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Experimental differential scattering cross sections for excitation of helium by electron im-
pact from its ground state to its 2 S state are presented at four incident electron energies in
the range 26-55. 5 eV for scattering angles between 10' and 70' and at 81.6 eV for scattering
angles between 10' and 80 . These differential cross sections are normalized by using previous-
ly determined 2 P cross sections and measured 2 S/2 P cross-section ratios. These experi-
mental cross sections and cross-section ratios are compared with results predicted by the
Born approximation, the polarized Born approximation, and several other first-order approxi-
mations in which direct excitation is calculated in the Born approximation and exchange scatter-
ing in various Ochkur-like approximations. Calculations based on these approximations are
also compared to the data of other experimenters at energies up to 600 eV. The effect on the
small-angle scattering of several nonadiabatic dipole-polarization potentials is examined. For
the 34—81.6-eV energy range, it is shown that the inclusion of polarization is necessary for ac-
curate predictions of the angle dependence of the 2 S cross sections at small angles. Cross sec-
tions resulting from the use of analytic self-consistent-field wave functions for both the ground
and excited states are presented. They agree well with those obtained from more accurate cor-
related wave functions.

I. INTRODUCTION

In many cases, the first Born approximation has
been successful in explaining the differential cross

sections for electronic excitation of atoms and
molecules by electron impact at high energies (E
greater than about 150 eV) and small scattering
angles (less than about 15 ). ' ' This is the region
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TABLE I. Measurements of the DCS's for the 1'S-2~S
transition in helium.

Ref.

9R

9R

9R

10
11
14

2
2
2

12b
13b

Present
Present

Z (eV)

604
511
417
500
500

50-400
300-400
150-225

100
56. 5
22
81.6

26. 5-55. 5

0 (deg)

7. 6-8.6

3. 8—8. 8
7.4-9.4
4. 7-15.3
0. 5-2. 5

5
5-10
5-15
5-20
5-60

20-145
10-80
10-70

'The 2 ~S and 2 ~P peaks were not completely resolved
in all the spectra reported in these references.

"The cross sections are given in relative units.

where a study of the assumptions behind the first
Born approximation leads us to expect it to be most
valid, although the quantitative validity of the theory
depends on the particular nature of the transition. '6
It is desirable to find a calculational scheme, as
simple to apply as the first Born approximation,
which represents the essential features of the scat-
tering process at intermediate impact energies
(& =- 15-150 eV).

In a previous article we presented a theoretical
and experimental study of the electron-scattering
differential cross sections (DCS's) for the (1s )1'S- (Is2 P)2'P transition in helium. In that paper we
show that the experimentally measured angle de-
pendence of the DCS for 0 & 40' and E=34-82 eV
agrees well with that predicted by the first Born
approximation, which neglects the effects of elec-
tron exchange, distortion of the scattering-electron
wave function, and polarization of the target by the
incoming electron. In the present article we use
similar methods to study the (1sa)1'S- (1s2s)2'S
transition. We find, however, that it is necessary
to include polarization of the target, and we use
the polarized Born approximation (a first Born cal-
culation augmented by polarization) to explain the
experimental data. We again show that it is not
necessary to treat exchange and distortion accurate-
ly to explain the main features of the angular depen-
dence of the small-angle DCS. We discuss experi-
mental and theoretical results for the ratios of the
cross sections for these two excitations and for
both the differential and integral cross sections for
excitation of the 2 S state.

The previous DCS studies ' ' of the 2 S state
are limited to small scattering angles e & 20 (ex-
cept for energies near threshold and for the data
of Ref. 12 which are in error at large 8 due to

TABLE II. Measurements of the DCS ratios 2 S/2'P.

Ref.

