(15)

,( ' ) = ~(z) E(z, t),
we see that there is a discontinuity of

H(0', t) -H(0, t) = —ALOE(0, t)

(18)

(17)

in the magnetic field related to the "height" of the
dielectric bump and the time rate of change of the
electric field strength at the mirror.

IV. POLARIZATION OF MEDIUM

The active atoms are taken to have two levels
a and b, separated by energy 5 and to be repre-
sented by a density matrix p rather than a wave
function. In order to avoid unnecessary complica-
tions, the atoms are considered stationary.

The e(luation of motion of the density matrix is

x . + . iu'(z) . (24)
8t Sat)

r+i(~ —v) r -i(~ —v) &

If only the slowly varying terms are kept in this
expression, the diagonal terms in the equation of
motion (18) become rate e(luations,

P~= y. Paa+ -~a+R(pbb Paa) t

Pbb rb Pbb+ ~b R(Pbb P )

with a rate R of transitions a b

(25a)

(25b)

r = .'(r.-+ rb) .
The steady-state solution of this equation gives

P.b= bi(p— pbb-) ~(t)»(z)/(@[r+i((d —v) ]],
(23)

where it is assumed that the population inversion
varies slowly compared with p,„, and we have used
the rotating-wave approximation.

Combining (19) and (23), we find

1 p a

iv(t) (p„-p,.) = —
2 @ (p., —p„)A(t)

P = —i[H', P] ——.'(rp+Pr)+~,
where

p p q II (W, V

(18)

R=[b' E(t) /2yh ]Z((d —v)u (z)

= IR,Z((d —v)u'(z),

where

R.=
b y. yb/y,

f=b 'E(t)'/I'y. y„,

(28)

(27a)

(27b)

(27c)
The perturbation Hamiltonian is SV, while NW,
and SW~ are the unperturbed energies of the levels
a and b. The two levels decay naturally with damp-
ing constants y, and y~, and are populated by
pumping at rates A., and A.~.

Using the expansion (3) of the electric field, the
electric dipole approximati:on for the perturbation
becomes

V(t) = -A(t)b u(z)/h .
The time dependence of the electric field A(t) is
written in terms of an amplitude E(t) and phase
(t)(t), which vary slowly in an optical period 2n/v,

A(t) = E(t) cos[vt+ Q(t)] (2o)

The quantity

g (t) E(t)e (Evti a (b)j-
&. /r. —&b lrb

1+R/R S
(28)

which can be substituted in E(l. (23) for p,b. The
polarization of the ~edium is given by

P(z, t) = b) (p„+pb )

-.'i(&'i)r) a ())ii(z)u(z)
)

~~I
I 2

s
I

~

~ ~ I cI I 2
(1+R/R, ) [y+ i(z —v)]

N(z) is the steady-state population inversion

I is the dimensionless intensity of the field in the
cavity, while the Lorentzian factor Z(~ —v) de-
scribes the effect of detuning the laser frequency
from the atomic frequency.

The solution of (25) for the steady-state popula-
tion inversion is
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( P., /y, -Xo/y„) that would exist in the absence of
induced transitions. The denominator factor (1+R/
R,) describes the saturation of the medium due to the
presence of optical radiation in the cavity.

projecting P(z, t) onto the cavity modes to find
P(t) for use in (12) gives

( —,'i s '8/@ (28)
~ y+ i((o —v) IS(&u —v)

E(z, t)=E.(t)e'", z&0

a(z, t)=Z E,(t)e'"', z&0.
From (15) and (37) we see

E,(t) =E(0, t),

(37)

(38)

(39)

so that substitution of (36), (38), and (39) in (17)
leads to a relationship between E(0, t) and the elec-
tric field amplitude 8(t) in the laser:

E(0, t) =8(t)/(q+i), (4o)

where

I()'= (1/L) f N(z) dz .
If we define

c. = ('2 v ('(/~oofy) &&((d —v)

and

(31)

where the dimensionless quantity q = kA measures
the strength of the dielectric "bump. "

Replacing E(0, t) in (12) by (40) gives the complex
electric field amplitude and phase equation far a
laser radiation into free space:

~0

$(t)+ 8(t)+n'8(t)+ — . S(t)=
Eo I 'g+t zo

f(I) = [2c(/Ii'„((u —v) ](1—[1+IS((o—v) ] ' 'j,
(32)

the saturation gain parameter, then the polarization
can be written

or

1(t)+)—+, )Ao)I, 1t'+I

P(t) = -2i8 ' ' " " f(I)+c.c.
v y

(33)
+n' 1+ —,

1
A(t)=. , (41)2cq . P (t)

LII 1l'+ I zo

For low intensities f(I)- n —pI, where

P= 4 nZ((o —v), (34)

and (33) has a form reminiscent of the small signal
single-mode theory of Ref. 1.

