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A theory for calculating low-frequency component electric microfield distributions for a
plasma containing more than a single ion species is developed. Calculations at a charged
point are made for a plasma containing N' singly charged ions and N' doubly charged ions
together with a charge neutralizing number of electrons, N~(N~=N" + KV"). Three different
ion ratios (R=—N /N') are treated: R=0.0, 1.0, ~. It is shown that the calculations allow for
all ion-ion correlations to a high degree of accuracy. Numerical results are shown both
graphically and in tabulated form.

I. INTRODUCTION

In recent years considerable effort has been de-
voted to the problem of spectral line broadening in
plasmas. ' 3 In relation to this problem various
theories of the static electric microfield distribu-
tions have been formulated. " However, all of these
theories and subsequent calculations have only been
concerned with plasmas containing a single positive-
ion species. The purpose of this paper is to extend
the theory developed by one of us to treat plasmas
containing more than a single species of positive
ion. Calculations for a plasma containing two posi-
tive-ion components have been made; the procedure
for extending the calculations to situations with
more than two species is indicated.

In this paper, calculations are made for a plasma
that contains N' singly charged ions and N" doubly
charged ions (N=N'+N") together with a charge
neutralizing number of electrons N, (N, = N'+ 2N").
It is assumed that ions interact with each other
through an effective potential which includes elec-
tron-ion shielding. This model is the two-compo-
nent analog of the single-component low-frequency
model previously developed. ' Since helium plas-
mas may have both singly and doubly charged
species present, the model proposed here is ap-
propriate for discussing the effect of a helium plas-
ma on a radiating He' ion (He'=Herr) or He atom.

As in the papers dealing with singly charged per-
turbing ions, the calculation of the electric-micro-
field distribution at a neutral point (e.g. , at a He
atom) is just a special case of the charged-point
development obtained by setting the charge at the
origin equal to zero.

To make the mathematical development more
general, we make the assumption that it is valid
to consider a two-temperature plasma, one tem-
perature for the ions, T, and one for the electrons
T, . This procedure implies that while the ions
may be considered to be in equilibrium with each
other, and the electrons with each other, that the
ions are not necessarily in equilibrium with the
electrons. In the event that a true equilibrium situ-
atiori prevails, T, = T, .

All numerical results presented here assume an
equilibrium situation. The actual distribution func-
tions are expressed in reduced field units which are
a function of electron density only. The calcula-
tional programs that we have developed are quite
general; they allow for the possibility of a two-
temperature plasma, for the possibility that there
may be any number of charged-ion perturber species
(i. e. , singly, doubly, etc. ), and for the possibility
that the radiator may have any degree of ionization.

Section II of this paper deals with the formal cal-
culations. The asymptotic expressions for the
microfield distribution function age presented in
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Define Q( &)id e as the probability of finding an
electric field & at the origin of our reference sys-
tem due to a collection of N ions (N'+ N

"+ ~ ~ )
assumed to interact with each other through shielded
Coulomb potentials. The plasma is contained in a
volume V and is macroscopically neutral. The
origin is assigned a charge q defined by

q=—$e, )=0, 1, 2, . . .
where e is the magnitude of the electronic charge.
By choosing the appropriate value of $, expressions
for microfield distributions at neutral or variously
charged radiators are obtained.

The definition of the microfield distribution func-
tion, Q(&) is given by

()))I=&'f" few( )))e(xe" x-)I

1 1
x 5 ( e —5 (., ) II d r„p -=8 =

~ T (2)
j =1 t

where Z is the configurational partition function for
the two- (or multi- ) component system, and
V(r, r„) is the total potential of interaction be-
tween ions. &, is the field at the origin due to the
ith ion that is located at r, :

E( q V(i( V(ri rN) (3)

Note that because the field point is at the origin and
the source at r, , the sign of the gradient in this last
expression differs from that in the usual relation.
The sum g(c( is. given by

N+ N++

(4)
m=1

The integrations in E(I. (2) are over the coordinates
of all the ions.

By representing the 5 function as an integral

5 (x) = (2(I) f f f exp[i I x ]d 1, (5)

we may write

Sec. III. Numerical results and conclusions are
given in Sec. IV. An appendix is devoted to the de-
tailed evaluation of various integral expressions by
collective coordinate techniques.

II. FORMALISM

where T(l) is defined by

T(l)=Z ' f f exp[ —PV-iL', 1 ~ g, ]II,dr~ . (8)

The potential energy in the present calculation is

e

$j

-r~j/X+ Q j e-rmn/X(2e)'
m&n +mn

where

=[(u, /4v~ e') ]'"

2e2

+ e rjm/
jf m

The subscripts i, j are reserved for the N" ions
and the subscripts m, n are reserved for the N"
ions. It is convenient at this point to define the new
quantities zojo, zo 0, and Vo.

w, p= q.(e/~, p) e (loa)

w (I
= q(2e/~ )pe (10b)

N

V= Vo+ +~
j=1

N++

wp+5 w p.
m=1

N+

x())=z f '' e 'II exp(-l)eeee '—ie 'i veeeee]drej
N

x H exp [-pw„—iq '1 V w„] dr, (12)

where

V(] = —p V(I
—iq 1 '

V(I V(I . (12a)

The following definitions can also be made and then
substituted into the expression for T(l):

)f'(1,j)-=exp[ —pw, , —iq '1 V, w„]—1, (13a)

)f"(l,m)—= exP[ —Pw„p —iq '1 Vpw„p] —1. (13b)

The ze's will take into account the short-range cen-
tral interactions. Vo includes all noncentral and
long-range interactions. n is an effective range
parameter, the choice of which will be considered
later. In terms of the form for the potential energy
given in E(I. (11), T(l) can be written

qg)=Z 'f" f (2;-)-'

x exp[ —p V+ i 1 '
( c —Zi( e() ] d 1 III d rI .(6)

Hence,

pince Q, I e& is independent of the direction of 1,
the angular integrations can be done immediately.
The result is the commonly occurring expression for
P((.) for an isotropic system4':

P(e) =4(Ia Q(e) =2m((I) f T(l) sin(&l)ldl, (7)

x II [I+g"(1,m)] dr„. (14)

If the factors in T(l) containing the y's are multi-
plied out, the following expression is obtained:
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+Z, Z, X'(1, j)y.'(l, j)g" (l, m)+ ~ ~ ~ II dr g dr„
m m

=Z ~ ~ ~ e o, dr& dr +N'Z 8 oy' ), 1 dr& Ch&
m

+N" Z . e y' / 1 y' l 2 dr& dr
m

+
'

N . (N' —1)Z J!' fe ex'(1,"1)x'(1,2)IIde II dx.

