5 QUANTUM CORRECTIONS TO

My, 8. Green, J. Chem. Phys. 19, 955 (1951).

2)\3G(¥,¥; B)(to first order in A) haspreviously been
calculated by Nilsen (Ref. 16) and (to first order in B€)
Edwards (Ref. 18). However their results are expressed
in a form which is not very suitable for our purposes.

BG. E. Uhlenbeck and E. Beth, Physica 3, 729 (1936);
R. A. Handelsman and J. B. Keller, Phys. Rev. 148,

THE EQUATION OF STATE...

867

94 (1966); P. C. Hemmer and K. J. Mork, ibid. 158,
114 (1967). _"
HReference 7. This method is also used in Refs. 5
and 17.
%The 6-function expansion is given by H. Messel and
H. S. Green, Phys. Rev. 87, 738 (1952).

PHYSICAL REVIEW A

VOLUME 5,

NUMBER 2 FEBRUARY 1972

Low-Frequency Electric Microfield Distributions in a Plasma Containing Multiply
Charged Ions*f

John T. O’Brien
Physics Department, Wisconsin State University, Platteville, Wisconsin 53818

and

C. F. Hooper, Jr.

Physics Depavtment, University of Flovida, Gainesville, Flovida 32601
(Received 15 July 1971)

A theory for calculating low-frequency component electric microfield distributions for a
plasma containing more than a single ion species is developed. Calculations at a charged
point are made for a plasma containing N* singly charged ions and N** doubly charged ions
together with a charge neutralizing number of electrons, N,(N,=N*+2N**). Three different

ion ratios (R=N*/N") are treated: R=0.0, 1.0, «,

It is shown that the calculations allow for

all ion-ion correlations to a high degree of accuracy. Numerical results are shown both

graphically and in tabulated form.

I. INTRODUCTION

In recent years considerable effort has been de-
voted to the problem of spectral line broadening in
plasmas.!~% In relation to this problem various
theories of the static electric microfield distribu-
tions have been formulated.*® However, all of these
theories and subsequent calculations have only been
concerned with plasmas containing a single positive-
ion species. The purpose of this paper is to extend
the theory developed by one of us to treat plasmas
containing more than a single speacies of positive
ion. Calculations for a plasma containing two posi-
tive-ion components have been made; the procedure
for extending the calculations to situations with
more than two species is indicated.

In this paper, calculations are made for a plasma
that contains N* singly charged ions and N** doubly
charged ions (N=N*+N"*) together with a charge
neutralizing number of electrons N,(N,=N*+2N").
It is assumed that ions interact with each other
through an effective potential which includes elec-
tron-ion shielding. This model is the two-compo-
nent analog of the single-component low-frequency
model previously developed.®® Since helium plas-
mas may have both singly and doubly charged
species present, the model proposed here is ap-
propriate for discussing the effect of a helium plas-
ma on a radiating He* ion (He*=He1r) or He atom.

As in the papers dealing with singly charged per-
turbing ions, the calculation of the electric-micro-
field distribution at a neutral point (e.g., at a He
atom) is just a special case of the charged-point
development obtained by setting the charge at the
origin equal to zero.

To make the mathematical development more
general, we make the assumption that it is valid
to consider a two-temperature plasma, one tem-
perature for the ions, T; and one for the electrons
T,. This procedure implies that while the ions
may be considered to be in equilibrium with each
other, and the electrons with each other, that the
ions are not necessarily in equilibrium with the
electrons. In the event that a true equilibrium situ-
ation prevails, T,=T7;.

All numerical results presented here assume an
equilibrium situation. The actual distribution func-
tions are expressed in reduced field units which are
a function of electron density only. The calcula-
tional programs that we have developed are quite
general; they allow for the possibility of a two-
temperature plasma, for the possibility that there
may be any number of charged-ion perturber species
(i.e., singly, doubly, etc.), and for the possibility
that the radiator may have any degree of ionization.

Section II of this paper deals with the formal cal-
culations. The asymptotic expressions for the
microfield distribution function are presented in
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Sec. III. Numerical results and conclusions are
given in Sec. IV. An appendix is devoted to the de-
tailed evaluation of various integral expressions by
collective coordinate techniques.

II. FORMALISM

Define @(€)d € as the probability of finding an
electric field € at the origin of our reference sys-
tem due to a collection of N ions (N*+ N*™ +... )
assumed to interact with each other through shielded
Coulomb potentials. The plasma is contained in a
volume V and is macroscopically neutral. The
origin is assigned a charge ¢ defined by

qg=te, £=0,1,2, ... (1)

where e is the magnitude of the electronic charge.
By choosing the appropriate value of £, expressions
for microfield distributions at neutral or variously
charged radiators are obtained.

The definition of the microfield distribution func-
tion, Q(€)is given by

Q(E)=Z‘f~-/exp[—BV(fl---fN)]

= =y g _ 1 _
XG(E—]—.lij)jI;]idrjy B_e—i_ kTi (2)
where Z is the configurational partition function for
the two- (or multi~) component system, and
V(T,- - -Ty) is the total potential of interaction be-
tween ions. ¢, is the field at the origin due to the
ith ion that is located at T, :

=g vy, V(T Ty) . (3)

Note that because the field point is at the origin and
the source at T;, the sign of the gradient in this last
expression differs from that in the usual relation.
The sum )¢, is given by

N N* N

S\ - SN - ->

>—/ €i =2 €j + 2 €, o (4)
i=1 ji=1 m=

The integrations in Eq. (2) are over the coordinates
of all the ions.
By representing the § function as an integral

5(%)=@n) [ [ [ explil* ]d1, (5)

we may write

QUE=z1[ - [ (@n)®

x exp[ =BV +il * (£-20,¢,)1d111,d%, .(6)
Since Ejf +¢; is independent of the direction of T,

the angular integrations can be done immediately.
The result is the commonly occurring expression for

P(e) for an isotropic system®5:

P(e)=4n€* Q(€) =2¢(n)" f T(1)sin(el)idl, (7)

(K3

where T(I) is defined by
0=z [ [ exp[-gV-iZ,1- ¢ II,d¥,. (®
The potential energy in the present calculation is

*

N 2
V=2 RATIA ) (2ef emn /2
i<J 7’“ m<n Vmn
. 202
+ 5 =L eim/* 9)
Jam rjm
where

A=[(rT,/4mn, %) ]}/2 .

The subscripts i, j are reserved for the N* ions
and the subscripts m, » are reserved for the N**
ions. It is convenient at this point to define the new
quantities w;q, Wy, and Vj:

w0 =qle/ry) e 0" (10a)
Wmo = q(ze/?’mo) e™rmo/ ) (IOb)
N"' N+
V=Vo+ 2 wj,,+Z) Whg - (11)
I 1 m.—

The w’s will take into account the short-range cen-
tral interactions. V, includes all noncentral and
long-range interactions. « is an effective range
parameter, the choice of which will be considered
later. In terms of the form for the potential energy
given in Eq. (11), T(I) can be written

()= 'f [ ""Hexp ﬁwjo-—iq'l-l" eowio]d-f,

N++ -
X H eXp [‘meo"iq-ll 'VO me ] d-fm ’ (12)
m
where
Vo=—BVy—iqtl® ¥V, . (12a)

The following definitions can also be made and then
substituted into the expression for 7(I):

X (1,5) =exp[- Bw;o —ig™'1 - Vyw;o] -1, (13a)
X" (1,m) = exp = Bw g =i g1 + Fotng ] =1 . (13b)
Hence,

. N .