23
9

10
11

2

17
2

18
2

19
12
16
24
25
22
14
26

Present
Present

E (eV)

25 000
511
500
500

300-400
235

150-225
202
100

22-80. 8

56. 5
50

48 and 500
48
46

50-400
30-50

81.6
26. 5—55. 5

& {deg)

0
4. 0—8. 8

6. 3—15, 3
0. 5-2. 5

5-10
9

5-15
0

5-20
0

5-60
0

0-12
0-12
90

5
5-100

10-80
0-70

'Some of these results were presented in a preliminary
communication (Ref. 83).

double scattering"). These studies are summarized
in Table I, where they are compared with the pres-
ent experimental conditions. There are several
previous experimental determinations of the 2'S/
2'P DCS ratios. ' These are summarized in
Table II, where the energy and angular ranges are
compared to the present work. By using our ex-
perimental cross-section ratios and our approxi-
mate normalization of the 2~I' DCS's (Ref. 7) we
can put our 2'8 DCS's on an absolute scale. Further,
we integrate our 2'S DCS's to obtain experimental
estimates of the absolute 2~S integral cross sections
for impact energies E= 26. 5-81.6 eV. The only
previous experimental estimates of this quantity
were obtained by Dugan, Richards, and Muschlitz '
for E = 25-135 eV and by Vriens, Simpson, and
Mielczarek for E =100-400 eV.

Kim and Inokuti' concluded from a study of the
available low-angle data in the 200-400-eV in-
cident-energy range that the Born approximation
is valid down to lower energies for excitation of
the 2'P state than it is for excitation of the 2'S
state. We study this question further in this paper.
Moiseiwitsch and Smith pointed out that the Born-
Oppenheimer approximation, which includes ex-
change effects, is much worse for S -S transitions
than for S —P transitions. This fault occurs be-
cause the Born-Oppenheimer approximation
greatly overestimates the effect of exchange for
the former case. We bypass this difficulty by ac-
counting for exchange using several Ochkur-like
theories. ' ' " These theories give more reason-
able predictions for the niagnitude of the exchange
effect and show that for qualitative purposes we
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FIG. 1. Ratio of DCS of the 1 S—2 S transition to
that of the 1 S—2 P transition as a function of scattering
angle 0 for E=26.5 eV. The circles (with error bars)
are the present experimental results and the curves are
calculated by the indicated method. The dotted line was
obtained with b = (~4) b~ = 1.93ao and the dashed line with
b=2(+4) b~ =3.86ao. The value of e is 1.584ao' in both
cases.

in Figs. 1-3 along with the results of several
theoretical calculations which are discussed in
Secs. III and IV. The error limits assigned to
these ratios, except at 81.6 eV, are the average
deviations of 4-7 determinations at each angle.
Each 81.6-eV datum represents a single de-terminationn.

The 2'S/2'P (and 2 S/2'P, 23P/2'P, and
33S /2'P) intensity ratios at 6 =0' agree well with
those of Chamberlain, Heideman, Simpson, and
Kuyatt" at E = 55. 5, 44, and 34 eV but disagree
with theirs at E = 26 eV. Since a change in our
E of + 0. 5 eV (which is within our uncertainty in
E, see Ref. 7) completely resolves this discrep-
ancy, we shall assume that E = 26. 5 eV in this
case.

The absolute 2'S DCS's are computed from the
above intensity ratios and the renormalized ab-
solute 2'P DCS's from Ref. 7 as discussed below.
The extrapolation procedure used in Ref. 7 to
facilitate normalization of the 2'P DCS's assumed

40
I

may neglect exchange at small scattering angles.

II. EXPERIMENTS

The electron-impact spectrometer and data-col-
lection procedures used to obtain the experimental
results reported here have been described pre-
viously in Ref. 7.

The basic experimental measurements consist
of the determination of the intensity of electrons
scattered after losing an energy corresponding to
excitation of the O'S state relative to the intensity
resulting from excitation of the 2'P state as a
function of scattering angle for a fixed incident
energy. These intensity measurements were taken
from the same energy-loss spectra used to obtain
much of the data presented in Ref. V. The 2'S/
2'P intensity ratios are determined by dividing the
height of the O'S energy-loss peak by that of the
2 'P peak at each angle and energy (0' & 9 & 70' for
E =26, 34, 44, and 55. 5 eV and 10' & 6) & 80' for
E = 81.6 eV). Peak heights rather than areas can
be used since the peak shapes were found to be in-
dependent of scattering angle. The instrumental
factors relating the peak intensities to their re-
spective DCS's are the same, to a good approxi-
mation, for both the 2'S and the 2'P energy-loss
features in any one spectrum; therefore, these
intensity ratios equal the corresponding DCS ratios.
These experimentally determined ratios are shown

O
I—

1.0—

0-
I—
P) 0.4-
LLJ

z'