+-, N (N —1)z 'f fe'e, -(l, l)x" (1, 2)IIdx, ((dx

Now make the following two definitions:

+N'N" Z ' e o y'(1, I)!("(1,2)+dr, @dr„+
j m

(15b)

N++

Xe (1) f '' e" n =-dx', n de. ,
i ~&+1 n"-m+1

q,„(l)-=T,„(l)/T,(l),
where To(l) —= Too(l). In terms of these new quantities T (l) can be written

T(l) = To(l)Z [1+N' f Q&o(l)!('(1, 1)dr& + N" f (x)oq(l)y "(I, I )dr&+ (1/2! )N'(N' —1)

x ff (2!ao(l)!!'(1,I)g'(l, 2)dr, dr, + (1/2! )N"(N" —1)f f Q oa(l)j(,"(I, I)y."(l, 2)dr, dr,

+N'N" f f Qqq(l)y'(1, 1)!("(l,2)drqdra+ ] . (I&)

Each of the Q's can be expanded in an Ursell ex-
pansion according to the following prescription:

'0 Q„(l; 1) =gto(l; 1),
'U Qoi(1; 1)= g, (l; 1),
'V Qao(l; 1, 2)=ggo(l; I)gto(l; 2)+gao(l; 1, 2),

'U
(2)oa(l; 1, 2) = got(l 2 1)goi(l; 2) + goa(l 1 1, 2),

Qn(l; 1, 2) =gqo(l; 1)go)(l; 2)+gag(/; 1, 2) . (18)

In terms of these g's and in the thermodynamic
limit (N- ~, U - ~ so that the density n = N/'V re-
mains constant, T(l) is given by

T(l) = To(l)Z '(I+n' J g,o(l; 1)y'(1; 1)dr, +n" J goq(l; I)!("(l;1)dr~

+ [(n') /2. ] [ff gao(l; 1, 2)!!'(l,2)X'(l; 2)dr&dra+ ( f g„(l, I)!!'(l,1)dry) ]

+ [(n') /2! ] [f f goa(l; 1, 2)y,"(l, 2)drqdra+ ( J go&(l, 1)y "(l, 1)dr&) ]

+n'n" [f J gn(/; 1, 2)y'(1, l)y"(1, 2) drqdra+( f gqo(l, I)!t'(1, I) dr&) x(f goq(l, 2)y"(1,2)dra) ]+ ~ ~ ) . (19)

If h& is defined by
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0, 0) f j j,)„O) xpl) , x (l'j) , x O"l),

m

x . . . y. (l, m) II dr, II dr„, (20)
f=j g=1

T(l) can be written in terms of these l1's as

T(l) = Tp(l)Z (1+n'h 10(l) + n" h01(l)

+ [(n')'/2! ] [a„(1)+[a„(1)]']
+[(n") /2! ][l1 (l)+[l1 (l)]']

+ n'n" [@11(l)+ h10(l)h01(l) ) + ~ ] . (21)

These terms can be regrouped and written in the
form

N N (n+) j (n++)I
PO)=P (l)pe'exp Z Z . . ".„(l)),

m m t

(22)
I

which is a systematic Ursell cluster expansion.
It can be noted here that the definition of Z would

be the same as T(l), if l were set equal to zero.
Therefore Z can be written as

Z= Pe(0)exp Z g, , 0, (0)), (23)
N N

( )1( +e)p)

m jl mt

This allows T(l) to be written as

N++
( 4)j ( ee)jje

xexp P L, , [0, (l) —e,„(0)]) . (04)
m j .'m'.

If more than two species of perturbing ions are
to be considered, Eq. (24) can be generalized:

&(l)=( &
—

]
exp(Q''' Z '''Z .

,
4&'''

~
[;, ,„(l)—ee, ,„(0)]) (26)

This allows for any number of perturbing species.
The procedure for the evaluation of these terms
would be similar to that presented in the Appendix.

Since the calculation of P(c) considered in this
paper always involves a computer calculation, it
should be pointed out that the cost of evaluating
these terms is considerable.

Consider the individual terms appearing in Eq.
(24). By the method developed in the Appendix, the
first factor, Tp(l)/Tp(0), becomes

T()(l)/T()(0) = e "' . (26)

u —
1 2, R=

g, =kT, , 6),.-=kT, , (26b)

L =—apl, a-=00/y, ep-=e/~op,

~mon, =1.4 (26c)

where zo is the ion-sphere radius defined by the
expression

rn Eq. (26),

y=-,'a(e, /8, ) [u' —(1+u) ]'j j,
( ] = ((0.'u+ 2 [1 —(1+u)"' ] o.'+ [2u+ u' ] o.'

—4(1+u) [1 —(1+u) ~ ]cP —3(u+u )o.'

+ 2 [(1+u) —(1+u) ]],

(26a)
Now we consider the factors resulting from the
series exponent. There are two first-order terms,
one for j=1 and m=0 and one for j=0 and m= 1.
In general, if there are x different species of per-
turbing ions, there will be r such first-order
terms:

flp n [@10(1) l110(0) ]
N+ Ã

~ f -j) o-" 'vo"o( -' 1o ( 'vo 1o —1) II dr II dr„
n=l

f ''' f exp( —pV —iq 'l ~ v V())II dr, "II dr„
1 1

f. ..f j) Fp-$0 1'vpvp ( -8-14010 1) II dr, II dr„
2 1 dr1, (2V)

f f e Pvp II drj II dr„
1 1
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and similarly,

I» =-n- [hp1(I) —h»(0) ]

++

N N

f ~ ~ ~ f e-ovo-«)' ovo(e-'"1o-«)' o~lp —I) Q dr g dr
1 2=n

N+ N+
f f e-"o g dr, q dr

1

. ..f OVp )2 11VpVp (
B.x))p 1)~ ~ ~

f 'feovo II dr&
1

II dr II dr„
1 2

N

II dr
1

dr1 . (28)

Although these integrals appear formidable, they
may be readily reduced through the use of collective
coordinates to approximate expressions involving
only one-dimensional integrals. The accuracy of
this approximation is briefly discussed later and
has been extensively discussed elsewhere. ' Col-
lective coordinates are defined and the nature of
the evaluation indicated in the Appendix. The final
results are merely stated here:

I1p(l) = n' [h (I) —h (0) ]

2 !'"p, &, & p sin(LG(x))
)

sin(2Lq(x))
)) (sp)

(2I,q(x))

where

x= r/r, , P)o1, = ](8,/8, ) (a /3x) e

ua2 1+2R ( n2 —1'"'=' 3. 1.4 ~ n -(I.s) ~

X (
-aax (1+x) ax)

1/2

(30a)
1/2

( ) ) ( -qsax -(1ex) ax)

sin(Lq(x))
(Z. q(x))

(28)
+—(ee "*—(1+x) e ' '"' "))a 1/2

x

fo1 = n" [ho1(l ) —ho1(o) ]

sa ". ..«, ,p„„sin(21G(x))
)1+2R (2LG(x))

G(x) = q(x) + (e ""/x ) (1+ o.ax) .

The second-order terms appearing in the series
exponent are now given explicitly:

fop(l) = [(n') /2! ] [hop(l) —h. ()(0) ]

= [(n') /2! ]('U f f [Qao(l, 1, 2)- Q1o(l, I)Q1o(ls 2) ] X'(I, 1)g'(I, 2)dr1dro

'0 ff [Q-,p(0, 1,2)- Q,p(0, 1)Q1o(0, 2)] g'(0, 1)X (0, 2) dr1dro j . (31)

When the Qzo(l) and Qoo(0) functions are evaluated by the methods presented in the Appendix, they have a
very interesting form. Equation (A52) gives for Qoo(l)

2

Qpp(l 1 2) = Qip(l 1)Q&p(l 2) exp (- '
e ' '"' '

p)3X12
(32)

The expression appearing in large parentheses is the Debye-Huckel pair-correlation function (see Ref. 5)
for a discussion of this point). Performing the complete collective-coordinate evaluation, as indicated in
the Appendix, we find
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2

Ipo= '
2

3a Q ( —l)~(2k+ l)(20],

x~"'I„»a(a'x2) '"2'[e '«"'""j,(LG(x, )) - j,(Lq(x, )) ]
0

', 33)

x x 1 K))+1/2 (a' ») e""' [e «
-"1 j (LG(xl)) I (Lq(x«)) ] dx1 dx2

"2

»« tiqs(a »)e"'"[»"~p'*a' —)]f »»'x (»'»)»""z'[e'c '"a'-)]g» g»