T<z)=Z'1f'feV°H[1+x*(z,j>]drj
i
N-H- N
x I [1+x*@1, m)] dt,, . (14)
m

If the factors in T(I) containing the y’s are multi-
plied out, the following expression is obtained:
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o

~ N'I- N++ ) .
T(z)=z"f-fevo 1+ 2 X0+ Zx™(Wm) + Lo X' ) ) (@ i)+ Z X" m)x' (4, n)
i m ' i<j m< §

S X LX) X m>+---) af, T af,  (15a)
i m m

=Z'1f---f Vo M dF, Hd?m+N*Z'1f--°/e7’°x*(z, DII a7, IT ar,
i ) m

+N“Z"f---fe””°x* @, 1)x*(,, 2) I ¥, 11 dT,,
Kl m
+sN*(N" —1)Z'f- -cfe”“x*(z, 1)x*(1, )11d%, 1 dT,,
Fi m
N -z of T, Dy @, D TaE T o,
K] m

+N*N“Z'f--fe"o X', 1)x** (@ 2)MdT, IIdT, + - . (15b)
J m

Now make the following two definitions:

~ NT N
Tu0=f- oo 1 as, 1T o,
i=f+1 n=m+1 (16)
Qim()= T, (1)/To(D) ,

where T(1)=Tyy(l). In terms of these new quantities T () can be written

TW)=ToNZ [1+N* [ Quo()x* (I, 1)dTy + N** [ Qou()x**(1, 1)dFy+ (1/21N*(N* =1)

x [ [ QeolX*(@, Dx*(1, 2)dF1di, + (1/21)N*(N** = 1) [ [ Q (Dx™(1, 1)X™(1, 2)dF, dF,

+ NN [ [ Qux*(t, Vx™*(1, 2)dFdE,++ 0 ] . (1)

|

Each of the @' s can be expanded in an Ursell ex- V2Qu(l; 1,2)=gull; Dgnll; 2)+ge; 1,2),
pansion according to the following prescription:

2 . - . . .
) Qlo(l; 1)=g10(l; 1) , % QII(ZJ 1: 2)—g10(lr 1)g01(l; 2)+g11(l: 1, 2) . (18)

0@l 1)=gull; 1) In terms of these g’'s and in the thermodynamic
Qult; D=gull; 1), limit (N~ =,V ~ = so that the density n= N/ re-
V2 Qao(l; 1, 2)=g1o(l; g1oll; 2) +ga0(l; 1, 2), mains constant, T(l) is given by

T() = To()Z*{1 +n‘f guoll; x*(1; 1)dr, +n“f gull; V)x*™(1; 1)dt,
+[@2/20 11 [ [ g2t 1, 2%, 2)x7(1; 2)df1dfz+(f_ g1ol, X' (1, 1)dt)? ]

+[@M?/21]1 [ [ gt ; 1, 2)x™(1, 2)dF1dfs+ ([ gull, x* (1, 1)dfy)?]

+n'n’ [ [ [ gull; 1, 2)x°(1, DX, 2) dF1dfs+ ([ gioll, DX, 1) df) % ([ g01(, 2)x (1, 2)dF,) [++ -} . (19)

If 2, is defined by
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hin(D)= f ' f gm(Ox* (1, 1)+

5 m
x...X(l,m)HldFinFn,
i=. n=1

X' x™ (@, 1)

(20)

T(l) can be written in terms of these #’s as
T(1) = To()Z {1 +n*hyo(1) + 1™ Ry (1)
+[@")?/21 ] [rao(D) + [1o(0) 1P ]
+[0™?/21 1 [hoa(0) + [hoa (D) P ]
+2' 0 [ (D) + hyo(Dhgy () J++ 2+ } .

These terms can be regrouped and written in the
form

@1)

Nt +\J ++\m
T()=Ty0)z™* exp( N; NZ, (;L!) (nm)' h,,,,(l)> ,
" (22)
]
(10 sy )
™ ( T0(0)> exp@ Z gy

This allows for any number of perturbing species.
The procedure for the evaluation of these terms
would be similar to that presented in the Appendix.

Since the calculation of P(€) considered in this
paper always involves a computer calculation, it
should be pointed out that the cost of evaluating
these terms is considerable.

Consider the individual terms appearing in Eq.

(24). By the method developed in the Appendix, the
first factor, Ty(1)/T4(0), becomes
To(1)/To(0) = e . (26)
In Eq. (26),
y=4a(0,/8,) [® - (L+u) F{ }, (26a)
{ }={o®u+2[1 - +u)¥?]a*+[2u+u®] a®
—4(1+u)[1-Q+u)?]0® -3 +ud)a
+2[(Q+u)f - (1+u)¥?]},
|
Iio=n" [h19(1) = 114(0) ]

JOHN T. O’BRIEN AND C.
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(3,1

which is a systematic Ursell cluster expansion.

It can be noted here that the definition of Z would
be the same as T(I), if [ were set equal to zero.
Therefore Z can be written as

)j(nll'-i

Z:To(O)exp<Z,Z ) h,,,,(O)), (23)

This allows T(l) to be written as

- (o)

N* ++
N

xew (2 & LTEE b 0)-n,01) . @0

If more than two species of perturbing ions are
to be considered, Eq. (24) can be generalized:

——%ﬂ" [hj"k"’"(l)_hf--k..m..(o)]) : (25)
T
6 1+4R nt
“ 6y (1 +2R) » R n
0,=kT, , 6,=FKT,;, (26D)
L=¢l, a=v/x, €=e/rf,

where 7, is the ion-sphere radius defined by the
expression

$rrin-1. (26c)
Now we consider the factors resulting from the
series exponent. There are two first-order terms,
one for j=1 and m =0 and one for j=0 and m=1.

In general, if there are » different species of per-
turbing ions, there will be # such first-order -
terms:

N+ N+§

1,= i g . -
f. o [ eVoria 11947 (e"B*107te "1V 1) Hz dr, I-.Il dr,
i

enf (FEL

.1 - Nt N
o+ [ exp(-BV,—iq l-VOVO)H dr, H dar,

Nt

f f -BVU-W-IIV VU(e'BiWIO—l) H dr, I dr

1

d-fl ’ (27)

N++

Jeee fe™o III dr; I1I dr,
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and similarly,
Iy =n"" [hy(1) = hy(0) ]
N“ N"‘i‘

[ eV 0mia VgV (pBugg-tatTVouyg _ 1) T] ar, II dt,
1 2

=n++vf N+ N++
Jeoe [ et 11 &, T1 d

m

.- N+ N++
f. .o f e-Bvo-tq-llavovo (e'Bi“’lo _ 1) H d-fj H dFm
! 2 dfy . (28)

N'Q"l'

f...fe-svo flI dF, I;I d-fm

Although these integrals appear formidable, they - (Si“( 2Lg(x)) _ 1)] , (30)
may be readily reduced through the use of collective (2Lq(x))
coordinates to approximate expressions involving
only one-dimensional integrals. The accuracy of where
this approximation is briefly discussed later and x=7/7y, Pwi=£(0,/6,)( &2/3%) e~ ,

has been extensively discussed elsewhere.® Col-

lective coordinates are defined and the nature of ud® [/ 1+2R a?-1
the evaluation indicated in the Appendix. The final s(x)=¢ e ( 1 4R )( &1+ u))
results are merely stated here:

Lo(1) = 1" [R10() = h10(0) ] « (e JRESETLp. )
© ; (30a)
8 2 g, S| -Buwyg sin(LG(x)) ) 2
= - - 1 1/2
1728 j; x%dxe e ( @ew) 1 ‘1(")“(5%71‘14,7))(?" (=00 _ g=sw/ Pax)
_ sin(Lg(x)) _ 2 12
< @atw) ! 29 +-$— (g™ = (1+q)H/ 2 gt ax )),
and
Iy =n"" [hos(1) = 23 (0) ] G(x) = q(x) + (e**/x2) (1 + aax) .
= SR f ) xadxezs"‘)[e'a”wm@_iﬂ(z_l’ﬁ("l) The second-order terms appearing in the series
1+2R 0 (2LG(x) exponent are now given explicitly:

()= [(n+)2/2! ] [hzo(l) = h2o(0) ]
=[")?/2! {U2 [ [[Qa0(t, 1, 2)= Quo(Z, 1Quoll, 2) 1X*(Z, L)X’ (1, 2)dF, dF
-0 sz[on(O, 1,2)- @14(0, 1)Q10(0, 2)] x*(0, 1)x*(0, 2) dFydT,} .  (31)

When the @,,(!) and @,,(0) functions are evaluated by the methods presented in the Appendix, they have a
very interesting form. Equation (A52) gives for @,,()

2) = 6, @ -/ 2
QZO(lr 1, )_ QlO(ly I)Qlﬂ(l: 2) exp|( - 9 a. € J‘a> . (32)
i 3x1a
The expression appearing in large parentheses is the Debye-Hiickel pair-correlation function (see Ref. 5)
for a discussion of this point). Performing the complete collective-coordinate evaluation, as indicated in
the Appendix, we find
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/1 \'o 25
120: ﬁm}{_) 3a2%l(—1)k(2k+1){20}’