O. I

0.05
15 30 45

e(deg)
60 75 90

FIG. 2. Ratio of DCS of the 1~S-2 S transition to
that of the 1 S—2 P transition as a function of scattering
angle 0. The present experimental results at E = 55. 5
(triangles with error bars and connected by a solid
curve), 44 (circles with error bars and connected by a
dashed curve), and 34 eV (squares with error bars and
connected by a solid curve); the results of Lassettre,
Skerbele, Dillon, and Ross (Ref. 25) at E=48 (short-
dashed curve) and a vaiue from Doering (Ref. 22) at
46 eV (asterisk) are shown. The monotonic solid curves
are calculated at 34, 44, and 55.5 eV in the Born ap-
proximation.
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FIG. 3. Same as Fig. 1 except that E=81.6 eU. The
circles are the present experimental results; the aster-
isk is the 0' result of Chamberlain, Heideman, Simpson,
and Kuyatt (Ref. 19) at E = 80.7 eV. The solid curve is
calculated in the Born approximation (B) and the dotted
curve in the polarized Born approximation (B/PB') with

G. = 1.584ao and b =
4 b~ ——3. 89ao.FW

scattering predict DCS's which rise significantly at
high angles. " Consequently, we renormalized the
2 P DCS's presented in Ref. 7 by assuming a con-
stant cross section for angles greater than those
for which data were obtained. These renormal-
ized values are lower than those of Ref. 7 by 1.6%
atE= 81.6eV, by 7. 6% atE= 55. 5 eV, by 8.0%
at E = 44 eV, by 7. 8% at E = 34 eV, and by 19.5%
at E = 26. 5 eV. The normalized experimental
2'S DCS's are presented in Figs. 4-8, along with
the results of several theoretical calculations
which are discussed in Secs. III and IV.

The error bars assigned to the 2 'S DCS data
include the error in the ratios and uncertainties
in the shape of the 2'P DCS's and, therefore, in-
clude the uncertainty in the angular dependence of
the 2'S DCS's but only part of the uncertainty in
their magnitude. The percentage uncertainty in
the over-all scale at each energy is approximately
equal to the "estimated percent error" in the in-
tegral of the 2'P DCS's given in Table II of Ref. 7.

The 2'S integral cross section Q(E) is related to
the DCS I(E, 6) by

Q(E) =2m f f(E, 6) sin8 d8 (1)

that the cross sections decrease monotonically
with increasing angle. However, close-coupling
calculations of electron-hydrogen-atom ls-2p

lo-I— E = 54eV

i
I

I
I

I
I

I
I

I
I

I

IO ~—
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CU 0
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(f)

Cl

lo-'—

I

0
a I

l5
I s I i I i I i I

30 45 60 75 90
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FIG. 4. DCS vs scattering angle for E=26. 5 eV. The
circles (with error bars) are the present experimental
results. The curve labeled BORB I(SCF) is calculated
in the symmetrized Born-Ochkur-Budge approximation
with the SCF wave functions. The other curves are
calculated in the indicated approximations using the
accurate generalized oscillator strengths (Refs. 5 and 75).

l5 300 45 60 75

e(deg)
FIG. 5. DCS vs scattering angle 8 for E =34 eV. The

circles (with error bars) are the present experiment, al
results. The curves are calculated using the accurate
generalized oscillator strengths (Refs. 5 and 75). The
upper dotted curve is calculated in the polarized Born
approximation with & =1.584ao and b =+4b& =2.19ao.
The lower dotted curve is the same but renormalized
to experiment at 0=10 . No other calculation is re-
normalized.
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lo-'—

I
I ~ I I

I
I

I
I

I

E = 44eV
mated percent error given in this table includes
contributions from both regions of the integral
and includes the uncertainty in both the shape and

scale of the 2'S DCS's.