V. APPLICATION TO A LASER RADIATING INTO
FREE SPACE

Therefore (4) can be rewritten as

II(z, t) = —(i/Zo)8 (t)v(z),

where Zo= (p.o/eo)1~ is the impedance of free
space.

Outside the cavity the fields take the form of a
plane wave travelling away from the laser in the
+ z direction:

(36)

We can calculate the magnetic field just inside
the laser cavity in terms of the amplitude of the
electric field in the cavity. Similarly the mag-
netic field just outside the cavity is related to the
electric field outside the cavity. From these ex-
pressions, the electric field at the mirror can be
found using (17). Throughout the following we shall
find it convenient to work with complex quantities
whose real parts are the corresponding physical
(Iuantities. In the same way as 8(t) was intro-
duced, we define s (t) as the positive frequency
part of the polarization P(t), and introduce a com-
plex magnetic field R(t). Inside the laser, Max-
well's equations give

(t1/P, o) 8 (t) = —x(t) = tucx(t) . (36)

0/Q =(c/2L)T' . (43)

The right-hand side can be interpreted as the frac-
tional rate of loss of energy through the mirror,
since 2I /c is the average time taken by a photon
to return to the window, and T' is the probability
of transmission.

The total Q of the cavity is given by

(44)

where Qo is the unloaded Q of the cavity, and Q
is the external Q due to the window.

The (time-averaged) power emitted by the laser
may be found by evaluating the Poynting vector for
the external radiation:

where the imaginary part of the new term has been
moved to the term in A(t). An e(luation of this form
was solved in Ref. 1. It is seen that the partially
transmitting window introduces some extra loss
and a small change in operating frequency.

The increase in cavity bandwidth introduced by
the window is

0/Q = 2c/L(q + 1) .
When a plane wave is incident on an isolated dielec-
tric discontinuity (13), the intensity transmission
coefficient is

T'= 4/(1I'+4) .
Thus, in the case at hand where g is large, the in-
crease in bandwidth introduced by the transmitting
window may be written
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s=
I

E&H
I
=E'/2zp(~2+1) .

Using (43) this can be written

s = (n/q. ) (-,' ~p E'I, )

= (n/q. ) W,

(45)

(46)

E(z, t) =$(t)u(s),

II(z, t) = —(z/Zp)&(t)c(z) .
(47)

(48)

The external fields consist of an incident wave

Sz(t), a reflected wave $„(t), and a field from the
laser 8~(t). We write

E(z, t) = 8,(t)e "'+ 8„(t)e"'+8~(t)e"', (49)

II(s, t) = [-8,(t)e ""+8„(t)e""+8,(t)e'"]/Zp,
(eo)

where the incident wave has frequency v' and wave
number k'.

Substituting Eqs. (47)-(50) in (17), we find

-8,(t)+$,(t)+S,(t)+i8(t)=iq [8,(t)+8„(t)+@,(t)],
(51)

where 8' is the electromagnetic energy in the cav-
ity.

The frequency shift 50 = [(c/L) (0/2Q„) ] ~, al-
though a small fraction of 0, can be significant
compared to the atomic width y.

VI. LASER SUBJECTED TO EXTERNAL SIGNAL

As in Sec. V we consider a laser cavity with one
partially reflecting mirror. Incident on this mirror
is a plane wave with frequency close to the fre-
quency at which the undisturbed laser would oscil-
late. Most of the incident wave is reflected from
the mirror, but a fraction is transmitted and acts
as a source for the internal field.

If the laser is below threshold, it can amplify or
attenuate the incident signal depending on the gain
parameter. Above threshold the laser will oscillate
at its natural frequency vo in the absence of an input
signal. The incident signal will beat with the laser
output unless it is close to vo and sufficiently strong
to lock the laser to its frequency.

