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A method used by Hemmer and Jancovici to calculate quantum corrections « the equation

of state for a hard-sphere gas is extended to cover the case of a more general intermolecular
potential. The basis of the method is an expansion of the partition function about its classical
limit, the terms in the expansion being integrals over products of classical correlation func-
tions and certain "modified" quantum Ursell functions. Conditions are discussed under
which this series can be truncated to give the quantum corrections to a specified order in h

(Planck's constant). A calculation of the first quantum correction is carried out for the
square -well-plus-hard-core potential.

I. INTRODUCTION

The usual method of calculating quantum correc-
tions to the classical equation of state uses the
Wigner-Kirkwood (WK) expansion. ' However, in
cases where the intermolecular potential is a non-
analytic function of distance, this method fails, and

alternative procedures must be found. Up to now,
most work has been on the second virial coefficient

For this case, the problem has essentially been
solved, insofar as methods are available which
allow the systematic calculation of the correction
terms. At high temperatures, the direct part of
8 can be found from its expression as the inverse
Laplace transform of the logarithmic derivative of
the Jost function. For the exchange part, one
again uses Laplace-transform techniques, in com-
bination with the Sommerfeld-Watson transform. '

In the case of higher virial coefficients, the only
work appears to be that of Hemmer and Jancovici
on the hard-sphere gas. The basis of their method
is an expansion of the partition function about its
classical limit, the terms in the expansion being
integrals over products of classical correlation
functions and quantum Ursell functions. The quan-
tum corrections, as a series in powers of the ther-
mal wavelength ~, can be found in a systematic way
from this expansion.

In this paper, we show that the basic method of
Hemmer and Jancovici can be extended to cover
more general intermolecular potentials. The ex-
tension of the formalism is straightforward, but
some consideration has to be given to the problem
of how to truncate the resulting expansion to get all
the quantum corrections to a given order in X. The
formalism, together with a discussion of this point,
is given in Sec. II. Section III is a review of the
hard-sphere case. In Sec. IV, we present a calcu-
lation for the square-well (with hard-core) poten-
tial. The first-order correction to the partition
function is obtained in terms of the classical radial
distribution function [Eqs. (17) and (33)], and an

explicit expression is given for the first-order cor-
rection to the third virial coefficient [Eq. (42)].

It should be noted that in the following work we

consider only the direct part of the virial coeffi-
cients —the effects of quantum statistics are com-
pletely neglected. If the potential is strongly re-
pulsive at small distances (as is the case for all
realistic potentials), it is expected that statistical
effects will be negligible at temperatures where a
series in powers of ~ is useful. This has only been
proved for the second virial coefficient, but it
seems clear that higher coefficients will exhibit a
similar behavior, since the physical mechanism
responsible for the rapid suppression of statistical
effects with increasing temperature is present in
all cases. "

II. EXPANSION OF PARTITION FUNCTION

Consider a system of N identical particles each
of mass m in a container of volume A. Let the
Hamiltonian be

H~ —II~+ VN ~

0

where BN is the kinetic energy of the N particles,
and V& is the total potential energy. Let

W„(1,. . . , N) = X "(r„.. ., rN
~

e ""
~
r, , . . . , r„),

(2)
where p=1/kT and &= (2vS p/m)'~2. The classical
limit of S'& is

W (1 N) = e """~"'
~ '"' (3)

(If the pair potential has a hard core, both W„and
~'& will vanish for particle configurations in which
hard cores overlap. In this case, WN can be taken
as zero also. ) We note that since both W„and W„'

possess the "product property, "
WN will possess

We now define a "modified" W function WN(1, . . . , N)

by the relation
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it also. This means that when the particles split
into two groups whose surfaces are separated by a
distance that is large compared with the potential
range and with the thermal wavelength X, W& can
be expressed as a product of two terms, one refer-
ring to each group.