OJp0

C3
C3

IO

III. THEORY

A. Scattering Equations

Many aspects of the theory of electron scatter-
ing by the helium atom are well developed.
In particular, the channel wave functions F» (r)
in the expansion in atomic eigenstates method
satisfy coupled equations of the form4'4'

1 d l, (l, +1)

y '-1

IOO I

0 l5 30 45 60 75 90

e(deg)

FIG. 6. Same as Fig. 5 except E=44 eV and b=2. 49ao.

where L and S are the total orbital- and spin-
angular-momentum quantum numbers, respective-
ly, ~ is the separation between the scattering elec-
tron and the atomic nucleus, y denotes the state
of the atom, ky is the wave number of the elec-
tron when the atom is in state y, ly is the relative
orbital-angular-momentum quantum number of the
electron, the subscript 1 denotes the ground state
(1'S) of the helium atom, V». are matrix elements
of the (nonlocal) effective potential V, and the sum

In order to perform this integration, the 2'S DCS's
are extrapolated to 0' and to 180 . The extrap-
olation to 0' introduces little uncertainty into the
integral (see Ref. I) but the extrapolation to 180'
is subject to large uncertainties since the 2'S
DCS's are generally rising at the highest angles
for which data are obtained. The contribution to
Eq. (1) of the extrapolation to 180' is assumed to
be

Q,„,(Z) = 2'(E, 8 ) fsin8 , d8
IQx

where 8 is the largest angle for which data. are
obtained. Table III gives the contributions to
Q(E) from angles less or greater than 8 and the
resulting 2'S integral cross sections. The esti-

Io-)—

~ IO~-

CA

C3
Cl

TABLE III. Integration of the 2 S DCS's to obtain
integral cross sections Q(10 ao).

E (eV) (deg)

Contributions to Q
Estimated

Q Vo error

26. 5
34
44
55. 5
81.6

70
70
70
70
80

2. 2
2. 8

2. 5
2. 6
2, 5

0. 7
0.4
1.5
3.0
0. 9

2. 9
3.2

4. 0

5. 6
3.4

50
35
48
52
58

9075600 30 45
8 (deg)

FIG. 7. Same as Fig. 5 except E = 55.5 eV and b
= 2.79ao. The curve labeled SMM is an experimental
result from Ref. 12 (56.5 eV) and is normalized to the
lower dotted curve at 30'.
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l
0-I

I

l
I

l
I

I
O~

B/PB (SCF)

Born-Ochkur-Rudge (BORB I), the Born-transferred
Kang-Foland (BTKF), and the Born-transferred
Vainshtein-Presnyakov-Sobelman (BTVPS) approx-
imations. These methods have been discussed with
appropriate references in Ref. 7 and the reader is
referred there for details. Calculations which ne-
glect the polarization potential U, i. e. , approximate
f„„.by setting f„„.= 0, will be called static approxi-
mation calculations.

For the 1 'S- 2 'P transition, the direct local
part of Vyy& has the form"

V„„,(y)-O(~ '), larger . (4)

lo~ l

0 50 R5
8(deg)

60 75 90

This is a long-range potential 2nd should dominate
small-angle scattering. Thus, the successes2'7
of the static approximation for the treatment of
small-angle scattering involving the 1 ~S- 2 ~P
transition should not be surprising.

For the optically forbidden 1 'S - 2'S transition,
however, the static approximation potential V has
the asymptotic form '

V», - O(e '"), large r

FIG. 8. Same as Fig. 5 except E=81.6 eV, b

=3.39ao, all the data are shown (circles without error
bars), and no renormalized calculations are presented.

is over all atomic eigenstates y in the (necessarily
truncated) expansion of the wave function. For a
particular transition we may obtain an approxi-
mate solution to Eq. (3) by truncating the atomic-
state expansion at two states and including the ef-
fects of the omitted states by adding to V an approx-
imate generalized optical potential U. 4"3 A first-
order approximation to the transition amplitude
is then obtained by taking the matrix elements of
(V+ U)» between plane-wave approximations to
the channel wave functions. The scattering ampli-
tude can be written

where c & 0. Since this is such a short-range po-
tential, we must examine the asymptotic behavior
of U~ to determine the dominant contributor to
small-angle scattering.

The long-range behavior of U». can be obtained
in the adiabatic approximation, ' which assumes
that fluctuations in the incident particle's kinetic
energy are small compared to fluctuations in the
energy of the target (virtual excitations).
When the adiabatic approximation is made in the
initial state (electron in the field of helium in its
l S state), the polarized Born transition amplitude
is calculated using V»+ U». When the adiabatic
approximation is made in the final state (electron
in the field of helium in its 2 S state), the polar-
ized Born transition amplitude is calculated using
V~2+ U2~. The generalized optical potential has
the asymptotic form

where f„„.is the Born-Oppenheimer'4 amplitude
due to scattering by V,„. and f~. is the polariza-
tion amplitude due to scattering by U». . In order
to eliminate some of the special problems in