(K3

33)

{20}= f %3/ Lp1/2 (a' %) €892 [ 7192 (L G(x)) — jo(Lg(x2)) |
0

2

* / X3 2 Kpuyz (a' x1) 8% [0, (LG(xy)) = ju(Lg(x1)) ] dxy dy
X

°© «©
_6'"’_/ 221, 5(axp)e® ) [ oPiw ) _ 1 ]/ 2 YKy (@ xy)es 0 [ e ~1] dx, i,
0

Similarly an expression for Iy, is given by
6 R

-4 e
loz=4 6; (1 +2R

{02}= f X3 2 Lpu1y2 (@' x0) €292 [e7280 ) §(2LG(x)) = (L (x2))]
0

)2 3a?), (-1 (2e+1){02},

*2

Xf x?/sz...],/z (a' x1)ezs(x1) [e-zaiW(xl)jk (ZLG(xI)) _jk(zLQ(xl)) ] dxy dxz
x;

2

o
o
_ 5“[ xg/z llla(alxz)e%(xg) [e-ZBiw(xz) -1 ]/ xf/ZKl/z(a'xl)ez“‘("l) [e-ZBw(xl) -1 ] dxy dxs .
0 %,

2

There is yet another second-order term, viz., Ij;; it is given by

In=2~z—f—( L )(I—RZ-E) 3¢5 (10 @ks {11},

1+2R

(35)

{11}= f %3/ 2 L1y0 (0 25)€% %2 [e720 52 § (L. G(x3)) = ju(2Lg(x3)) |
0

*2

8 f %32 Kpury2(a’ 20)e* 0 [e7¥ 91 5, (L Gxy)) = jio(Lq(x1)) Jdxy dx

+ / xglthu/z (@ x5)e?s 2 [e'ZBW(xz)jk(ZLG(xa)) -jp(2Lg(x3)) |
0

x2
X [ %32 Lol x1) 890 [e7 %15, (LG(xy)) = ji(Lq(xy) dxy dicy
0

© ©
_ékof xg/zKl,g(a’xg)eas“‘z)[e'ZBW(’fz)—l]f

0

o

x?’zKUz(a'xl)e“”l’ [e'ﬁ"’("l’ -1 ]dx1 dxg

x2
- 6,wf x%’zKI/z(a'xa)eas(xz) [e-zaw(xz) -1 ]f xi”zll,g(a'xl)es‘”l) [e'B“’("l’ -1 ] dx1 dxz
0

Iand K refer to modified Bessel functions of the
first and third kind, respectively, while j,(~-)
specifies a spherical Bessel function of order %.°
The sums over % in these expressions for the sec-
ond-order terms converge very rapidly and hence
only three terms must be evaluated.

Thus to second order, we may write

T(1) = exp[ — yL%+ I;o(1) + I (2)
+Ipo(1) + Ip(D) + Iy () ] . (36)
This result is used in Eq. (7) to calculate P(¢) at

a charged point. It may also be shown that this re-
sult goes to the Holtsmark limit as T~ «." If there
were v different species of ion, there would be »
second-order terms such as Iy, and 7!/2! (v - 2)!
second-order cross-term such as I;.

In the event that P(¢) is desired at a neutral
point, £ is set equal to zero which excludes central
interactions. Because of the cost of evaluating the
terms, it is useful to obtain separate analytic ex-
pressions for the neutral case. The expression
for To(1)/T(0) remains unaltered, but the first-
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and second-order terms in the series exponent are
changed owing to the fact that w(x), s(x), and £,,(0)
are zero. Hence

Ilo(l)neutr a1™ n’ hlo(l)neutral

R © sin(LG(x)) sin(Lg(x))
= 1+2Rf dxxz( LGk) Lgl )

(37)
J

Izo(l)noutral = %(n+)a hZO(l) neutral =

6 1 \2, 25
—6:—( 1+2R> 3a2%_ (_ l)k(zk""l){zo}neutrﬂ ’

Iol(l)neutr al= n* hol(l) neutral

__3R /”dxxa<sin(2LG(x))
0

Sin(ZLq(x))>
1+2R 2LG(x) T 2Lq(x) ’

(38)
The second-order terms for the neutral case are
found by again setting w(x), s(x), and &,,(0) equal
to zero (or, what is equivalent, by setting £ =0)

and, in addition, the §,, terms for all 2. Hence,

(39)

{20} outrar =1 fow %3 21y 2(a"x0) [ (L Gxp) =jplLalxz)] fo %3/ 2K p1s2(a"%1) [ (L G(x1)) = jix (Lq(x1)) 1dy dxy};
*2

2 R
Ioz(l )neutral = %(nﬂ )zhoz(l)neutral = 4 < [ 1+ ZR] 302 E (‘ l)k(Zk + 1){0 z}neutral )
k

0

(40)

{Oz}nmtral =fwx2/21k+1/z(a,xz) [jk(ZLG(xz)) —jk(ZLq(xa))]f xg/aKku/z(a,xl) [jk(ZLG(xl)) "jk(ZLq(xl))]dxldxz 5

0

Ill(l Ineutrar =0 1" hll(l)neutral

1+2R)\1+2R

{ll}neutrM:{f x%/ 2Ik+1/2(alx2) []k(ZLG(xz)) ‘jk(ZLq(xg))]f

0

%2

zg_( 1 )(—R—) 2?2 (= 142 + Dt Thuera

(41)

o

%3 2Kpa1/2 (@ %) [ 5o (LG (1)) = jin(Lq(x1)) dxy dics
%3

+J‘°° x5 2K g1/ 2(a"x) [ 12(2L G(¥2) =jo(2L g (x5)) ]J' %3/ 2Ly ola' 1) [ Go(L G(x1)) = (L q(x1) 1dxydixs

0

+f x%/ZKkﬂ / 2(0 ,xz)[ jk(ZLG(xa)) 'jk(ZLq(xg))] f

0

Two approximations have been made thus far.
First, we have terminated the series appearing in
the exponential with the second-order terms. This
may be justified, by consideration of the analytic
form of the terms appearing in the series, and by
direct numerical calculations.® The second approx-
imation concerns the use of collective coordinates
in the evaluation of the many-dimensional integrals
occurring in this theory. 5 8

As indicated earlier in this section, the evaluation
of the many-dimensional integrals appearing in the
expressions for I,,(l) can be transformed into in-
tegrals over collective coordinates which have a
rather simple form. As is shown in the Appendix,
these collective-coordinate integrals may be eval-
uated as®

I=[ -+ [ exp[-470, (A, X%+ 2b,X,)]J I1 ,dX,
=(const) exp[3 2, 02/(1+A)] (1 —az+as—--) .
(42)

The A, and b, are specific functions of %, the X,’s
represent collective coordinates, and J is the

*2

63 2l 2(@"x1) [ 1a(LG(xy)) =5, (Lq(x1)) |dxy dxz}-

*2

|

Jacobian of the ¥ — X transformation. The series

of terms in brackets represents the possible higher-

order correction to the first Jacobian approxima-

tion. In the calculations made in this paper, a; and

all other correction terms have been neglected.
Following the procedure previously developed, °8

we have shown that the neglect of corrections to the

first Jacobian approximation is valid for the tem-

peratures and densities considered in this paper.

III. ASYMPTOTIC MICROFIELD DISTRIBUTION
FUNCTION

In this section we deal with the determination of
asymptotic microfield distribution functions. Gen-
erating the microfield distribution functions for
values of € >20 becomes increasingly expensive be-
cause the sine transform routine that is required to
evaluate Eq. 7 requires an increasingly finer mesh.
For values of P(€) in this asymptotic region it is
more convenient to calculate P(¢) from one of two
approximate formulations: the nearest-neighbor
approximation (NNA)® or the Holtsmark limit.”
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This problem has been previously considered for the
case of singly charged ion perturbers.® Hence we
are here extending the method to the situation where
more than one perturbing ion species is present.
Specifically we will examine the situation where both
singly and doubly charged perturbers are present.
First we will consider the charged-point case, and
then the neutral-point problem.