In the usual treatment of a quantum gas, S'& is
expressed in terms of Ursell functions U, .' In an
analogous way, we express S'& in terms of "modi-
fied" Ursell functions U, :

W", (1)= U", (I) = 1,

Wp (1, 2) = 1+ U2 (1, 2),

W,"(1,2, 3) =1+U, (2, 3)+U, (3, 1)

(5)

(8)

+ U"(1, 2) + U"(1, 2, 3), (7)

Wg(1, . . . , N) = 1 +5 U2 (i, j) +Z Us (i, j, k)

+5 U4(i,j, k, l)+Z Ug(i, j) Ug(k, l)+ ~ ~ ~

(8)
Equation (8) is obtained by taking a partition of the

N particles in groups, making the corresponding
product of U, functions, and summing over all pos-
sible partitions. These equations can be solved
sucessively for U„U&, .. . .

U2 (1, 2) = Wp (1, 2) —1,

U~ (1, 2, 3) = Ws (1, 2, 3) —W2 (2, 3)

—Wz(3, 1) —W2(1, 2)+2, etc. (10)

Since the W& possess the "product property, " it
follows that U, will possess the "cluster property. "
This means that W approaches zero for a config-
uration in which the l particles are separated into

two or more groups sufficiently distant from each
other.

We define

@=fW„(l, . .. , N) d "r, (11)

q'= f W„'(1, . . . , N) d'"r, (12)

g, (1, . . . , l) = (&'/Q') f W„' (1, . . . , N) dsr„; d'r„
(13)

Note that g, is a classical correlation function. In-
serting the expansion (8) into (4), and integrating
over the coordinates, gives

()=(i'((rii ZJ((~((, j)U~(i, j)dr
+ 0 Z fgs(i,j, k) Us (i,j, k) d r
+04+fg4(i, j, k, l)

x(U4(i, j, i, ()r ii)(i r')rr, (i, )l]a'
)

. (W'r)r

Once 44) nas been calculated, the free energy E is
given by

E = —kT 1n(Q/NIl(. s")

and the pressure by

(18)

where

p=N/A

We wish to use (14) to calculate quantum correc-
tions to Q at moderately high temperatures, where
X is small. In general, these corrections will take
the form of a series in powers of X. The expansion
(14) will be useful only if it can be truncated in
some well-defined way, to give the total correction
to a specified order in X. The X contribution from
a factor U, depends on the potential, and we now
consider various cases.

The simplest case is that of hard spheres, for
which U& is identical to the usual Ursell function
U, . The contribution from U, to a term in (14) is
determined by two factors. First, the correlation
functions vanish for a particle configuration in
which hard cores overlap, and second, U, vanishes
whenever the particles separate into two groups
with a distance» X between surfaces. This means
that the entire contribution comes from configura-
tions in which the distance between centers of
neighboring spheres is r, where a & r & a+X (a is
the sphere diameter). It follows that the contribu-
tion from U, to an integral in (14) is of order X' '.

Turning now to more general potentials, we note
first that, by their construction, the U, vanish ex-
cept for configurations in which the particle sepa-
rations are such that quantum effects are present.
For example, for a pure square-well potential
[v(r) = —e, r&b, v(r) =0, r& b], quantum effects are
negligible unless neighboring particles are sepa-
rated by a distance x, where )r —5 (

& X. In this
case, the contribution from U, is of order ~' '.
This result can be extended to a potential which is
a finite chain of rectangular wells, with or without
a hard core —again the contribution from U, will be
of order X' '. [This phenomenon of the occurrence
of quantum effects only at the potential boundaries
is illustrated by Eq. (32), which gives Um for a
square-well-plus-hard-core potential. ]

The situation becomes less clear when we go be-
yond these simple potentials. Consider a potential
which is analytic and sufficiently repulsive at the
origin, so that the WK expansion exists. The quan-
tum corrections to Q will then be given as a series
in powers of X . In Appendix A, we show that it is
necessary to include contributions from both Uz and

U3 in order to get the first-order-correction term.
The order of the contribution from a general U,
does not seem to be obvious.

Finally, consider a potential which is analytic ex-
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cept at a finite number of points (e.g. , a Sutherland
potential). One might argue that the dominant quan-
tum effects occur in the neighborhoods of these
points, and that U& will contribute to order &' ', as
in the rectangular-well case, but this conclusion is
only tentative. However, it seems fairly certain
that the first-order correction (of order X) will
come entirely from U2, and since this is about all
one would be able to calculate in practice, the
method is applicable.