X2

Similarly an expression for I02 is given by
2

Ioq
——4 ~ 3a Q ( —1) (2k+ 1)(02],

6),. 1+2a

[o~]f' =' v (''" ) "'*"[ '"' ") (2«"(»a)) j(L»(»g)-)]
(34)

xp K„&fz(a'xz)e ""~)[e «("~)j„(2LG(x~))—j,(2Lq(xq))]dx~dxa
x2

—I!»I»&&(»'») ~ ~a~[»~6; ~2~ —)]f »~» ( '») ~"*&~[ ~~ '"s~ )]z» g»

0 x2

There is yet another second-order term, viz. , I», it is given by

Is&=2 ' -- - 3a —1" 2k+1 11

(11]= ' x p I~+q~2 (a'x2)e ""~' [e '"~' j„(2IG(x2)) —
j«,(2Lq(xa)) ]

J

(35)

x xg K~ q(2 g'xg g '"s g- "'" 'j~ LG xg —jI, Lq xy dxgdx2
x2

+ x2 K))+),~2 (a' xq)e ""2' [e "'"~'j„(2LG(xz)) —j~(2Lq(xz)) ]
0

3/2x x f I„q&z(a' x«) e""~' [e """j((LG(x«))—j„(Iq(xq)) ]dx, dx2

xg 'K«gp(a'x2)e"'"" [e ' "'""-1] t x' 'K q(a'xg)e"" '[e "'"&' —1 Jdxidx~
0 J„

x2"'K ( 'x )
"'" '[ " '"&' — ] x"'Igga(a'xg)e""&'[e '"'" ' —l]dxgdxp ~.

0 0

I and K refer to modified Bessel functions of the
first and third kind, respectively, while j~( —)
specifies a spherical Bessel function of order k.
The sums over k in these expressions for the sec-
ond-order terms converge very rapidly and hence
only three terms must be evaluated.

Thus to second order, we may write

T(l) = exp[ —yL + Iqo(l) + Io«(l)

+ I20(f)+ I„(f)+I»(f) ] . (36)

This result is used in Eq. ('7) to calculate P(c) at

a charged point. It may also be shown that this re-
sult goes to the Holtsmark limit as T- ~.' If there
were r different species of ion, there would be x
second-order terms such as Iao, and x!/2! («)-2)!
second-order cross-term such as I».

In the event that P(e) is desired at a neutral
point, ( is set equal to zero which excludes central
interactions. Because of the cost of evaluating the
terms, it is useful to obtain separate analytic ex-
pressions for the neutral case. The expression
for To(l)/To(0) remains unaltered, but the first-
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3 I'
"

0 sin(LG(x))
1+2R, LG(x)

sin(Lq(x))
Lq(x)

(3V)
I

and second-order terms in the series exponent are
changed owing to the fact that w(x), s(x), and kt, (0)
are zero. Hence

Ilp(l)neutral n klp(l)neutral

Ipl(l)neutrat = n k01(l)neutral

3R " 0/ sin(2LG(x))
1+ 2R t, 2LG(x)

din(2I. q(X)))
2L q (x)

(3S)
The second-order terms for the neutral case are
found by again setting 10(x), s(x), and k,./(0) equal
to zero (or, what is equivalent, by setting $ = 0)
and, in addition, the 5„terms for all k. Hence,

2

Ipp(l) „n.at = a(n+) kpp(l) eutrat = - 3a Q ( —1) (2k+ 1)(20].
8,. 1+ 2R

(39)

(20) t 1 ~ f x2 Ia1/2(a x2) [ ja(LG(xp)) ja(Lq(xp)] f xl "&"1/0(a x1) [ja(LG(xt)) jn (Lq(xt)) ]dxtdx2];
x2

Ipp(l)„ t„,= &(n") kpp(l)„,„„at =4—' 3a +m (-1)"(2k+1)f02].„„„at 1

(40)

In+1/0(a'xp) [ ja(2LG(xp)) —ja(~q(xp))1 J xl "Ita.t/0 (a'X1) [ ja(2LG(X1)) -ja(2Lq(»))]dxtdx2
x2

I 1(l1)„,„„t,=n'ri' »k(l)„,„ ,t, = 2—'
I 2 I 3a 5~ (-1) (2k+1)(ll]„,„„„,

(41)

(II]„„„„=
~

x',"I„., /, (a'x, ) [j,(2LG(xp)) -ja(2Lq(xp))]~ x,"'&„., /, (a'x, )[j„(LG(x,)) -j,(I q(x, )) ]dx, dx»
0 x2

"o
xp Ita, t/0(a'xp) [ja(2LG(xa) —ja(2Lq(X2)) ] xa Ia„t/0(a'xt) [ja(LG(x1)) —ja(Lq(xt))]dxtdx&

+J~ xt r f/g(a'x~f j,(edu(x~)) jltdd(x~))]] xl-" iisl&d&i) fd (LG(&~)l /ad(&il)id&id-A&I
0 x2

Two approximations have been made thus far.
First, we have terminated the series appearing in
the exponential with the second-order terms. This
may be justified, by consideration of the analytic
form of the terms appearing in the series, and by
direct numerical calculations. ' The second approx-
imation concerns the use of collective coordinates
in the evaluation of the many-dimensional integrals
occurring in this theory. '

As indicated earlier in this section, the evaluation
of the many-dimensional integrals appearing in the
expressions for I/„(1) can be transformed into in-
tegrals over collective coordinates which have a
rather simple form. As is shown in the Appendix,
these collective-coordinate integrals may be eval-
uated ass

I= f . f exp[--,'+, („d4X+2b X,)]JII dX,

= (const) exp [-,
'

&~, b„/(I +2,) ] (1 —a, + a a
— ) .

(42)
The A, and b~ are specific functions of k, the X,'s
represent collective coordinates, and J is the

I

Jacobian of the r -X transformation. The series
of terms in brackets represents the possible higher-
order correction to the first Jacobian approxima-
tion. In the calculations made in this paper, as and
all other correction terms have been neglected.

Following the procedure previously developed, '~

we have shown that the neglect of corrections to the
first Jacobian approximation is valid for the tem-
peratures and densities considered in this paper.

III. ASYMPTOTIC MICROFIELD DISTRIBUTION
FUNCTION

In this section we deal with the determination of
asymptotic microfield distribution functions. Gen-
erating the microfield distribution functions for
values of & &20 becomes increasingly expensive be-
cause the sine transform routine that is required to
evaluate Eq. 7 requires an increasingly finer mesh.
For values of P(e) in this asymptotic region it is
more convenient to calculate P(e) from one of two

approximate formulations: the nearest-neighbor
approximation (NNA)0 or the Holtsmark limit. 7
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This problem has been previously considered for the
case of singly charged ion perturbers. ' Hence we
are here extending the method to the situation where
more than one perturbing ion species is present.
Specifically we will examine the situation where both
singly and doubly charged perturbers are present.
First we will consider the charged-point case, and
then the neutral-point problem.

Pq(&q) de, = 4«q n'g'(r, ) dry =
1 ~ xqg'(x~) dx, ,1+ 2R

(43a)

Pa (~2) d~p 4«an g (r2) dr/ 1 2R
xgg" (x2) dx21+2R

(43b)

where the last expressions on the right are in terms
of the reduced quantities already defined. g'(r, )
and g"(r2) are pair correlation functions between
a singly charged particle and a particle of charge
g, and between a doubly charged particle and a par-
ticle of charge $, respectively. They can be found
using Eqs. (A48), (A50), and (A52) by allowing for
the variable charge $:

g'(x, ) = exp —t —' e-""'
3x~ e,

(44a)

A. Charged-Point Case

For the charged-point case, the additional corre-
lations arising from the presence of a charged par-
ticle at the origin make the Holtsmark limit an in-
valid approximation for the field strengths that we
consider. Hence we use the nearest-neighbor ap-
proximation which we have shown to be in very close
agreement with the near-exact function.