A. Charged-Point Case

For the charged-point case, the additional corre-
lations arising from the presence of a charged par-
ticle at the origin make the Holtsmark limit an in-
valid approximation for the field strengths that we
consider. Hence we use the nearest-neighbor ap-
proximation which we have shown to be in very close
agreement with the near-exact function.

The nearest-neighbor model assumes that for high
fields the bulk of the contribution to the total field
is due only to the nearest neighbor. This neighbor
may be either a singly or a doubly charged ion. The
probability of two or more ions producing this high
field is very small and is assumed to be zero. If
this probability were not small, it would mean that
the asymptotic region had not yet been reached and
the near-exact microfield calculation would have to
be extended. The assumption that the probability
of two ions being near the origin is small, has been
validated by comparisons between calculated near-
exact microfield distributions and the asymptotic
results in the region where they join. The asymptotic
value is always slightly less than the calculated
microfield distribution but the difference decreases
as € increases. At the point where the asymptotic
form is assumed to be valid, the difference is less
than 1%.

The probability of a singly or a doubly charged
ion being close to the origin is related to the prob-
ability of this same ion producing an electric field,
by the following expressions:

+ + 1 +
Py(e))de; = dmrin g*(ry) dry = mxlzg (1) dxy
(43a)
2 4+ o+ 3R 2 _++
Pyle)de,=4mrin* g™ (ry) dry= 108 28 (x2) dxg

, (43b)
where the last expressions on the right are in terms
of the reduced quantities already defined. g*(r,)
and g**(7,) are pair correlation functions between
a singly charged particle and a particle of charge
¢, and between a doubly charged particle and a par-
ticle of charge &, respectively. They can be found
using Egs. (A48), (A50), and (A52) by allowing for
the variable charge &:

2
ﬁe_ ey zaxl>
’

g lxy)= exp( -¢ 3(171 o e (44a)

F. HOOPER, JR. 5

be e-(1+u)1/2ax2]

5, (44b)

- a®
g (x2)=exp[-2§ 3,

The fields produced by these ions, in units of the
reduced field strength €; and reduced distance 7,
[defined in Eq. (26b)] are

€ =(2/x3) 1 +ax)e™ , (45a)

€= (2/x8) L +axy) e 2.

If these field expressions are differentiated, the
expressions for de; and de, can be used in Egs. (43)
to obtain P,(€) and Py(¢):

Py(&;)

(45b)

( 1 ) Sxfexp[- £a%/x) (6,/0)) " "]
1+2R a exp(—ax,)(2+2/ax, +ax,) ’

(46a)
Py€,)

1/
=( R > 3x3exp|— 2£(a®/3x,)(6,/6,) e 1** 20¢xz ]
1+2R 2a exp(—ax,)(2+2/ax,+ax,) ’

(46Db)

The total asymptotic probability is the sum of the
probabilities of the two independent events:

P(€)agym = P1(€) + Pyle) . (47)

B. Neutral-Point Case

The Holtsmark distribution function is the proper
high-temperature limit of the nearly exact micro-
field distribution functions. As such it represents
the situation when the perturbing ions are totally un-
correlated: The ions move independently of one
another. For increasingly large values of the field
strength €, it can be shown that the neutral-point
near-exact distribution function goes over to the
Holtsmark result. The Holtsmark result for a two-
component plasma is

1 2
P(E)Holtsmark: 1.500 ﬂ €2

1+2R
1+22R
+17.680 ———
1+2V2 R _y1,5
$2LTT e @8)

It can also be shown that for the range of € values
considered in this paper, the near-exact distribution
function is also well approximated by the NNA which
implies equivalence of the two approximation meth-
ods in the asymptotic region., The reason for this
equivalence can be seen by taking the 7'—c limit of
the NNA and noting that the result is equal to the
leading term in the Holtsmark series. For field
strengths € <20, the two approximations may differ
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from each other and from the near-exact value.
However, the differences decrease as the field
strength increases and in the high-field region
where the shielded potential is numerically almost
identical to the Coulomb potential, the NNA reduces
to the first term of the Holtsmark series which is
overwhelmingly the most important term. This is
not too surprising since for large fields one would
intuitively expect that nearest-neighbor contribu-
tions to the Holtsmark expression would be the larg-
est. For the numerical results presented in this
paper, the NNA was used.

IV. NUMERICAL RESULTS AND ANALYSIS

Following the procedure discussed in detail in
Ref. 5, we have generated P(¢) values in both tabu-
lar and graphical form for a macroscopically neu-
tral plasma containing N* singly charged shielded
ions and N** doubly charged shielded ions which in-
teract with each other through an effective potential
which includes the effect of ion-electron interaction.
This model has been and is currently used when
dealing with effects of ions on radiating atoms and/
or ions immersed in a plasma.!™® The form of the
effective potential is assumed to be Debye-Hiickel.

Values of P(€) have been calculated for four val-
ues of a; for each a value three different ion ratios
(R =n""/n") have been considered. Figure 1 shows
the three curves for a=0.2: notice that the three
curves corresponding to values of R=0.0 (all per-
turbers singly charged), R=1.0 (50%#" and 50%n*"),
and R= (all perturbers doubly charged) are well
separated. Examined in order, Figs. 2, 3, and 4
indicate that as a increases the three R-value curves
seem to coalesce. Recall that for a fixed value of
temperature an increase in @ implies an increase in
density. Also note that as a goes from 0.2 to 0.8
the peaks of the three R curves are shifted toward
smaller field values and the height of the peaks is
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FIG. 2. Electric microfield distribution function P(e)

at a charged point for a=0.4, R=0, 1, ©; ¢ is in units of
€pe

raised.

The behavior of these R curves as a is varied can
be interpreted physically. First, the shift and ele-
vation of the peaks is testimony to the effect of in-
creased interion correlations as a is increased. As
these correlations increase, the ions have an in-
creased tendency to “stay away” from one another
and hence the probability distribution function is
shifted to smaller values of € with increased prob-
ability.

Next, consider the fact that as a increases, the
relative separation of the curves corresponding to
different R values decreases. For all a values dis-
cussed in this paper, the curves for R=« favor
larger field strengths than do those corresponding
to R=0. For a given value of N,, the requirement
that R =~ means that the plasma being treated con-
tains one-half the number of ions than one would for
which R=0; but each of these ions is doubly charged.

0.6 T T T T T T T
SINGLY CHARGED POINT
a=0.2
0.5 -
0.4 R = 0.0
) R=1.0
R =0
Yo3lt
a
R=0.0
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0 N | N | | N
o] 1.0 20 3.0 40
€
FIG. 1. Electric microfield distribution function P(e)

at a charged point for a=0.2, R=0, 1, «; ¢ is in units

of €.
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=1.0
ol . -
[¢] 1 I ] | | |
0o 1.0 2.0 30 4.0
€
FIG. 3. Electric microfield distribution function P(e)

at a charged point for a=0.6, R=0, 1, ©; ¢ is in units of

€0e
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TABLE 1.

JOHN T. O’BRIEN AND C.

F. HOOPER, JR.

Probability distribution P(€) at a charged point for several values of ¢, with R=1. 0.

The electric field

strength € is in units of €;,, The lines in the columns indicate the point at which asymptotic expressions were used in

the calculations.