Let us now assume that the potential is such that
the first-order correction is contained entirely in
the U3 term. Then (14) gives

pp'= p- —,
'

happ g(r) —r'dr
df'

For the hard-sphere gas this becomes

pp'= p+ v a g(a+) p ~

(26)

(27)

P = P + g ~2
~

—p —
~

—+ 0(X ).c 3 ~& 3 S (P' 3

&a 8p &p

Expanding the pressure in a virial series,

PP= p+~ B.p",
n~2

(2s)

(29)

We can eliminate g(a+) between (25) and (2V) and

substitute in (21) to give

Q = Q' [1+ N(N —1)c3/0+ O(X )],
where

c3= g3(1, 2) U3 (1, 2) d r (is)

substituting in (26), and equating powers of p, gives
the first-order correction to all the virial coeffi-
cients:

PE/N= PF'/N pc3+0(X-) (2o)

For a spherically symmetric pair potential, this
can be written

c3 = 2v J g(r) U3 (r) r'dr, (19)

where g(r) is the (classical) radial distribution func-
tion. The free energy is given by

I3„=B'„[1+ (n —1) ~ v 2 (X/a) + 0 (X )] .
IV. SQUARE-WELL POTENTIAL WITH HARD CORE

The potential is

v(r)=~, r&a

v(r)=-&, a&r&b

v(r)=0, r&b.

(3o)

(31)

and the pressure by
2

p=p ———(pc3)+O(X ).e P ~ 2

p

U3 (r) can be found from the solution of the quan-
tum-mechanical two-body problem. From (9), it
can be written in the form

The function X G(r, r; p), to first order in X, is
calculated in Appendix B. From (Bio) and (22) we
find,

U3(r)= —v2 X e L 3 5(r —a+)—-86 -1 1 1 I" —y
41 4I" I"+ y

U, (r) = 2"' e'"'"' ~3G(r, r; P) —i, (22)

where v(r) is the two-body potential and

G(r, r;P)-=(r~e "3 ~r), (23)

where H2
' is the Hamiltonian for the relative motion

of the two-particle system.

III. HARD SPHERES

This case has been considered in detail by
Hemmer' and Jancovici, '3 and we include it only
as the simplest illustration of the method. The
Ursell function is

(32)

rr;w @~~I.," .=-~(.-~ I o(~)',1 I'-y
4y' I"+y

where L ' is the inverse Laplace transform opera-
tor defined by (B5), a = X /2v, y = p'~3, and I' =y
—m&/h . Substituting in (19), doing the r integra-
tion and then the inverse transform, gives

c3= —2' 'v [e"a'y(a)+ e(pe) b'y(b)]X+0(&'), (33)

where

U3(r)= —2 ' X 5(r —a+)+O(X ), r&a (24) e(x) -=1+e"—2e "~' f3(-,' x). (34)

where a is the sphere diameter. Thus

c,= —2 '~
w a'g(a+) X+0(&'). (26)

This value can be substituted in (20) and (21) to give
the first-order corrections to F and p. Of course,
the p differentiation in (21) cannot be performed ex-
plicitly, since g(a+) is density dependent.

The equation of state for a classical gas in terms
of the radial distribution function is'

Io is the modified Bessel function of the first kind
and order zero. We have also introduced y(r),
which is related to the radial distribution function
g(r) by

y(r)=g(r) e'"'"'.

Equations (33), (20), and (21) give the first-order
corrections to E and p.

From (26), the classical equation of state is
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pp'= p+ —,'v [e
' a'y(a)+(1 —e ') b'y(b)] p2. (36)

Comparison of (33) and (36) shows that it is not pos-
sible to eliminate the distribution function in favor
of the pressure, as in the hard-sphere case. How-

ever, for a pure square well with no hard core, this
elimination is possible, since the y(a) terms vanish
from (33) and (36). For the potential

21v2"-—— [V1 V„- 2 P(VJ V„) j
24m

(A2)

The usual WK expansion of Q can readily be obtained
directly from (Al). However, we wish to investi-
gate its relation to our present formalism. We
assume VN can be written as a sum of pair poten-
tials:

v(r)= —~, 1&b

v(r) = 0,

we find

(37)
V Vip

f&j

Applying (Al) to (9) and (10) gives

Usss (1 2) 2y2

(A3)