The nearest-neighbor model assumes that for high
fields the bulk of the contribution to the total field
is due only to the nearest neighbor. This neighbor
may be either a singly or a doubly charged ion. The
probability of two or more ions producing this high
field is very small and is assumed to be zero. If
this probability were not small, it would mean that
the asymptotic region had not yet been reached and
the near-exact microfield calculation would have to
be extended. The assumption that the probability
of two ions being near the origin is small, has been
validated by comparisons between calculated near—
exact microfield distributions and the asymptotic
results in the region where they join. The asymptotic
value is always slightly less than the calculated
microfield distribution but the difference decreases
as E increases. At the point where the asymptotic
form is assumed to be valid, the difference is less
than 1%.

The probability of a singly or a doubly charged
ion being close to the origin is related to the prob-
ability of this same ion producing an electric field,
by the following expressions:

a 9g"(x,) = exp —2( —'e "'"'
3x2 Hg

(44b)

The fields produced by these ions, in units of the
reduced field strength &0 and reduced distance xo
[defined in Eq. (26b)] are

~, = (2/xg)(1+axe) e '"&,

&,= (2/x', )(1+ax,) e

(45a)

(45b)

If these field expressions are differentiated, the
expressions for de& and F 2 can be used in Eqs. (43)
to obtain P~(c) and Pz(e):

P2(&g)

1 3x~ exp[- g(a'/x, ) (8,/8, ) e " ' ax, ]
1+2R a exp(-axe)(2+2/axq+axq)

(46a)

-(i+I)"'3x', exp[- 2((a'/3x, )(e./6, ) e ""' ax, ]
1 + 2R 2a exp(- ax2) (2+ 2/axa+ax2)

(46b)

The total asymptotic probability is the sum of the
probabilities of the two independent events:

P(e),.„.=P, (c)+P,(e) . (47)

B. Neutral-Point Case

1+2 &FR

1+ 2R

21. '77
1+ 2 v2 R -iv2

1+ 2R + . ~ ~, (48)

It can also be shown that for the range of & values
considered in this paper, the near-exact distribution
function is also well approximated by the NNA which
implies equivalence of the two approximation meth-
ods in the asymptotic region. The reason for this
equivalence can be seen by taking the T- limit of
the NNA and noting that the result is equal to the
leading term in the Holtsmark series. For field
strengths c & 20, the two approximations may differ

The Holtsmark distribution function is the proper
high-temperature limit of the nearly exact micro-
field distribution functions. As such it represents
the situation when the perturbing ions are totally un-
correlated: The ions move independently of one
another. For increasingly large values of the field
strength &, it can be shown that the neutral-point
near-exact distribution function goes over to the
Holtsmark result. The Holtsmark result for a two-
component plasma is

1+ 2 &2R
P(e)H„tsm„„= 1. 500 e



LOW-FREQUENCY ELECTRIC MICROFIELD DISTRIBUTIONS. . .

from each other and from the near-exact value.
However, the differences decrease as the field
strength increases and in the high-field region
where the shielded potential is numerically almost
identical to the Coulomb potential, the NNA reduces
to the first term of the Holtsmark series which is
overwhelmingly the most important term. This is
not too surprising since for large fields one would
intuitively expect that nearest-neighbor contribu-
tions to the Holtsmark expression would be the larg-
est. For the numerical results presented in this
paper, the NNA was used.

IV. NUMERICAL RESULTS AND ANALYSIS

0.6—

0.5—

0.4

UJ 0 3
CL

0.2

O. I

SINGLY CHARGED POINT
a=0.4

Following the procedure discussed in detail in
Ref. 5, we have generated P(e) values in both tabu-
lar and graphical form for a macroscopically neu-
tral plasma containing N' singly charged shielded
ions and N" doubly charged shielded ions which in-
teract with each other through an effective potential
which includes the effect of ion-electron interaction.
This model has been and is currently used when
dealing with effects of ions on radiating atoms and/
or ions immersed in a plasma. ' The form of the
effective potential is assumed to be Debye-Huckel.

Values of P(e) have been calculated for four val-
ues of a; for each a value three different ion ratios
(R —= n"/n') have been considered. Figure 1 shows
the three curves for a = 0. 2: notice that the three
curves corresponding to values of R = 0. 0 (all per-
turbers singly charged), R = l. 0 (50/zn' and 50/pn"),
and A = ~ (all perturbers doubly charged) are well
separated. Examined in order, Figs. 2, 3, and 4
indicate that as a increases the three R-value curves
seem to coalesce. Recall that for a fixed value of
temperature an increase in a implies an increase in
density. Also note that as a goes from 0. 2 to 0. 8
the peaks of the three R curves are shifted toward
smaller field values and the height of the peaks is

0
0 LO 2.0 3.0 40

FIG. 2. Electric microfield distribution function P(q)
at a charged point for a=0.4, R=O, 1, ; e is in units of
Cpa

raised.
The behavior of these R curves as a is varied can

be interpreted physically. First, the shift and ele-
vation of the peaks is testimony to the effect of in-
creased interion correlations as a is increased. As
these correlations increase, the ions have an in-
creased tendency to "stay away" from one another
and hence the probability distribution function is
shifted to smaller values of e with increased prob-
ability.

Next, consider the fact that as a increases, the
relative separation of the curves corresponding to
different R values decreases. For all a values dis-
cussed in this paper, the curves for R= ~ favor
larger field strengths than do those corresponding
to R = 0. For a given value of N„ the requirement
that R = ~ means that the plasma being treated con-
tains one-half the number of ions than one would for
which R= 0; but each of these ions is doubly charged.
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FIG. 1. Electric microfield distribution function P(e)
at a charged point for g = 0.2, R = 0, 1, ~; q is in units
of qp.

FIG. 3. Electric microfield distribution function P(e)
at a charged point for a=0.6, R=O, 1, ~; e is in units of
E'p»
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TABLE I. Probability distribution P(&) at a charged point for several values of p, with R = l. 0. The electric field

strength & is in units of E'0 The lines in the columns indicate the point at which asymptotic expressions were used in
the calculations.

0. 1
0. 2

0. 3
0.4
0. 5
0. 6
0. 7
0. 8

0. 9

l. 0
1.1
1.2

1.3
1.4
1.5
1.6
l. 7
1.8

1.9

2. 0
2. 5

3. 0
3.5
4. 0
4. 5

5. 0
6. 0

7. 0

8. 0

9, 0

10.0
12. 0
14.0
16.0
18.0
20. 0
22. 0
24. 0
26. 0
28. 0

30. 0

35. 0
40. 0

45. 0
50. 0
60. 0
70. 0

80. 0
90. 0

100.0

A =0.2

0.422 03E-02
0. 193 53E-01
0.434 54K-01
0. 744 48E-01
0. 11020E 00
0. 148 57K 00
0. 187 52E 00
0.225 13E 00
0.25972E 00

0.28968K 00
0.31416E 00
0.332 87E 00
0. 345 65E 00
0.352 71E 00
0, 354 55E 00
0.351 83E 00
0.345 30K 00
0. 335 62E 00
0.323 51K 00

0, 30972E 00
0.231 85E 00
0. 163 92K 00
0. 11507E 00
0. 820 51E-01
0.5/9 35E-01
0.449 16K-01
0.270 67K-01
0. 176 30E-01
0. 12192 E-01
0. 882 98E-02