E A=0.2 A=0.4 A=0.6 A=0.8
0.1 0.422 03E-02 0.10043E-01 0.203 26 E-01 0.422 45E-01
0.2 0.193 53E-01 0.38871E-01 0.76721E-01 0.15115E 00
0.3 0.43454E-01 0. 82859E-01 0.15830E 00 0.28553E 00
0.4 0.74448E-01 0.136 80E 00 0.243 88E 00 0.40721E 00
0.5 0.11020E 00 0.19490E 00 0.32569E 00 0.49529E 00
0.6 0.14857E 00 0.25168E 00 0.39258E 00 0.545 85E 00
0.7 0.18752E 00 0.30271E 00 0.44041E 00 0.56435E 00
0.8 0.22513E 00 0.34496E 00 0.46890E 00 0.55909E 00
0.9 0.25972E 00 0.376 84E 00 0.48021E 00 0.53792E 00
1.0 0.28968E 00 0.39801E 00 0.47766E 00 0.50716E 00
1.1 0.31416E 00 0.40909E 00 0.464 73E 00 0.47142E 00
1.2 0.332 87E 00 0.41128E 00 0.44462E 00 0.433 88E 00
1.3 0.34565E 00 0.406 10E 00 0.420 01E 00 0.396 63E 00
1.4 0.35271E 00 0.39515E 00 0.392 97E 00 0.36094E 00
1.5 0.354 55E 00 0.37996E 00 0.365 05E 00 0.32753E 00
1.6 0.35183E 00 0.36185E 00 0.33734E 00 0.296 74E 00
1.7 0.34530E 00 0.34196E 00 0.31056E 00 0.26868E 00
1.8 0.33562E 00 0.32119E 00 0.28518E 00 0.243 28E 00
1.9 0.32351E 00 0.30023E 00 0.26145E 00 0.22042E 00
2.0 0.30972E 00 0.27961E 00 0.23948E 00 0,199 90E 00
2.5 0.23185E 00 0.19048E 00 0.154 87E 00 0.12537E 00
3.0 0.163 92E 00 0,12918E 00 0.102 85E 00 0. 82136E-01
3.5 0.11507E 00 0. 895 56E-01 0.708 02E-01 0.56161E-01
4.0 0.82051E-01 0.63954E-01 0.504 95E-01 0.398 96 E-01
4.5 0.59935E-01 0.47049E-01 0.37173E-01 0.292 68E-01
5.0 0.44916E-01 0.35564E-01 0.28128E-01 0.22070E-01
6.0 0.27067E-01 0.21772E-01 0.172 38E-01 0.13429E-01
7.0 0.176 30E-01 0. 143 39E-01 0.11340E-01 0. 875 71E-02
8.0 0.12192E-01 0.99825E-02 0.78738E-02 0.602 49E-02
9.0 0. 882 98E-02 0.72579E-02 0.57036E-02 0.43229E-02
10.0 0.662 54E-02 0.545 84E=-02 0.426 44E-02 0.322 48E-02
12,0 0.403 84E-02 0.33174E-02 0.24931E-02 0,192 68E-02
14,0 0.269 69E-02 0.220 97E-02 0.163 96 E-02 0.123 65E-02
16.0 0.188 88E-02 0. 153 90E-02 0.113 64E-02 0. 836 83E-03
18.0 0.13875E-02 0.11216E-02 0. 820 06 E-03 0.590 08E-03
20.0 0.10443E-02 0. 83760E-03 0.611 08E-03 0.429 95E-03
22.0 0. 817 88E-03 0.633 35E-03 0.464 70E-03 0.32177E-03
24,0 0.64775E-03 0.50292E-03 0.36534E-03 0.246 25E-03
26.0 0.51023E-03 0.406 53E-03 0.290 83E-03 0.192 04E-03
28.0 0.422 62E-03 0. 333 65E-03 0.23517E-03 0.15221E-03
30.0 0.35460E-03 0.27745E-03 0.192 75E-03 0,122 36E-03
35.0 0.23946E-03 0.18341E-03 0.123 09E-03 0.745 88E-04
40.0 0,170 34E-03 0. 127 88E-03 0. 83079E-04 0.481 82E-04
45.0 0.126 08E-03 0.92870E-04 0,585 04E-04 0.32549E-04
50.0 0. 962 96 E-04 0.696 63E-04 0.426 18E-04 0.227 92E-04
60.0 0.603 55E-04 0.422 12E-04 0.24448E-04 0.12143E-04
70.0 0.406 20E-04 0,275 36E-04 0.15161E-04 0.703 35E-05
80.0 0.288 15E-04 0.18974E-04 0.996 60E-05 0.434 01E-05
90.0 0.21274E-04 0.13631E-04 0,685 10E-05 0.28123E-05
100.0 0.16195E-04 0.101 08E-04 0.486 80E-05 0.18868E-05

R are not too different. Figure 5 shows the elec-
tric microfield distribution, at a charged point, for
several values of a, with R=1; Fig. 6 shows the
same results but for R=,

The implication of Figs. 1,2,3, and 4 is that as a
increases, the relative importance of correlation
between the ions becomes increasingly important so
that at a=0. 8, the curves for the several values of
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TABLE II. Probability distribution P(€) at a charged point for several values of g, with R=«, The electric field
strength € is in units of €;,. The lines in the columns indicate the point at which asymptotic expressions were used in
the calculations.

E A=0,2 A=0.4 A=0.6 A=0.8
0.1 0.21470E-02 0.91050E-02 0,195 29E-01 0.43009E-01
0.2 0.15170E-01 0,352 86 E-01 0,736 63E-01 0.153 08E 00
0.3 0.366 92E-01 0.753 80E-01 0,149 87F 00 0.286 86E 00
0.4 0.644 92E-01 0.124 83E 00 0.23358E 00 0.40539E 00
0.5 0,965 15E-01 0.17852E 00 0.31175E 00 0.48890E 00
0.6 0.130 88E 00 0.23157E 00 0.37587E 00 0.53529E 00
0.7 0.165 88E 00 0.27997E 00 0.42220E 00 0.55119E 00
0.8 0.20003E 00 0.32090E 00 0.45051E 00 0.54513E 00
0.9 0.23203E 00 0.35276E 00 0.462 81E 00 0.52460E 00
1.0 0.26079E 00 0.37506E 00 0,462 09E 00 .0.49537E 00
1.1 0.28546E 00 0.38817E 00 0,451 52E 00 0.46160E 00
1.2 0.30532E 00 0.39301E 00 0.43401E 00 0.426 16E 00
1.3 0.31983E 00 0.39085E 00 0,411 98E 00 0.39091E 00
1.4 0.32935E 00 0.383 04E 00 0.38737E 00 0.357 03E 00
1.5 0.33417E 00 0.37091E 00 0.36163E 00 0.32517E 00
1.6 0.33474E 00 0.35567E 00 0.33580E 00 0.29569E 00
1.7 0.33162E 00 0.33837E 00 0.31061E 00 0.26870E 00
1.8 0.32528E 00 0.31986E 00 0,286 52E 00 0.24416E 00
1.9 0.31631E 00 0.30084E 00 0.263 82E 00 0.22196E 00
2.0 0.30539E 00 0.28182E 00 0,242 64E 00 0.20195E 00
2.5 0.23754E 00 0.19675E 00 0,15964E 00 0.12839E 00
3.0 0.172 83E 00 0.13576E 00 0.10731F 00 0.84915E-01
3.5 0.12377F 00 0.95232F-01 0,744 88E-01 0.58450E-01
4.0 0.89411E-01 0.68547E-01 0.53426E-01 0.417 08E-01
4.5 0.65855E-01 0.506 96 E-01 0,394 77E-01 0,306 80E-01
5.0 0,496 09E-01 0.38460E-01 0.29951E-01 0.231 81E-01
6.0 0.30046E-01 0.23643E-01 0.18412E-01 0.14136E-01
6.6 0.19599E-01 0.15598E-01 0.12122E-01 0.10911E-01
7.6 0,13555E-01 0.10870E-01 0. 842 50E-02 0.745 65E-02
9.0 0.98140E-02 0.790 84E-02 0.61027E-02 0.46858E-02
10.0 0,736 17E-02 0.59477TE-02 0,456 29E-02 0.349 16 E-02
12,0 0.44841E-02 0.36144E-02 0.27041E-02 0.208 04E-02
14.0 0.29850E-02 0,24018E-02 0,17747E-02 0.133 07E-02
16.0 0.209 05E-02 0.167 15E-02 0.122 47E-02 0. 897 40E-03
18.0 0.153 40E-02 0.121 86E-02 0,883 66E-03 0.63044E-03
20.0 0.11549E-02 0.90830E-03 0.656 98E-03 0.457 60E-03
22,0 0.903 05E-03 0.68899E-03 0.50136E-03 0,341 13E-03
24.0 0.71835E-03 0. 546 54E-03 0.39099E-03 0.26004E-03
26.0 0.561 84E-03 0.44135E-03 0,31055E-03 0.202 00E-03
28.0 0.46526E-03 0.361 86E-03 0.25055E-03 0.15948E-03
30.0 0.39028E-03 0.30062E-03 0.204 90E-03 0.12769E-03
35.0 0.263 40E-03 0.19826E-03 0.13014E-03 0,770 83E-04
40.0 0,18727E-03 0.13791E-03 0,873 7T2E-04 0.493 13E-04
45.0 0.13853E-03 0.99938E-04 0.612 12E-04 0,329 97E-04
50.0 0.10575E-03 0.74804E-04 0,443 67E-04 0.228 89E-04
60.0 0.66221E-04 0.45148E-04 0.252 07E-04 0.11973E-04
70.0 0.44529E-04 0.29340E-04 0.154 88E-04 0.68120E-05
80.0 0.31553E-04 0.21038E-04 0.100 87E-04 0.41276E-05
90.0 0.232 69E-04 0.14411E-04 0.686 90E-05 0.26251E-05
100.0 0.177 13E-04 0.106 62E-04 0,195 98E-05 0.173 65E-05
ACKNOWLEDGMENTS APPENDIX

The authors wish to thank Judy Lipofsky and Joe
Whalen for their invaluable help with programming
the material presented in this paper.