B„=B„1+(n—1) 4 v2 2,
—+0(X ) . (38)

e(pe) x

y(3') =y3(2')+P y1(&)+P'y2(3')+' ' '

which leads to

B„=B'„+(n—1) 2 '~2v [e2' a y„2(a)

(39)

+ e(P&) b' y„,(b)]X+0(&2). (40)

Since y2(r) = 1, we get for the second virial coeffi-
cient

B=B'+2 '
w [e 'a +8(pe)b ]X+0(X ), (41)

which agrees with previous calculations. "'
y, (r) has been calculated by Kirkwood, so the

first-order quantum correction to the third virial
coefficient can be obtained. It is rather lengthy to
write down, and we give the result only for the

special case where b = 2a:

C = C'+ ~~ v 2 (—', ma ) [e '(5 —22&+ 54& )

+4 e(pe) (—136+27& )] (X/a)+0(X ), (42)

where

APPENDIX A: WK EXPANSION

We show that if the WK expansion applies, the
first quantum correction (of order X ) to the parti-
tion function, as given by (14), comes from the U2

and U3 terms.
The WK expansion to first order is

where

(A1)

This equation applies only to the direct part of the
virial coefficients, since statistical effects have

been completely neglected in its derivation. Since
the potential does not have a hard core this may not
be a good approximation to the total virial coeffi-
cient.

In the case where the hard core is present, one

can obtain explicit expressions for the first few
virial coefficients by making use of the density ex-
pansion of the radial distribution function. ' We
write

X [V12 V12 —2 p (V12V12) j+ 0(X )1 (A4)

U3 (1, 2, 3)= X P (V12V12 V23V23+ V23V23 V31V31

+ V31v31. V12V12)+0(X ) (A5)

Q = Q'[1+ 2N(N —1) (U2 (1, 2)),

+7] N(N l)(N- 2)-(U3 (1, 2, 3)),+ ~ ~ ~ ], (A6)

where

&f),= (9') J W'„f(r, , . . . , r~)d "r .

Using (A4) and (A5),

1) =S) ()—N(N —1) 1 ((Vss sss),

——,p [((V,2v12) ),+ (N —2)

x(vssvss vssvss). ))+0(S )]
It is easily shown, by integration by parts, that

& V,'V„&, = P & ( V, V„)'), .

(A8)

(A9)

Inserting (A3) gives

( V12 V12)v p[&(V12 V12) )v+ (N —2) ( V12 V12 ~ V23 V23)cj .

From (A8) and (A10),

Q= Q'[1+ h N(N —1)q/0+0(& )],
where

)f = —2 Q (V12 v12),
p p

24m

fd (r ) V'v d'r,

(Al0)

(Al 1 )

(A12)

which is the usual result. '

APPENDIX B: G(r, r; P) FOR SQUARE-WELL POTENTIAL

We wish to calculate X G(r, r; P) correct to first

It follows from the cluster property that U, for
l &3 does not contribute to order ~ .

Rather than substituting directly in (14), we go
back to (8). Multiplying by W))) and integrating over
the coordinates gives
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order in X for the square-well potential (31). We
assume». «a and &«(b —a). To first order in X,

the curvature in the potential boundaries can be
neglected. '6' This enables us to write

G(r, r; P) = —a&'G, (r, r; P), (Bl

where G& is the one-dimensional function defined
by

~ . ~ y) u(x&= 0, Rey 0
d m v(x)

dx' (B8)

and ~(u&, uz) = u&uz —u,'uz is their Wronskian.
The calculation for the square-well potential is

straightforward. The result is (we need only diag-
onal elements)

Gq(x, x; y) = 0, x&a

where

(x' x' p) = (x' le "oD lx& 1 I"-e- r&~-~& —y -zr&a-~&
2I' I"+ y

la d
Hon =

z + V(x)m dx

Here, v(x) is the one-dimensional potential

3) a&x&b (B9)

Gg(x, x; y) = ——1. — e, x&b,
1 I'- y 2y(„-~)

2y I'+ y

v(x) = ~, x&a

v(x) = —e, a&x&b

v(x) = 0,

(B4)

To calculate G&, we use the fact that its Laplace
transform is the Green's function of the negative-
energy Schrodinger equation. This Green's func-
tion can be constructed, in the usual way, from two
linearly independent solutions of the Schrodinger
equation. If we use the symbol

where I = y —me/8 . In deriving this, we have
neglected terms such as exp [—2I'(b —a)] which
give exponentially small contributions to G, (x, x; P).