0. 662 54E-02
0.403 84E-02
0.269 69E-02
0. 188 88E-02
0. 13875E-02
0. 104 43E-02
0. 817 88E-03
0. 647 75E-03
0.51023K-03
0.422 62K-03

0.354 60E-03
0.239 46E-03
0. 17034E-03
0. 126 08E-03
0. 962 96E-04
0. 603 55E-04
0. 406 20E-04
0, 288 15E-04
0.212 74E-04
0. 16195E-04

A =0.4

0. 10043E-01
0. 388 71K-01
0. 82859K-01
0. 136 80E 00
0. 19490E 00
0. 25168E 00
0. 30271E 00
0. 34496E 00
0. 376 84E 00

0. 39801E 00
0. 40909K 00
0. 41128K 00
0. 40610E 00
0. 39515E 00
0, 379 96E 00
0. 36185K 00
0, 341 96E 00
0, 321 19E 00
0. 30023E 00

0. 27961K 00
0. 19048E 00
0. 12918K 00
0. 895 56E-01
0. 639 54E-01
0.470 49K-01
0. 355 64E-01
0. 217 72E-01
0. 143 39E-01
0. 99825E-02
0. 725 79E-02

0. 545 84E-02
0. 33174E-02
0. 220 97E-02
0, 153 90E-02
0. 112 16E-02
0. 837 60E-03
0. 633 35K-03
0. 502 92E-03
0. 406 53K-03
0. 333 65E-03

0. 277 45E-03
0. 18341E-03
0. 127 88E-03
0. 928 70E-04
0. 696 63K-04
0.422 12 E-04
0. 275 36E-04
0. 18974E-04
0. 13631E-04
0. 10108E-04

A=0. 6

0. 203 26E-01
0. 767 21E-01
0. 15830K 00
0.243 88E 00
0. 32569K 00
0. 392 58E 00
0, 440 41E 00
0.468 90E 00
0.48021K 00

0.47766E 00
0.46473E 00
0.44462E 00
0.42001E 00
0.392 97E 00
0. 365 05E 00
0.33734E 00
0.31056K 00
0.285 18E 00
0.26145E 00

0.23948K 00
0. 154 87E 00
0. 102 85E 00
0. 708 02 E-01
0. 504 95E-01
0.371 73K-01
0.28128E-01
0. 172 38E-01
0. 11340E-01
0.787 38E-02
0. 570 36E-02

0. 426 44E-02
0.249 31E-02
0. 163 96K-02
0. 11364E-02
0. 820 06E-03
0. 61108E-03
0.464 70E-03
0.365 34E-03
0.290 83E-03
0.235 17K-03

0. 192 75K-03
0. 123 09E-03
0. 830 79E-04
0.585 04E-04
0.426 18E-04
0.244 48E-04
0. 15161E-04
0. 996 60E-05
0. 685 10E-05
0.486 80E-05

A=0. 8

0. 422 45E-01
0. 15115E 00
0, 28553E 00
0.40721E 00
0.49529E 00
0. 545 85E 00
0, 564 35K 00
0. 559 09E 00
0. 537 92E 00

0. 507 16E 00
0.47142E 00
0.433 88E 00
0.39663K 00
0. 36094E 00
0.32753K 00
0.296 74E 00
0.268 68E 00
0.'243 28E 00
0.22042E 00

0, 19990K 00
0. 12537K 00
0. 821 36E-01
0. 561 61E-01
0.398 96E-01
0.292 68E-01
0.220 70E-01
0. 13429E-01
0. 875 71E-02
0.602 49E-02
0.432 29E-02

0.322 48E-02
0. 192 68E-02
0. 123 65E-02
0. 836 83E-03
0, 590 08E-03
0.429 95E-03
0.321 77E-03
0.246 25K-03
0. 192 04E-03
0. 152 21E-03

0. 122 36E-03
0, 745 88E-04
0, 481 82E-04
0, 325 49E-04
0, 227 92E-04
0. 12143E-04
0. 703 35E-05
0.434 01E-05
0.281 23E-05
0. 188 68E-05

The implication of Figs. 1, 2, 3, and 4 is that as a
increases, the relative importance of correlation
between the ions becomes increasingly important so
that at a = O. 8, the curves for the several values of

R are not too different. Figure 5 shows the elec-
tric microfield distribution, at a charged point, for
several values of a, with R = 1; Fig. 6 shows the
same results but for R=~.



LOW-FREQUENC Y ELECTRIC MIC ROFIE LD DISTRIBUTIONS. . . 877

TABLE II. Probability distribution P(&) at a charged point for several values of p, with R =~. The electric field
strength & is in units of &(). The lines in the columns indicate the point at which asymptotic expressions were used in
the calculations.

0. 1
0.2
0. 3
0. 4
0, 5
0. 6
0. 7
0. 8
0. 9
1.0

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2. 0

2. 5
3. 0
3.5
4. 0
4. 5
5. 0
6. 0
6. 6
7. 6
9. 0

10.0
12, 0
14.0
16.0
18.0
20. 0
22. 0
24. 0
26. 0
28. 0

30. 0
35. 0
40. 0
45. 0
50. 0
60, 0
70. 0
80. 0
90. 0

100.0

A =0, 2

0.214 70E-02
0. 15170E-01
0.366 92 E-01
0.644 92E-01
0. 965 15E-01
0. 130 88E 00
0. 165 88E 00
0.200 03E 00
0.232 03E 00
0.260 79E 00

0.28546E 00
0.30532E 00
0.319 83E 00
0.329 35E 00
0.334 17E 00
0. 33474E 00
0.33162K 00
0.325 28E 00
0.31631E 00
0.30539E 00

0.237 54E 00
0. 172 83E 00
0.12377F 00
0. 894 11E-01
0, 658 55E-01
0.496 09E-01
0.300 46E-01
0. 195 99E-01
0. 13555E-01
0.98140E-02

0. 736 17E-02
0. 448 41E-02
0.298 50E-02
0.209 05.E-02
0. 153 40E-02
0. 11549E-02
0. 903 05E-03
0.71835E-03
0. 561 84E-03
0. 465 26E-03

0.39028E-03
0.263 40K-03
0. 187 27E-03
0.13853E-03
0. 105 75E-03
0. 662 21E-04
0.445 29E-04
0.31553E-04
0.232 69E-04
0. 177 13E-04

A=0. 4

0. 91050E-02
0.352 86E-Ol
0. 753 80E-01
0. 12483K 00
0. 17852E 00
0. 23157E 00
0. 27997E 00
0. 32090K 00
0. 35276E 00
0. 37506E 00

0. 38817E 00
0. 393 01E 00
0. 39085K 00
0. 383 04E 00
0. 37091K 00
0. 35567E 00
0. 33837K 00
0. 31986K 00
0. 30084K 00
0. 28182E 00

0. 19675K 00
0. 13576E 00
0. 952 32F-01
0. 685 47E-01
0. 506 96E-01
0.384 60E-01
0, 23643E-01
0. 155 98K-01
0. 108VOE-01
0. 790 84E-02

0. 594 77E-02
0. 36144E-02
0. 240 18K-02
0. 167 15E-02
0. 12186E-02
0. 908 30K-03
0. 688 99E-03
0. 546 54E-03
0. 441 35E-03
0. 361 86E-03

0. 300 62E-03
0. 19826E-03
0. 13791E-03
0. 99938E-04
0. 748 04E-04
0. 451 48E-04
0. 293 40E-04
O. 21038E-04
0. 144 11E-04
0. 106 62E-04

A=0. 6

0. 195 29E-01
0. 736 63E-01
0. 149 87F 00
0.233 58E 00
0.31175E 00
0.375 87E 00
0. 42220E 00
0.450 51E 00
0.462 81E 00
0.462 09E 00