In order to evaluate the terms used in Eq. (24) for
T(), it is convenient to employ the collective-coor-
dinate techniques of Bohm and Pines as used by
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Broyles. ®

The definitions for V,, wj, and w,y and the po-
tential energy V, are given by Egs. (9)-(11). V can
be written in terms of a Fourier series, excluding
the 2= 0 term to allow for the boundary condition of
charge neutrality:

4m® 5 (s « eZe ity
v % i )1

- 2 -ik-F,
Ve L2 (2e)e mn
m#n

kY41

> zeae-ii-?,m )
+j.m (k)‘)z“‘l ’ (A1)
The prime indicates that the =0 term has been
omitted. This will be understood in all subsequent
expressions and the prime will be omitted:

k=2m(0)Y? [n,d+n,j+n,k], (A2)

i.e., box normalization. The »n’s are positive or
negative integers, not all of which can be simul-
taneously zero. The first term of Eq. Al can be
written in terms of trigonometric functions:
>[cos(ﬁ-;,-,)- i sin(E.;,-j)] .

(@
(a3)

The imaginary part can be shown to sum to zero
since the sine is an odd function. Then applying a
familiar cosine identity, Eq. (A3) becomes

iR
e T
22

7 (MY 41

e-if-?”
L AP 1
Z‘<(k)\) ) [cos (k- ;i)cos(ﬁo;,)
+sin(§-;i)sin(1;-;j)]

2 0 sm(k T )sm(k r])

_a cos(k r )cos(E-;j)

2
k720 (BA) + 22<0 (k)\) +1
(A4)
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FIG. 4. Electric microfield distribution function P(¢)
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FIG. 5.
at a charged point for R=1, a=0.2, 0.4, 0.6, 0.8; ¢ is
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Electric microfield distribution function P(e)

Next, define

cos(ﬁ-;), ;20

s ky<0 . (A5)

tsin (k- T),
This allows the following equation to be written:

25 (k- 1;)S(k-1,)
(BAPF+1

e-iﬁ'f‘ij

. feAyYr1

(A8)

H‘tm

If similar deflmtlons are made for the terms involv-
ing exp (- ik- r,,,,,) and exp (- ik- r,m) the potential en-
ergy can be written as

V=4,g)‘2 Z( )+1)(L 2% gugs

2(2e)?

+ ) S-IM- Q++
n
myn
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FIG. 6. Electric microfield distribution function P(e)

at a charged point for R=%, ¢=0.2, 0.4, 0.6, 0.8; ¢ is
in units of €.
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v2 8 H) g o5 B,
im O i O
) 4eq s E 2aT+ _2_ 2 ++>
+2%———0 SmSU—ceN—c(Ze)N , (A7)
where

o=N'e?+ N**(2e)? .

The last two terms subtract the self-energy that
is added by removing the restrictions i=j and m =n
from the first two terms. The two terms involving
g take into account the charge g =£e placed at the
origin. Previously, these terms have not been ex-
plicitly written, but were understood to be present
for £=0, 1, and 2 in the general interaction poten-
tial, Eq. (9). In subsequent expressions it will be
necessary to treat them explicitly. It can be shown
that Eq. (A7) is correct for any positive value of £.
By defining the generalized coordinates

X;=23,(2¢%/0)V2S] and X;" =2, [2(2e /0128

this expression can be written in a more compact
form:

2m\% s~ 1
V= ) Z;l((kx)2+

D) Lot s 2y
+ 200%/0)25,(X;+ X)) 2], (48)

According to the definition [Eq. (A5)], So=1 if 2,>0
and equals zero if 2,<0. By using the expressions

2m\% 6, (1+4R) - n*
v 2 \ser) Bowr Gl
1 (A9)

Ay= By Y =X+ X3,

V can be written as
Ve E)L<1+4R)
2\1+2R

X [z. A, Y2, 2(2:;2/0)”2 2, A,Y,-22 A,,] ,
k

kz>0 K

(A10)

where the Y, represent a new collective coordinate.
Similar transformations can be made on w,, and
Wpmg, Which result in

A 1+4R)(3qj)1/2 - X
7;‘ wp=25 <1+2R o ,;2—;0 @A E+af

1/2 X
9,/1+4R\(24 Y —F—,
sz?(ﬁg—)( ) rzzo (M)

LOW-FREQUENCY ELECTRIC MICROFIELD DISTRIBUTIONS... 879

_,(1+4R Zqz)l/z Y,
Zj,wm+§wmo— 9"(1+2R><.0 A o
(A11)

Now it is possible to write V, in terms of the col-
lective coordinate Y ,:

Vo=V - Z/jwjo-‘ Z}mwmo

A 1+4R>< 2 2, /2
= z<_—1+23 ZEAkYk+2(2q /o)

X2 fa(@)A,Yy- 22 A,,), (A12)
kz=0 i
a?-1 1
@)= e A oy

In order to evaluate 60 V, it is necessary to consider
the following relation:
Vocos(k-1)=-ksin(k-T), k5 >0

ToS(k-1)= {* N
Vesin(k-r)=kcos(k-T), kz<0.

(A13)
Changing k to — kK we find that
DR e o SR
Therefore,
VoS(k-1)=-kS(k-T), (A15)
which implies that
Vo L Yy== 2 Y,k (A16)

R0 #<0

since Y, is a linear combination of the S(E-;). I
the gradients of the expressions given by Eqs. (9),
(11),.and (12) are evaluated, the terms which are
summed over all 2, go to zero. The only terms
that contribute are the ones summed only over nega-
tive ;. The results are

= 1+4R 2q2>”2 - >
V"V"ee(1+2R><c k);o A, Yk,

—_— 1+4R_> (2_q_2_>’/2 ~ -
VO VO_—99<1+2R o k);zofk(a)AkYk(k)’
©(A17)

Vol2ej W s+ 2mWmg)= Vo V= Vo Vy

_9_e<1+4R>(2q2 ve 1 >
“2\iv2r/ (o) o lenar] Tk
Sufficient definitions have now been made so that

To()/Ty(0), the first factor in T'(), can be written
in terms of collective coordinates

N* N++

To@) [---Jexp(-BVo—ig™lL:¥, VO)III=1 ’}Il dr;dt,

To(0) )

N+ N+t .
- Iexp(- B; Vy) 1111 Hldrj dr,
=, m=
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jen

[+ [exp{- B;6,/2)[(1 + 4R)/(1+ 2R)3; (A, ¥’ + 20, (1) ¥, J}JII av,

ug? \V2 1, kz20
b.()= <_c7_> Sa(@)A, X _igiq'lf.ﬁ kz<0

2 2\1/2
ba0)- (2

The self-energy portions of V,, appearing in both
the numerator and the denominator, are independent
of the integrations and cancel. J is the J acobian of
the transformation from T;; and T, to Y,. I we de-
fine

,_6, +4R) _
Alz 91’ G+2R Ak_uAky

16 (1+4R N,
b+ =3, (1+2R )b’*““b“’

the expression for Ty()/T,(0) can be put in the form

k;20

L,
fk(a)Akx{O, kz<0 .