Equation (B9) can be further simplified by using
the 5-function expansions of the exponentials.
We need keep only the first term, and the result is

G&(x, x; y) = 0, x&a

1 1 1 I'- y
G, (x, x; y) = — + z 5(x —a+)—4r r+ y

C+f oo

dpe '
27FZ C

(B5)
1&5(x —b —)+ 0 —a, g&x&b

(B10)
for the inverse Laplace transform, and let y= p'
o. = ». /2v, then the relation is

G~(x', x; P) = L~ G)(x-', x; y),
where

Gg(x', x; y) = [~(ui uz)l»(x&) a( ))~

u&, u2 are solutions of

1 1 I'- y 1
G, (x, x; y) = ——+ ~ 5 (x —b+) + 0 ~2y 4y I'+ y y'

x&5 .
One could now perform the inverse Laplace trans-
forms, and obtain G (r, r; P) explicitly. However,
in our application, it is easier to leave the inverse
transform until after the coordinate integrations.
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A theory for calculating low-frequency component electric microfield distributions for a
plasma containing more than a single ion species is developed. Calculations at a charged
point are made for a plasma containing N' singly charged ions and N' doubly charged ions
together with a charge neutralizing number of electrons, N~(N~=N" + KV"). Three different
ion ratios (R=—N /N') are treated: R=0.0, 1.0, ~. It is shown that the calculations allow for
all ion-ion correlations to a high degree of accuracy. Numerical results are shown both
graphically and in tabulated form.

I. INTRODUCTION

In recent years considerable effort has been de-
voted to the problem of spectral line broadening in
plasmas. ' 3 In relation to this problem various
theories of the static electric microfield distribu-
tions have been formulated. " However, all of these
theories and subsequent calculations have only been
concerned with plasmas containing a single positive-
ion species. The purpose of this paper is to extend
the theory developed by one of us to treat plasmas
containing more than a single species of positive
ion. Calculations for a plasma containing two posi-
tive-ion components have been made; the procedure
for extending the calculations to situations with
more than two species is indicated.

In this paper, calculations are made for a plasma
that contains N' singly charged ions and N" doubly
charged ions (N=N'+N") together with a charge
neutralizing number of electrons N, (N, = N'+ 2N").
It is assumed that ions interact with each other
through an effective potential which includes elec-
tron-ion shielding. This model is the two-compo-
nent analog of the single-component low-frequency
model previously developed. ' Since helium plas-
mas may have both singly and doubly charged
species present, the model proposed here is ap-
propriate for discussing the effect of a helium plas-
ma on a radiating He' ion (He'=Herr) or He atom.

As in the papers dealing with singly charged per-
turbing ions, the calculation of the electric-micro-
field distribution at a neutral point (e.g. , at a He
atom) is just a special case of the charged-point
development obtained by setting the charge at the
origin equal to zero.

To make the mathematical development more
general, we make the assumption that it is valid
to consider a two-temperature plasma, one tem-
perature for the ions, T, and one for the electrons
T, . This procedure implies that while the ions
may be considered to be in equilibrium with each
other, and the electrons with each other, that the
ions are not necessarily in equilibrium with the
electrons. In the event that a true equilibrium situ-
atiori prevails, T, = T, .

All numerical results presented here assume an
equilibrium situation. The actual distribution func-
tions are expressed in reduced field units which are
a function of electron density only. The calcula-
tional programs that we have developed are quite
general; they allow for the possibility of a two-
temperature plasma, for the possibility that there
may be any number of charged-ion perturber species
(i. e. , singly, doubly, etc. ), and for the possibility
that the radiator may have any degree of ionization.

Section II of this paper deals with the formal cal-
culations. The asymptotic expressions for the
microfield distribution function age presented in