0.45152E 00
0.43401E 00
O. 41198K 00
0.38737E 00
0.36163K 00
0. 335 80E 00
0.31061K 00
0.286 52E 00
0.263 82E 00
0.24264E 00

0. 15964E 00
0. 10731F 00
0. 744 88E-01
0.534 26E-01
0.394 77E-01
0.299 51E-01
0. 184 12E-01
0. 12122K-01
0. 842 50K-02
0. 61027E-02

0.456 29E-02
0.270 41E-02
0. 177 47E-02
0. 122 47E-02
0. 883 66E-03
0. 656 98E-03
0.50136E-03
0, 390 99E-03
0.31055E-03
0.250 55E-03

0.204 90E-03
0. 130 14E-03
0. 873 72E-04
0. 612 12E-04
O. 443 67E-04
0.252 OVE-04
0. 154 88E-04
O. 100 87E-04
0. 686 90E-05
0. 195 98E-05

A=0. 8

0.430 09E-01
0. 153 08E 00
0.286 86K 00
0.405 39E 00
0.488 90E 00
0.535 29E 00
0.551 19E 00
0.545 13E 00
0.524 60E 00

. 0.495 37E 00

0.461 60E 00
0.426 16K 00
0.390 91E 00
0.357 03E 00
0.325 17E 00
0.29569K 00
0.26870K 00
0.244 16E 00
0.221 96E 00
0.20195E 00

0. 128 39E 00
0. 849 15E-01
0. 584 50E-01
0.417 08E-01
0.306 80E-01
0.231 81E-01
0. 14136E-01
0. 109 11E-01
0.745 65E-02
0.468 58E-02

0.349 16E-02
0.208 04E-02
0. 133 OVE-02

0. 897 40E-03
0. 630 44E-03
0. 457 60E-03
0, 341 13E-03
0.260 04E-03
0, 202 OOE-03
0. 15948E-03

0. 127 69E-03
0. 770 83E-04
0 49313K 04
0.329 97E-04
0.228 89E-04
0. 11973E-04
0. 681 20K-05
0.412 76E-05
0.262 51E-05
0. 173 65E-05

ACKNOWLEDGMENTS

The authors wish to thank Judy Lipofsky and Joe
Whalen for their invaluable help with programming
the material presented in this paper.

APPENDIX

In order to evaluate the terms used in Eg. (24) for
T(l), it is convenient to employ the collective-coor-
dinate techniques of Bohm and Pines as used by
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2
( )

0
go fft

+ 2Z S"Se——e N ——' (2e)eN"), (AS)

where

o = N' e + N" (2e )

The last two terms subtract the self-energy that
is added by removing the restrictions i =j and m =n
from the first two terms. The two terms involving
q take into account the charge q = $e placed at the
origin. Previously, these terms have not been ex-
plicitly written, but were understood to be present
for g = 0, 1, and 2 in the general interaction poten-
tial, Eq. (9). In subsequent expressions it will be
necessary to treat them explicitly. It can be shown
that Eq. (A7) is correct for any positive value of $.
By defining the generalized coordinates

X'„=L/&(2e /o')'/ —S/ and X„=Q„[2(2e) /g]'/o S

'"':='(':)('")"' ' ."'"
(A11)

Now it is possible to write Vo in terms of the col-
lective coordinate Y„:

Vo = V —4 '////o —~~'/o~o

e + Q A Yo~ 2(2 2/o )1/8

x2 /, (e)A, Y,-22. A,),Az&o

n2-1 1
(~ )=

(k ~)o +2
—

(k ~)

In order to evaluate V'o V, it is necessary to consider
the following relation:

Vocos(k r)= —ksin(k r), k~~ 0
VoS(k r)=

Vo sin(k r) = k cos(k r), k~ & 0 .

this expression can be written in a more compact
form:

V= ~ + o [(X») + (X»') + 2X»X»'

+ 2(2q (/r)' /S()(X„'+X» )- 2]. (A6)

According to the definition [Eq. (A5)], So= 1 if k, -0
and equals zero if k, &0. By using the expressions

2m' 0 8~ 1+4R n"
'0 2 1+ 2R ' n'

Changing k to —k we find that

—k cos(k r), ke~0
VoS(k r)= —ksin(k r), ke&0 .

Therefore,

VoS(k r)= —kS(k r),
which implies that

V() 2 Y„=—Z Y»k,
4 &0 4&0

(A13)

(A15)

1

(kX) 1
V can be written as

1+4R

F~ =X~+
(A9) since Y» is a linear combination of the S(k r). If

the gradients of the expressions given by Eqs. (9),
(11), and (12) are evaluated, the terms which are
summed over all kz go to zero. The only terms
that contribute are the ones summed only over nega-
tive kz. The results are

x P, A» Yo»+ 2(2q /&x)'/o Q A» Y„—2ZA»
az&o

(A10)

where the F, represent a new collective coordinate.
Similar transformations can be made on w&o and

0 which result in

2 ((+2N)( e ),~e (22)'+e'

a '/o X"

Vo Vo= —l'.
1 2R- &~ f»(o'8» Y»(k),' 1+2R (x

(A17)
Vo(~/'/o/o++~w~o)= Vo V- Vo Vo

&e I+4R) 2qo /o ~ 1
2 1+2R/ 0'

» &o (kX) + Q

Sufficient definitions have now been made so that
To(l)/To(0), the first factor in T(l), can be written
in terms of collective coordinates

To(o)

T (l) f. . . f exp(- p& V —lq 'f ~ V V)II II dr/dr„
g+ +++

f ~ f exp(- Pq Vo) II II dr/ dr
$~1 e-"1
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f ~ f exp(- P, 8,/2)[(1+ 4R)/(1+ 2R)]L [A, Y,'+ 2b„(l) Y,])JII dF„
f ~ ~ fexp((- P, 8, /2) [(I+ 4R /(1+ 2R)]gg [A» Y„+2b»(0) Y»]}Zg d Y»

Zq' 1/' 1, k, &p
b (I)= — f (n)A x + (2u+ u») n» —4(1+u)[(l —u)"»] n»

2(I2 ) 1/2 1
(0)= / f (n)A, x k, &p

kz&0 .

The self-energy portions of V0, appearing in both
the numerator and the denominator, are independent
of the integrations and cancel, J is the Jacobian of
the transformation from r&& and r „ to Y&. If we de-
fine

8, +4R
A. ~ =uA„,1+ 2R

1+ 4R
8 1+2

(A19)

the expression for To(l)/To(0) can be put in the form

To(l) f ~ ~ fexp[- &g»(A» Y2+ 2b»(l) F„)]ggdF„
To(0) f ~ ~ ~ fexp[- »gt (A» Y»+ 2b»(0) Y»]/II dY„

(A2o)

This allows for evaluation of the integrals according
to the formalism used by Broyles. The multiple in-
tegrations are thus evaluated:

T, (I) exp( &, »gb»'(I )]'/(I A,')}[1 —a» (I )+ a4(I ) ~ ~ ~ 1

Tp (0 ) exp(» g» [b» (0)] / (1 + A» )}[1 —a 3 (0)+ a 4 (0 )' ' ' ]

—3 (u+ u ) n+ 2 [(1+u ) —(1 + u )»f »] },

u=8—' 2 i, R=, , 8, =kT, , 8, =kT,8, 1+4RI n"

&~7(ron, =1, a=~, ep-—~, I = col . (A23)
0

With this choice of reduced quantities, the unit of
electric field strength eo is a function of electron
density only.