(A19)

To@) _[---Jexpl- 332(AL Y5+ 20,()Y,)]IT1dY,
To(0) f...fexp[- 22 (ALY%+ 2b,(0)Y]JII dY,

(A20)

This allows for evaluation of the integrals according
to the formalism used by Broyles. The multiple in-
tegrations are thus evaluated:

To0) _exp{ b iOF/ A+ APHL - a5 @)+ ag@)- - - ]
Ty(0) explz 307 (0)F/ 1+ ALF[1 - a5(0)+a,(0)- - -]

(A21)

as and a4 can be shown to be small and are neglect-
ed. The definitions of b,() and b,(0) further allow
us to write

Tol) (=62 [1+4R\% s fz(a)Az_(_Z-E)z}
TE(O)_eXp{ v <1+2R> kzz"m[ * 1+2,;‘—]}

(A22)

The sum over % is now replaced by an integral and
evaluated. The result of this integration, in terms
of conveniently defined reduced variables, is

To@)/ To(0)= &%

AL SR 3/27 4
"T4, [az— 1+u)f {o®u+2(1- Q+u)?]a

)

Qjm(l):

[+ Jexp{(- B;6./2)[(1+ 4R /(1+ 2R) 3¢ [A Y+ 26, (0)Y, ]} TT dY,

+ Qu+ut)a® — 41 +u) (A -w'?]a?

—B@+ud)as 2[(Leu)- L+u)2]},

6,(1+4R n” _ B
u_91(1+2R)’ “nt ee—kTe’ Gi—kT:
7 e
Fmine=1, a=3t, ©0=37, L=&l.(A23)

With this choice of reduced quantities, the unit of
electric field strength €, is a function of electron
density only.

In order to evaluate the remaining terms in the
exponential of Eq. (24), it is necessary to derive
an expression for @;,() in terms of these same re-
duced quantities. Collective coordinates are used
again with the modification indicated below. @;,()
is defined by Eq. (16). In terms of collective co-
ordinates

Qmll)=
+ N¥*
- Jexp{-$ L4 B+20,) BT TT o, aF,
foo-Jexpl- £ 5elAlvE 20OV 1T o,

(A24)

In order to do the (N* -j)+(N** - m) integrals, it is
convenient to introduce another collective coordi-
nate:

Y=Yy — 9= (X +.X7) - (a) +a)

where

; (a25)

n

a‘(‘
k= \o

2\1/2 J .
(z—e—) 2 8" (k- %),
i=1

2\1/2 m .-
a;"='<._—-2(ie) ) 27 8™ (k-1,) .

n=1

In terms of this new collective coordinate the expo-
nentials in Eq. (A24)are

-5 AL YR 20,7 )= - D [AL(YL)P+ 2(y, AL+ L) Y,
(A26)

This allows factors of @,,() to be integrated by the
collective-coordinate technique as follows:

+3’§A;+ Zykbﬁ] .

exp{- 2 3z[Ary2+r 29,0011 -+ [exp{- 23z [AL (VLY + 2(y A4+ bY)] }IAY,

[eo fexpi-23:[Afyi+ 2900l - - [expl- 352 [AL(Y 1P+ 20, AL+ bi)]'}JdYkﬁ az, v,

exp{z e ly,Af+ 04/ 1+ A - y2AL - 29,641}

-, % J m
Joo - Jexp{snlOr AL+ 0] Y 1+ AD - 934}~ 29,0]F TTIT

(A27a)
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(V) "exp{— 33:02A42)/ 1+ AL - Tiw,ba)/ (1 +AL)}

ORI

The last equation has been simplified algebraically
and the terms in the numerator and denominator that
are independent of yk(f) have been canceled. For
Q10 and @y, the sum Yz{y2A./(1+A})] appearing in
the numerator and denominator is independent of

the coordinates of integration and will also cancel.
In the thermodynamic limit, it can be shown that the
denominator of Eq. (A37b) becomes

1 —.y_kﬁi_J HE
'U'”{UfexP[_Lkl+A; dri=1,

It is also necessary to have expressions for
- Biw o and — B;w,o and their respective gradients,
in terms of the reduced variables defined in Eqgs.
(A23) and (A31). These are listed below:

- E_lle_ -arjo/d_ _ (.9_9>iz
Piwso 8,75 ¢ ==, )3

(A28)

e-dd!_; - fnv,

2e -armo/r

P L Lipong
—_z§<9i)3x ¢ T

—ig1. -V’oww: iL cosOle™*"/x?)(1+ aax)] ,

2bw , (A33)

—iq™ -V gw,0= 2 Lcosb (e /x2)(1 + aax) .
By comparing the expressions for T() given by Egs.
(19) and (24), we can define I,y and I;:
Iig=n'yo(1)= 1119 (0)]
= [2100X* (¢, 1)dT - [10(00x* (0, 1)dr],
(A34)
7ot @)= 101 (0)]
=0 [ [ ()X, 1)dT - [£01(0)X" (0, 1)dT] .

The remaining variables can be transformed to the
set of dimensionless quantities defined by Eq.(A23):

n*dr = n'r¥drdQ=[3/(1+ 2R)]x%dx dS ,

I =

(A35)
n**dr=n*"r®drdQ=[3R/(1+ 2R)]|x%dxdQ .

The relationship between g, and Q;,, [Eq. (18)] to-
gether with Eq. (A30) allows I, to be written as

’10’1+2R2f ff

X es(x)ﬂLq(r)case (e-Bwjg-iL(Vow)cosG_ 1)dﬂ

T ar
-[f es™® (e'“’lo-l)dﬂ)xzdx. (A36)
]

Texpl- 23e02A])1+A}) - e b 1+ AL}  ILILATdT,

(A2b)

[
The angular integration can be easily performed to
give

8 e [ (SIREGE))
I“’_l+2R,£ xad"e”[ ’ ( LGK)) '1)

- 1>] , (A37)

(A38)

_ (sin(Lq(x))
(Lql))

where

'GGZ

G(x)= q(x)+-——-g-— [1+ cax]

In a similar manner I can be evaluated as

3R [ ., 2s<x)[-zsw(sin<2Lc<x>)_)
I°1‘1+211ﬁ ¥idxe™ e 2LG (r)

_ (smz(fz (’fff» )]  (A39)

In order to calculate Iy, Iy, and I;;, it is necessary
to have expressions for S¢ly,b./(1+A})] and
Ye[9%,A’/(1+A})] in each case. For convenience
we label these cases (a), (b), and (c), respectively.

Case (a). As seen in Eq. (A25), y, is given by
yu= (26%/0) /2 [S(k-11)+ S(k-Tp)] . (A40)
Therefore
- YA’y = [sy)+iLg (x,)cosb, ]
*1+4, 1 1 1
+ [s (x2)+iLq(x2)cos(92], (A41)

which is a linear combination of the expressions for

the first-order term. Similar considerations give

the necessary expressions for cases (b) and (c).
Case (b):

— y A’ _
_Lif:A,’; =2 [S (q)+ qu(xl)cosel]
+2[s(xp)+ilq(r;)cosb,].  (A42)
Case (c):
-2 fiik' = [s(xy)+iLg (x,)cosb,]
+2[s (vp)+iLq (v,)c0s0;] . (A43)

For case (c),
charged.

In order to evaluate the second term of these
expressions, we also need an expression for yi in
each case.

particle 2 is assumed to be doubly

Case (a):

= (2¢%/0) [S3 (k- 1) + 25(K - 1) S(K - Fp) + S3(k+ Fp)] -
(A44)
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When summed over k, the SZ(E- T) terms in the
numerator and denominator of (A44) are indepen-
dent of » and will cancel in the same manner as
that seen when I;; was evaluated [see Eq. (A27)].
Hence, the necessary terms are

2= (4¢2/0) S(k+ T) S(K - F) . (A45)
Case (b):

y2=[4(20)%/0] S(k* 1) S(K- F) . (A46)
Case (c):

=[4(2¢%)/0] S(k+ F) S(k - F) . (A47)

If Eqs. (A45)-(A47) are used to evaluate —33;
x[y2A/(1+A})], the results are as follows.
Case (a):

N f!A',hgejZ S(k- ;) S(k- T5) Al

T2 144 of 1+ 4;
_ -2¢® < wucos[k- (¥ -T,)]
0 k0 (A + (1 +u)
=—_90L 522_ exp[ - (1+u)" % axy,]. (A48)
i X12
Case (b)
2 47 2
i WA 40 a” _ 1/2
82y ar 4 5 3 exp[ — (1 +u)" % axys] .
(A49)
Case (c):
1 yzgég’ 6, a? 1/2
‘221+Ak’ -—Zei 3v,, [- @ +u)2axy,].