In the same way as for the laser oscillator of
Sec. V, we take the fields in the laser cavity to be

I/(I —iq) = iTe-",
where

T = (1+q ) ~ and P = tan (1/q),

and using (33), Eq. (54) can be written

E (t) = [f(I) —I' ]E(t) + (2c/L) TF cos(g —g),

0(t) = lf(i) —&+ (2c/L) T [F/E(t) ]»n(0 —P),
where

I' = o/2cp+ c/L(rP+ 1)= I"p+ I'

(56)

(58)

(59)

(eo)

is the effective cavity bandwidth of the loaded
laser. The phase equation (59) depends on the de-
tuning parameter

5 =(~ —v)/y,

and the separation

C&=v -0 =v -0-—1

L g+1

(61)

(62)

of the input frequency v' from the effective cavity
resonance frequency 0'.

Under certain conditions the phase difference
p(t) will tend to a constant, meaning that the laser
frequency has "locked" to the frequency of the in-
put signaL From the form of (59) this can only
occur if the amplitude E(t) is constant. Therefore
the frequency-locked solutions of (58) and (59) are
the stationary states of the system

~ 0

—+(t) 4Qc/L
g ( ) ( )

ep (1-iq)
Writing Sz(t) and 8(t) in terms of amplitude and
phase factors we have

(t) Fe l& t $ (t) E( t)
e-iut E(t)e-iL'v'0+9 o) 3

(55)
where the real amplitude E(t) and relative phase
angle p(t) are slowly varying compared to e '"'.
We have written the relation between the input fre-
quency and the laser frequency

v=v'+Q.

Defining

with

g =kA»1. (52)

We can solve (51) for the (small) electric field at
the window:

E(t) = 0 and j (t) = 0 .
If we define a dimensionless input intensity

& = (» F)'/a'y, y, ,

(63)

(64)

E(O, t) = h, (t)+8„(t)+8,(t)

= [S(t)+2i8~(t) ]/(q+i) .
Using (53), Eq. (12) becomes

8 (t) + —8 (t)+ o'8 (t)+ . 8 (t)
&o I g+i

(53)

the stationary laser intensity I [defined as in (27b)]
can be found as the solution of the transcendental
equation

(2c/L)'T'S =II,[r -f(I) ]'+[t - gf(i) ]'] . (65)

For low intensities this equation takes the form
of a cubic in I, while at high intensities, when
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f(I)- 0, it becomes linear, with solution

(2c/I. ) T
Z+ gZ (66)

Graphs of (65) above threshold for various values
of the parameters are shown in Figs. 1 and 2.
Below threshold, when n & I', only one solution
for s occurs for each input intensity I and that so-
lution is stable.

Above threshold, the cubic shape of (65) makes
it possible to have three solutions for I correspond-
ing to small values of I. It is shown in the Ap-
pendix that at most two, and usually only one of
these solutions is stable. When &=0, Eq. (65) has
a nonzero root only when a & I' and

.8

P
aO

6 ~.~
f o ~

~ ~ ~ ~s ~ ~ ~ ~ ~ ~ ~ ~ g

41~ ~

4

21

~ ~

~ ~ ~ ~ ~
~ ~ ~ ~ ~

~ ' ~ ~ 1'
walla'-f a a I I i s a I ~

.02

0 ~ ~ ~ ~ ~
~ ~~ ~ 0 ~

0

0

~ ~
~ ~

~ ~
~ ~

~ y 0
~ ~

.04 ~ 06x lO

Ia ~ I ala I saI ~ I sais ~

v, = (nfl'+ ~r)/(y+ I ) . (68)

If the input frequency v' is detuned slightly from
vo, the curve (65) will no longer touch the s axis,
so that a certain minimum input intensity s (Io) will
be required before the laser will lock to the input
signal. Figures 3 and 4 show the transient be-
havior of the amplitude and frequency difference
when S is less than and greater than S (Io). In the
former case the laser field cannot settle down to a

a=gr,
implying that the device will oscillate with no input
signal only if condition (67) is satisfied. This con-
dition can be reexpressed in terms of the effective
cavity resonance frequency and the atomic reso-
nance frequency to give the well-known expression
for the frequency vo at which the laser would oscil-
late without an input signal:

FIG. 2. Plot of Eq. (65) for very low input intensities
showing the cubic shape. The unstable parts of the curves
are shown dotted. The continuous line shows the behavior
when v

' = vp, while the dashed line shows {65) with v'
= vp = 0, 05 MHz, The other parameters are the same as
in Fig. 1.

steady state, but has amplitude and phase modula-
tion.