In order to evaluate the remaining terms in the
exponential of Eq. (24), it is necessary to derive
an expression for Q, (I) in terms of these same re-
duced quantities. Collective coordinates are used
again with the modification indicated below. Q&„(l)
is defined by Eq. (16). In terms of col)ective co-
ordinates

Qf (I)=

f fexp( ——,'g-„[A' Y +2b'(I) Y,])fI, H, dr;dr„

f ~ fexp]- —,
'

g» [A „' Y»a+ 2b '»(I ) Y„]}ff g dr; dr„'

(A24)

In order to do the (N'- j)+ (N" —m) integrals, it is
convenient to introduce another collective coordi-
nate:

a, and a4 can be shown to be small and are neglect-
ed. The definitions of b»(l) and b„'(0) further allow
us to write

To(l) —4( i 4R f (n)A, (.4 i4)

To(0) a 1+ 2R» &o 1+A,'
= exp

(A22)

Y»= Y» —
y»

= (&»+~» ) —(a»+a»')

where.;=-("')"' z-'. s (». -,
,(,

2 1/2++, 22e
0' n=1

(A25)

The sum over k is now replaced by an integral and
evaluated. The result of this integration, in terms
of conveniently defined reduced variables, is

T, (I )/T, (0) = e-"",

, (n'u+ a[S —(I+u)'"] n'
4 8, [n» —(1+u)]'

In terms of this new collective coordinate the expo-
nentials in Eq. (A24) are

—» l~„(A»' Y,+ 2b,'F„)=—~„[A»'(Y»)2+ 2(y»A„'+b„') Y»

+y»A„'+ 2y»b»j . (A26)

This allows factors of Q& (I ) to be integrated by the
collective-coordinate technique as follows:

exp&- » K» [A;y'+ 2y, b'])f" fexp(- —.Z» [A»'(Y.')'+ 2(y, A', + b»')]}~dY»

f ~ ~ f exp(- —'P» [A„'y»+ 2y, b,']}f ' f exp(- » g» [A»(Y») + 2(y»A»+ b»)])JdY»g /dr, dr„

exp(-' 5'» b»A»+ b»)'/(1+A») —y»A» —2y»b»1}
' f«p4X»[(y A'+ b' )'/(1+A')-y'A„'- 2y, b'])C g g dr, dr„

n

(A27a)
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g) ~ exp[- —,'$), (&)saA,')/(1+A„')- g)",(y„bI)/(I+A)') )}
(&) ' "f ~ fexp( -sP), (ysAs)(1+As)- P), (&s)b'.,'(I+A„')} II&II„dF&dr (A27b)

The last equation has been simplified algebraically
and the terms in the numerator and denominator that
are independent of y(2(r) have been canceled. For
Q,~ and ()&a» the sum P)",[ysA s/(1+As)] appearing in
the numerator and denominator is independent of
the coordinates of integration and will also cancel.
In the thermodynamic limit, it can be shown that the
denominator of Eq. (A37b) becomes

I

The angular integration can be easily performed to
give

2
I ss, t, & e„sis(I.G(x))

)" 1+2R J& (LG(x))

sin(L q(x))
(L q(x))

3't aexp -Pg ~, dr =&. (A28)
where

e-oar
G (x)= q(x)+ z [1+ &ax] (A38)

It is also necessary to have expressions for
—P;(@~a and —P(w„a and their respective gradients,
in terms of the reduced variables defined in Eqs.
(A23) and (A31). These are listed below:

qe -Or t& ~

~~e + -ala~p((o~a e Ja = " ——e
e, r„'~t,e,. 3x

1 2e—p((o a= ——q ep g

= 2((—', ) .--= 22,

—iq ' I Va(o&a= iL cos8[(e '"/x )(1+ oax)],

—iq 'f. V(&(() a= 2iLcos8(e '"/x )(1+ nax) .

By comparing the expressions for T(l) given by Eqs.
(19) and (24), we can define I,a and Ia, :

I„=-n'[I „(I)-h„(0)]
= n'[ Jg,a(l)y'(l, 1)dr —Jg,a(0)y'(0, 1)dr],

(A34)

a( = n "[l&a((l) I(a&(0)]-

In a similar manner I«can be evaluated as

sis(SLS(x))) (SSS)
2Lq(x)

In order to calculate I2p, Ip2, and I», it is necessary
to have expressions for yt[y, bs/(I+A', )] and

gf [y 2,A '„/(1 + A ',)] in each case. For convenience
we label these cases (a), (b), and (c), respectively.

Case (a). As seen in Eq. (A25), y„ is given by

y„= (2ea/o')"2 [S(k r, )+ S (k ra)] . (A40)

Therefore
A'

—P~s 'A ' = [s(x,)+iLq(x, )cos8, ]+

+ [s(xz)+iLq(x )cos8a], (A41)

which is a linear combination of the expressions for
the first-order term. Similar considerations give
the necessary expressions for cases (b) and (c).

Case (l&):

A'
= 2 [s(x,)+iLq(x, ) cos8q]"&+&'a

=n" [Jgaq(l)X (I, 1)dr —fg„(0)g (0, 1)dr] .

The remaining variables can be transformed to the
set of dimensionless quantities defined by Eq. (A23):

n'dr = n'radr dQ= [3/(1+ 2R )]xadxdQ,

n"dr= n "r drdQ= [3R/(I+ 2R)]x dxdQ .

The relationship between g& and (()&~ [Eq. (18)] to-
gether with Eq. (A30) allows I,a to be written as

Igp ——

1+2R 2 „p qp

&&
s(x&s(I q(x&cos()

(
()(oya (l (va)o)cos-()-

8 2'lf

e"*' (e
' » —1)ec)x'dx . (ASS)

Case (o):

+ 2 [s (xa)+ iLq (x, ) cos8, ] . (A42)

A'
P"„-ys„s, = [s(x,)+iLq(x, )cos8,]

+ 2[s(xa)+iLq(xa)cos8z] . (A43)

For case (c), particle 2 is assumed to be doubly
charged.

In order to evaluate the second term of these
expressions, we also need an expression for y& in
each case.

Case (a):

ys=(2e /o) [S (k r&)+2S(k r~)S(k ~ r2)+S (k rz)] .
(A44)
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(A45)

When summed over h, the S (k r) terms in the
numerator and denominator of (A44) are indepen-
dent of x and will cancel in the same manner as
that seen when I1o was evaluated [see Eq. (A27)].
Hence, the necessary terms are

y» = (4e /o) S(k r1) S(k r2) .
g

x exp I

a
SX12

e "'"' '"i-I dx dx .1/2
1 2'

This can be substituted into the definition of h»o(l):

h„(l) = 'u'(a )h'ff Q„(l; 1)Q„(l, 2) h (l;'1)h'O, h)

Case (h):

y» = [4(2e) /o] S(k r, ) S(k r2) .

Case (c):

y,'=[4(2e )/o]S(k r1)S(k r2) .

(A48)

(A47)

(A58)

As indicated in the body of this paper, the expres-
sion appearing in brackets is the Debye-Huckel
pair correlation function which can be simplified
by employing the linearized approximation:

If Eqs. (A45)-(A47) are used to evaluate —2 g»
x[y'»A»'/(I+A»')], the results are as follows.

Case (a):

y, A,' 2e + S(k ~ r1) S(k ~ r2)

k 1+a,' ~ - 1+A.,'

—2e' ~ ucos [k (r, —r2)]
e „.() (h)()'+ (1+u)

Case (h):

exp[ —(1+u)'i' ax»]. (A48)
&12

", = -4 ~ exp[ —(1+u)"'ax„] .1+A~ 8, 3X12

(A49)

Case (c):

, = —2 — exp[- (1+u) ax,2].
1 y2+»' 8, a2 1/2
2

k
1+A~ ~] SX12

(A50)

In Eqs. (A48)-(A50) the summations over h were
replaced by integrals which were then evaluated.