(A50)

In Eqs. (A48)-(A50) the summations over # were

replaced by integrals which were then evaluated.
The expression for I, obtained by comparing

the expressions for T(I) in Eqs. (19) and (24) is

Iyo= t 2') (P20 () = 139 (0)]

= (") {2 [ [ [Qult 1, 2) - Quoll, 1) @1002, 2)]
X x*(l, 1) X', 2)dt, dT,
- [ [Qu(0;1, 2) - @10, 1)@10(0, 2)]
% X*(0, 1) x*(0, 2)dF,d¥,} . (A51)

If Eqs. (A48)—(A50) are used to evaluate @,(!), as
given in Eq. (A27), the result is

Q205 1, 2)=Q10(; 1) Q4075 2)

exp( — e a
x P Gi 3x12

2

e-(lm)l/ zaxlz) .

(A52)
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This can be substituted into the definition of Z,4(7):

INOE ’Uz(ah)“f/Qm(l; 1) @100, 2)X*(¢; 1)x*(2, 2)

_ 2
x| exp =% 47 awt)_y dx,dX%,.
0, 3xy

(A53)

As indicated in the body of this paper, the expres-
sion appearing in brackets is the Debye-Htickel
pair correlation function which can be simplified
by employing the linearized approximation:

-0, a? 1/2
e & ,-Us) Cax | _
{ P ( 0; 3xyp ¢ ) 1]

6, a? 1/2 0
~_ e -(1+u)” “ax - e .
=79, 3x, e . V(xy5) (A54)

The pair potential V(x,;) can be decoupled by the
method of Swiatecki®:

V(xyp)= -3;— exp[-a’xy,]

=+ 25 (2k+1) Vy(x,, x5) Py(cosby,) , (A55)
k=0

T2
Velxy, xz)=—%/ 2 o-'x12 p,(cosb) sinfdf |
0 3Xgp

(A56)

Y24, Vv, has been evaluated by

where a’=(1+u)
Swiatecki as

-a
Vk(xi’ x2)= 3

Kk,1 1o(a’xy) Ipa 1a(@’ %)
X1 X3 ’
%1>%5 . (A57)

I and K are modified Bessel functions. ® The Le-
gendre polynomial P,(cosb,,) can be written as?®

P,(cosb,,)= Z} € (%——%—)

X Py (cosby) Py (cosb;)cos(m (e, - ¢,)),

€ = 1, m=0
m~ )2 m#0 - (A58)

Since ¥ [ dp,d¢,cos(m(p,— ¢,)), used in the
evaluation of Eq. (A53), is nonzero only if m =0,
the only contributing term in Eq. (A58) is P,(cosé,)
X P,(cos&). This form for P,(cosf;;) and the Swia-
tecki expression [Eq. (A57)] allow Z54(Z) and %4(0)
to be written as

haoll) = (@0)® —L (

xf f A% 0%y fx) gliy) ,  (A59)

¢
§

E (22 +1)
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f(xy) =exp[s(x;) +iLgq(xy) cosby |
x{exp [~ fw(x;) +iL Vw(x,) cosg,] -1}
X Py(co861) K1/ ola’x1)/Vay , (A60)

X 25::0[ dng dxyfolxy)go(xa) (A62)
[} Xg

Folxy) =53/ 2Ky ola’ %) €50 (e — 1), (A63)
glxs) =exp[s(xy) +iLg(x ) cosd,)] golv) =23 211, 5(a’ x5 €572 (e —1) . (AB4)

< {oxp [ Aoy +1L Vi0(ey) cos6y] —1) ggsussellnfg u;}::ezi:x:ltegral definition of the spherical
X Pk(COS9Z)Im1/ g(a'xa)/\/xz

72 (2)=4(=i)* [T e?%°% P,(cosp) sin6df , (A65)
for x;>x,, (A61) 0

., the angular portion of Eq. (A59) can be evaluated.
hp(0) = (a)® 9 (47)2 <—a ) If these forms for Zx() and hx(0) are used in Eq.
6; 3 (A51), the final form for I becomes

o, 1 72,
fa” 5,-_[1+ZR] 3“2%1 (-1)*2k+1){20},

w - (A66)
{20} = {f %3/ 2Ly ola’ x5) €572 [e789%2 (LG (xp)) —jrlLq(x0))] - Gkof %3 /2K g1y 5 (@' %) €540
0 0

X [e'Bwul)jk(L G(xy) =L q(xy)]dxydx, xZ/ zll/a(a'xz) et 2

% (e-Bw(xz) -1) f x%/ZKlla(a'xi) e5t%y) [e-Bw(xl)_ 1)dx, dxg} .
x2

Iy, is relatively simple and can be treated similarly with only appropriate factors of two needing to be con-
sidered. The final form is

top=4 2 152) 5D -1 @) l02t

9, \1+2R
iw (A87)
{oz}={f 5 2lyun ol y) €252 [ 722, (2L Glxy)) ~ju(2Lalxy) |
0
Xf %3 2Ky ola’xy) 2370 [e7 2 %0 5, (2L G(x,)) =jp(2Lg(x1)) M rdixs
‘2
- 5k0[ xglzlllz(alxz)e?.s(xz) (e-zsw(xz) _ l)f xglzKl/z(a/xl) e2stxp) (e-aew(xl) —1)dx1 dxsl .
0 xg
f
I;; has more subtle differences. First, there is Third, because the integrand is not symmetric in
a factor of 2 multiplying V(r,,) [compare Egs. x, and x,, the cases x; >x, and x, <x, cannot be re-
(A48) and (A50)]. Second, as can be seen from the placed by one integration which results in another
definition of I,, obtained by comparing Eqs. (22) factor of 2. With these differences accounted for,
and (36), there is no 2! dividing the densities. | the final expression is
20, 1 R 25
= —{ —— >3 (=1)
=2+ (757) (157) %° D vre i,
(A68)

{11}={f 63 2Ly ola" x5 €272 [ %2 5, (2L G(x,)) ~j(2Lg(x )]
0
Xf %3 2Ky 2 (@' %)) €50 [P0 5 (LG (%)) =L q(xy)) ldxydixy
*2

*[ %3 2K pa1 s ola'x5) €22 [e %2 (2L G(x,)) — (2L q(x)]
0
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0

of

0 - Te

©

0

With these expressions for I;,() up to second or-
der, we can evalute T():
T(1) =exp[—vL2+115() +1p1 (1) +15() +Ipa0) + 11, (0)] .
(A69)
If we omit the last three terms in the exponent we

JOHN T. O’BRIEN AND C.

F. HOOPER, JR. 5

X
2
Xf X3 2Ly 5@’ x1) €50 [0 jo(LGlxy)) =jp(Lq(x1)) |dws dxy
xz/ 211/ s (a'xz) e?s(xa)(e-zﬂw(xz)_ l)f xf/zKuz(d lxl)es(xl) (e-Bw(xl) - 1)dx1 dxs
X

© X2
- 6n°f x5/ 2Ky ola'x5) e %2 (e 202 — l)f X320, (@' %) 90 (P — 1) dxy dxz}
0

[
get

T()=exp[-vL2+I1,() +Ip: )], (A70)

- which is referred to as the first approximation to

T(). Then in this sense the second approximation
to 7() is given by Eq. (A69).
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The effect of transmission of radiation through one mirror of a laser is investigated. For
a laser oscillator the result is to change the effective resonance frequency and @ of the cavity.
Using the same model for the cavity, a signal is injected into the active medium through the
transmitting window, and its effect on the system studied. When the external signal is strong
enough and sufficiently close to the natural frequency of the laser oscillator, the laser locks
its frequency to the input signal. The equations describing the system are solved over the
range of input frequencies where the laser is locked, and the resulting gain found. In the
high-intensity limit the medium saturates, and the gain tends to that of a lossy cavity. As the
input intensity vanishes, the gain approaches infinity and the system tends to a laser oscillator.

I. INTRODUCTION some of its internal energy is escaping through the
windows. As a result the effective cavity @ is
lowered, and there is a slight change in operating
frequency. Furthermore, using the same tech-
niques it is possible to consider the case of an ex-

ternal signal applied to the laser through one of its

It is the purpose of this paper to investigate the
effects on the operation of a laser arising from the
fact that to some extent it is in communication with
the rest of space outside the resonant cavity; i.e.,