The factor (2c/I, )T in (65) can be much larger
than I', so that even in the case of a linear passive
cavity described by Eq. (66) we may find I- 4005.
Despite the reflection of the incident signal by the
mirror, the same property of high reflectance
traps the field in the cavity and allows it to become
larger than the incident field.

VH. GAIN OF LASER AMPLIFIER

From (49) the complex voltage gain of the ampli-
fier is

I 50.
8.=(g (t) )/g

Rewriting (51) as

(69)

Ioo.

[S,(f)+$„(i)](I—iq) =h, (i) (I+iq) —i8(f), (Vo)

(69) becomes

8 (i)
tt tt (it(t) (t) —i) )

500 ol
q —i E(t)e "
tt+i (t) —i)t ) (72)

0
0 .2 .6 .8

In the steady state (58) and (59) imply

E[cos(g —P) —i sin(g —Q)]

= —(L/2c)[E(t)/T]{[f(I) —I'] —i[)f(I) —6]) (g8)
FIG. 1. Plot of Eq. {65) for high input intensities

showing the variation of the steady-state intensity I in
the laser cavity with input intensity d. The input frequen-
cy v

' is taken to be tuned to the natural laser frequency
vp, and I' = 1MHz, I' = g MHz, p= 99 MHz, cd —0' =200
MHz, and 0.'=l. l MHz. The dashed line is a plot of {66)
showing the asymptotic high-intensity behavior.

or
e ' (2c/I. )T

[f(I) —I'] —i [$f(I) —6]
(2c/I. )(q —i)/(q'+ I)

[f(I)—I'] —i [$f(I) —n ]

(74)
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I.o-—

E(t}
I

I

W(

0 5-~-

put frequency equals the natural cavity resonance
frequency 0,

(so)

and

(sl)

so that the laser cavity acts like a short circuit at
@=0.

The intensity gain G is obtained from (76) as

Therefore

8= — . 1+ . , (76)
q+ f [f(f) —r] —f [(f(f) —a]

where

I'„=c/I. (q + 1)= —' 0/Q (77)

is the cavity bandwidth due to the window [see Eq.
(60)]. The voltage gain in (72) tends to —1 in the
limit of a perfectly reflecting mirror, indicating a
phase shift of n but no change in amplitude. The term
proportional to E(t) in (72) describes the contribu-
tion from the field in the cavity. This term be-
comes infinite when the laser is oscillating with no
input signal.

If we remove the nonlinear laser medium from
the cavity but leave the linear losses, the voltage
gain (76) becomes

g toq —2 I' —I'O + 2h

q+2 ~ + I'O —iS (76)

The cavity will be matched to the input if r = r„
making the window losses equal to the linear losses
in the cavity. If the input frequency is tuned to the
effective cavity resonance frequency 0', so that
b, =0, the entire input signal will be absorbed in the
cavity, and the voltage gain @=0.

Removing both the laser medium and the linear
losses from the cavity results in

8=='l 2

7l+2

I' +26
I

which has unit amplitude. In this case when the in-

a i a l a i a i I a a a a I a a a a I a ~ i a I

0 200 400
TIME (psec)

FIG. 3. Examples of the transient behavior of the elec-
tric field amplitude E(t) in the cavity, as described by

Eq. (58), where p' —v0=0. 05 MHz as in Fig. 2. The
continuous curve shows the case when the input intensity
is insufficient to lock the laser (9 =1.6 x 10 7), while the
dashed curve shows the laser approaching a stable locked
state (&=3.6x10 7). The remaining parameters are the
same as in the previous figures.