The expression for I2„obtained by comparing
the expressions for T(/) in Eqs. (19) and (24) is

—8 a2
exp e '" '"

~

—1-(1«~)

j

—a
V(x12) = exp[- a x12]

3X12

=+ Z (2h+1) V,(x„x2)P»(cos8,2), (A55)
0-"0

ff

V„(x„x2)= ——,
' e ' "12 P„(cos8)sin8d8,

0 3+12

(A56)

where a' = (I+u)'i2a. V, has been evaluated by
Swiatecki as

—a If», )i2(a 'x1) I»,)i 2(a x2)
»(x)l x2)

1
))"x

2

x)) x2 . (A57)

I and K are modified Bessel functions. The Le-
gendre polynomial P»(cos8, 2) can be written as'

P»(cos8, 2) = E i(h-m) t

m=o 0+m !

a2 1/2 8-(1h(() ah: ~ V( ) (A54)
3X12

The pair potential V(x,2) can be decoupled by the
method of Swiatecki:

—(0ff [Q2,(l; 1, 2) —Q, o(/, 1)Q,o(/, 2) ]

x g'(/, 1) g'(/, 2) dr, dr2

- ~'f f [e»o(0;1, 2)-e)o(0, 1)e»(0, 2)]

a2
~ exp

+12

- (1«u)1/2 ae

(A52)

x g (0, 1) y'(0, 2) dr, dr ) . (A51)

If Eqs. (A48)-(A50) are used to evaluate Q2o(/), as
given in Eq. (A27), the result is

Q2o(/; 1, 2) = Q,o(/; 1) Q, o(/; 2)

&&P» (cos8, )P» (cos82)cos(m(y, —p2)),

1, m=0
2, ma 0 ~ (A58)

f —a
h2o(/) = (a)(.)o ~8 (

&
Z (2h+1)

x dx1 dx2 x1 g x2 (A59)

Since fo' f '
odd(l)p c 2(oms( ((o)y2)), used in the

evaluation of Eq. (A53), is nonzero only if m = 0,
the only contributing term in Eq. (A58) is P»(cos8, )
&& p»(cos82). This form for p, (cos8») and the Swia-
tecki expression [Eq. (A57)] allow h»o(l) and h»o(0)
to be written as
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f(xq) = exp[s(xq) +iLq(x, ) cos&q j

x (exp [- Pw(x, ) +iL Vw(x&) cos8, ] —1 )
x 25}o dxo dxtfo(xi)go(xo) (A62)

x P,(cos6,)K...),(a'x, )/})'xg, (A60)

g(xo) = exp[s(xz) +iLq(xo) cos6o]

x {exp [- pw(xo) +iLVw(xo) cos8,] —II
x Po(cos6o)i}) $/ o(a'xo)/)(x&

for x} &xz, (A61)

— 2

boo(0) = (aX)' —' (4z) o

8] 3

fo(xq) = xq Kq ~ &(a xq) e""&' (e "'"&' —1), (A63)

go(xo) =xo Ig ~&(a'xo) e'"&) (e o"("(})—1) . (A64)

By using the integral definition of the spherical
Bessel function

j}}(Z)=--,(-i)"J e' "' P, (cos8) sin6d6, (A65)
0

the angular portion of E(I. (A59) can be evaluated.
If these forms for boo(l) and boo(0) are used in Eq.
(A51), the final form for I~ becomes

1 2

Is}=—' 3a + (- 1) (2k+ 1)(20),+

(20)= JI xo Io., ( o(a'xo) e' "o' [e "&'j)}(LG(xz))—jz(Lq(xz))] —
5&o x~ K)a} ~ z(a'x~) e

0 0

x [e '"&'j,(LG(x&)) j,(Lq(x, )-)]dxqdxo x& 'Iq~, (a'x,) e""&'

(A66)

x (e '"e' —() x, d~ge(a x~}e""1'[e "'"&'-1)dec dxI
x2

Ioz is relatively simple and can be treated similarly with only appropriate factors of two needing to be con-
sidered. The final form is

2

I =4 —' 3a 5 (-1)"(2@+1)(02],
g& 1+2R

(Od}=I xo I)„q~z(a'xo) e '"&' [e '"o'j), (2LG(xo)) -j},(2Lq(xo)) ]

(A67)

xq K&,qj2a xq e ""i' e "'" 'j& 2LG xq -jI, 2Lq xg dxgdx2
x2

x },, e(a'xe) e '*e'(e t*e' —()f x, d, ee(a'x) e a*&' (e ""&' () d gd I-. axe
x2

I» has more subtle differences. First, there is
a factor of 2 multiplying V(x») [compare Eqs.
(A48) and (A50)]. Second, as can be seen from the
definition of I», obtained by comparing E(ls. (22)
and (36), there is no 2. dividing the densities.

I

I

Third, because the integrand is not symmetric in

x& and x» the cases xq &x& and x&&xa cannot be re-
placed by one integration which results in another
factor of 2. With these differences accounted for,
the final expression is

-1"2&+1

P oe

(Il] = xo I},„gz(a'xz) e "o' [e " "&'jo(2LG(xz)) -jz(2Lq(xz))]
"o

(A68)

x, K„aq~o(a xq) e'"" [e '"~'jo(LG(x,)) j„(Lq(x,))]dxq-dxo

+ t x',"K,.~),(a'x,) e '"o'[e "'"o'j,(2I G(x,)) -j,(2Lq(xo))]
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X
kp

t x2

xq I~~~~(a x~) e' "~ [e '"&' j,(L G(xz)) j,-(Lq(x&)) ]dx&dx,

3/2I 2s(x ) -88~(x2)
y 3/2~ s(x&) -8'tt)(x~)

0 - x2

OO "2
—I! )( !!(!!x!!)e a (8 ! *!!—1)] x) I )!(!ax!)e *! (e *! —1)de!dx!

I0 0

With these expressions for I&„(l) up to second or-
der, we can evalute T(l):

I

get

T(l) = expI- rL'+Imp(l) +ID'(l)], (A70)

T(l) = expI- yL +Idio(l) +ID'(l) +Ig)(l) +Ioq(l) +Ipse(l)] .
(A69)

If we omit the last three terms in the exponent we

. which is referred to as the first approximation to

T(l). Then in this sense the second approximation
to T(l) is given by Eq. (A69).
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The effect of transmission of radiation through one mirror of a laser is investigated. For
a laser oscillator the result is to change the effective resonance frequency and Q of the cavity.
Using the same model for the cavity, a signal is injected into the active medium through the
transmitting window, and its effect on the system studied. When the external signal is strong
enough and sufficiently close to the natural frequency of the laser oscillator, the laser locks
its frequency to the input signal. The equations describing the system are solved over the
range of input frequencies where the laser is locked, and the resulting gain found. In the
high-intensity limit the medium saturates, and the gain tends to that of a lossy cavity. As the
input intensity vanishes, the gain approaches infinity and the system tends to a laser oscillator.

I. INTRODUCTION

It is the purpose of this paper to investigate the
effects on the operation of a laser arising from the
fact that to some extent it is in communication with
the rest of space outside the resonant cavity; i. e. ,

some of its internal energy is escaping through the
windows. As a result the effective cavity Q is
lowered, and there is a slight change in operating
frequency. Furthermore, using the same tech-
niques it is possible to consider the case of an ex-
ternal signal applied to the laser through one of its