G = [(r.—r, )'+ ~']/[(r. + r,)'+ ~'], (63)

'(

(

I0 ~
aalu

~

I I
I
I

1
l~
aaa ~ I ~ a ~ ~ I ~ ~ ~ ~ I ~ ~ a ~ I ~ ~ ~ al
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FIG. 4. Examples of the transient behavior of the
frequency difference ft) =v' —v corresponding to the two
cases in Fig. 3. In the locked case v' —v 0 after its
initial excursion.

where I is the stable solution of (65) for given input
intensity &. If the laser is below threshold, it will
still amplify as long as the gain from the inverted
medium exceeds the linear losses [f(I)& I'0]. The
critical condition f(I) = I'0 when G = 1 is just the
threshold condition for the same medium in a cavity
without window. An expression similar to (62) has
been obtained previously, ' in the special case b, =0,
$ =0, and without the expression (32) for f(I). Fig-
ure 5 shows the intensity gain plotted against input
frequency for various values of &, over the range
of frequencies about vo where the laser is frequency
locked. This range of locking varies with input in-
tensity, being smaller for lower intensity. For the
lowest intensity shown in Fig. 5, the range of lock-
ing is about 4. 5 MHz. The curves with smaller N

show larger gain at v'= vo. As d is increased G

decreases, and the range of locked frequencies in-
creases. In the limit of very large s, f(1)-0 and
the medium becomes saturated. This is equivalent
to removing the active medium, leaving only the
cavity with its linear loss. In this limit
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4-

If we incorporate Wittke's assumptions (I 0
= r,

6 =0, and $ =0) in (82), the steady-state equation
for the intensity amplification, we find

G=f'/(f- r)' . (84)

2-

An expression similar to (84) may be obtained using
Wittke's method. Calling the field in the cavity

E=E +E (85)

0 . I I I I I I I I I I I I I I
-5 t 0

v'- v~(MHz)

I I I l

5

Pi = I '(E +ED) . (86)

where E, is the amplitude of the incident radiation
and Eo is that of the output (taken to be in phase),
the loss of power from the cavity is assumed to be

FIG. 5. Intensity gain G given by (82) plotted against
v

' —vo, the difference between the incident frequency and
the natural frequency of the laser, for various dimension-
less input intensities. High intensities saturate the me-
dium giving a characteristic dip in gain near the effec-
tive cavity resonance frequency O'. Values of the pa-
rameters used are I"=1 MHz, I' =4 MHz, &=99 MHz,
&-0'=200 MHz, and G.'=1.1 MHz, making 0' —vo
=-2 MHz.

which shows a characteristic minimum centered
on the effective cavity resonance frequency 0'.
For frequencies many cavity bandwidths away from
O', G-1. Figure 5 shows that for large input in-
tensity G does in fact take this form. The dip per-
sists for smaller input intensities because the laser
intensity I becomes locally large and saturates the
medium. The detuning of the effective cavity reso-
nance frequency 0' from the atomic resonance ~
is purposely taken large in the calculations in order
to separate 0' from the natural laser frequency vp.

VIII. COMPARISON %LITH PREVIOUS TREATMENT

A qualitative treatment of the laser amplifier was
given by Wittke in 1957, in which he took a simple
model for the power emitted by the atoms. He then
equated the sum of the powers from the atoms and
the signal generator to the total power absorbed by
loss mechanisms, and obtained an equation similar
to (58) with E= 0.

Our treatment differs from Wittke's in three re-
spects. We use field amplitudes rather than inten-
sities and can treat the phenomenon of phase lock-
ing. This also allows us to examine the solution
when the input frequency does not equal the effective
cavity resonance frequency. Secondly we are able
to allow for the fact that the active medium is con-
fined in a finite cavity and so find expressions for
quantities that must otherwise be described by
"filling factors. " Thirdly, our treatment does not
assume that the Qo of the cavity is matched to the
Q attributed to the window, Q

p, = r'E', +2f'(f)E'. . (8V)

I" is proportional to the cavity bandwidth, and f'(I)
to the saturated gain parameter for the medium.
Equating P~ to PG and solving for (Eo/E, )3 gives an
equation

G=f "/(r'-f')', (88)

similar to (84). The form taken for f '
by Wittke

was
I

I Qf "'- I+(P /n )f (89)

which is the saturated gain parameter for a travel-
ling wave in free space. 7

In the low-intensity limit (89) and (32) have the
same I dependence, but the presence of the cavity
modifies the parameters P' and n' by numerical
factors when compared with (34). The intensity of
oscillation with no input signal may be obtained
from Wittke's work as

I= (n' —I ')/P' (90)

in the low-inte»sty approximation, and again this
differs from our result by numerical factors that
can be absorbed into filling factors.

APPENDIX

Equations (58) and (59) have only one stable sta-
tionary state below threshold, but when n & I' there
can sometimes be three solutions of E =0 and Q = 0
for a given input field. We wish to investigate the
stability of these stationary states and so expand the
amplitude and phase about their stationary values
Eo and $0, giving in matrix form

The first term is due to linear losses in the cavity,
while the second is the loss out the window. Sources
of power are the input field, and the inverted me-
dium,
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aff—1 +ED
2c TF sin(g —$0)

(ol)
2c F . 2c FT 3 sin(ll —Po) T cos(P Pa))L Eo L E'10

(2c/L) TF cos(g —$0) = —(f —I')Eo (92)

This can be simplified using the conditions for a
steady state, E=O, /=0:

or
(~/r)2/ 8

Z((d —p)

(2c/L) TF sin(g —$0) = —($f—6)EO

to give

(98)

This places a lower bound on the intensity in the
cavity, independent of input intensity. The condi-
tion (98) is interpreted by noting that

ef a sf sfE =2E 2 =2I

g-l" — —a E, sE

so that with the help of (96), Eq. (98) becomes

(r-f) (r-y-2I ef
er

+ (6 —(f ) (6 —(f—2$ I — 0
BI

where
(o5) or using (65) and some algebra,

and

(r-f)+(r-g) 0 (ov)

(r -f)(r -g) + ($f —&)($g- &)-0 . (98)

With the help of (96), the condition (9V) implies

2r & 2m[1+IS(~ —v)]-'~~ (oo)

g=EO +f=(2c.[1+Ig(~ —v)]-"'-f(I)jp .0

(96)

Stationary solutions of (58) and (59) will be stable
if the real part of the eigenvalues of this charac- .

teristic matrix are negative. Using a modified
Routh's criteriona (or by simply observing condi-
tions for the real parts of the roots of a quadratic
equation to be negative), we find the conditions for
stability are

(2c ' esI'2c
(L 8I (100)

The limiting condition of equality will occur at the
turning points of the curve of N vs I occurring for
positive I and S . Condition (100) limits the number
of stable solutions for given N to two at most.
Usually one of these is eliminated by condition (99),
but it can be shown that under certain circumstances
both stable states may exist for a particular p. The
range of parameters for which two stable states
exist is extremely limited, and it would seem un-
likely that the system would ever reach the state
with smaller I. When v' = vo, the upper turning
point occurs with 8 =0, and corresponds to the state
of oscillation of a laser with no input. This is known
to be stable, whereas the other solution for &=0,
(viz. , I=0) is unstable.

*Research sponsored by the Air Force Office of Scien-
tific Research, USAF, under Contract No. F44620-71-
C-0042 and in part by NASA.

~Based on material submitted by M. B. Spencer in
partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Yale University.

W, E. Lamb, Jr. , Phys. Rev. 134, A1429 (1964).
J. C. Slater, Microseave Electronics (Uan Nostrand,

Princeton, ¹ J. , 1950), p. 64. In Chap. 9, Slater gives
a general theory of microwave oscillators and later ap-
plies it to klystron and magnetron oscillators. The non-
linear electronic medium is treated by approximate meth-
ods appropriate for relatively small signals. Masers
and lasers are systems which are governed by the same
general theory. The present paper and its sequel apply

this general theory to a simple but realistic model of the
nonlinear laser medium for which the calculations can be
carried out for arbitrarily strong signals.

3See Ref. 1, Sec. 16.
4This is the "pulling relation" found in the usual small

signal theory. That it is true in general here, indepen-
dent of intensity, is a consequence of.taking stationary
atoms.

5J. Weber, Rev. Mod. Phys. ~31 681 (1959), Eq. (28).
6J. P. Wittke, Proc. IRE 45, 291 (1957).
'A. Icsevgi and W. E. Lamb, Jr. , Phys. Rev. 185,

517 (1969).
P. J. Richards, Manual of Mathematical Physics

(Pergamon, London, 1959), p. 255.