f„„.due to difficulties in making a first-order ap-
proximation for the exchange scattering, we will
usually substitute the Born approximation for the
Born-Oppenheimer approximation, i. e. , neglect
the exchange contributions to f„„o. To test the
validity of this procedure, we have computed some
cross sections using Ochkur-like methods which
approximately correct the Born (B) approximation
for exchange scattering. The methods include the
prior form of the Ochkur (0), the prior form of
the Born-Ochkur-Rudge (BOR), the post form of
the Born-Ochkur-Rudge (BORP), the symmetrized

where

f' ~ 00

n;)/2r

o.(, = 2Z„Z)„Z,*„/(E„—E, )

The sum over n is over all n ~P states (and includes
an integration over the continuum). E„ is the en-
ergy of atomic state y(i~S, j~S, or n'P) and

Z, „=&i''Slz, +&,~~'P) .
The quantities zz and z~ are the z components of
the position vectors of the two electrons on the
helium atom.

Any of the standard techniques of perturbation
theory can be applied to evaluate a&&, that is, we
could use direct summation of the expression re-
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—n, ,/2~', r & b

—n, ,r/2b', r & b

—n, ,/2r', ~& b

0 , x&b

(1O)

(11)

(i2)

(13)
as approximate representations of the transition
polarization potential for all x. The forms are
chosen so that by making b large we can reduce the
polarization potential for r & b from its asymptotic
form. Increasing the value of b can also simulate
the main nonadiabatic effect, which is a further
reduction in the potential from its adiabatic form.
In this regard the form 8', which has not been used
previously, is apparently the most realistic of
the four.

The scattering amplitude in the polarized Born
approximation (B/PX) is

fB/P f8+fP

and in the polarized Born-Qchkur-Rudge approxi-
mation (BOR/PX) is

fBOR P/fBOR fP

where f and f "are the usual Born and Born-
Ochkur-Rudge scattering amplitudes, f is the scat-
tering amplitude calculated using the transition
polarization potentials given by Eqs. (7)-(13), and
X=A, B,B', or C to denote the form of the polariza-
tion potential used in the calculation. U&/ and f
depend on the phases of the bound-state functions in
the same way; thus, the polarized Born cross sec-
tions (proportional to the squared modulus of f )
will be independent of the phases of the bound-state
wave functions. %Ye choose the spatial part of the
1 S bound-state wave function positive. The spatial
part of the 2~8 bound-state wave function is chosen
negative at the nucleus and positive at large r~ and

suiting from an expansion in unperturbed eigen-
functions, the Z expansion, ' ' or Buckingham's
variational-perturbational method for obtaining
first-order perturbed functions. "" The variation-
perturbation method has the advantage that it can
be used to compute very accurate values of the
transition polarizabilities. Drake' has applied
this method to obtain the static transition polariz-
abilities using 50-term correlated wave functions.
The construction of the basis sets used for his cal-
culation is described by Drake and Dalgarno. 6

Drake finds na&-—101.6ao and mfa 1.584ao.
Even in the adiabatic approximation, the asymp-

totic form [Eq (6.)] is not valid at all x, and we
use the two-parameter forms

U",, = —n, //2(r +ha)2,

—n, ,/2~', r & b
—n;, /2b, r~ b

ra . In this case f is positive for all scattering
angles 8, and a;; is positive when evaluated theo-
retically. The transition polarization potential U;&

is spherically symmetric, and thus f can be ob-
tained analytically for the potentials of Eqs. (7)-
(13).

The scattering amplitude associated with U;; is
positive for all 9. The scattering amplitudes
associated with the 8, I3', and C forms of the polar-
ization potential may be positive or negative, de-
pending on 0. However, since all four forms lead
to f being positive at small e, the polarization
amplitude will interfere constructively with f there
and will increase the small-angle scattering. Since
the form of f for large 8 depends on the uncertain
details of the small-r form of U,/(x), we cannot
trust the predictions of this simple polarization
model at large scattering angles. By using more
than one small-x form for U&&, we get an estimate
of how large a scattering angle can be treated with-
out a better model for the polarization potential.

Previous treatments of the polarization effect
indicate that n;& should be independent of energy
and equal to the static transition polarizability but
that the cutoff parameter b in Eqs. (7)—(13) should
be energy dependent. Mittleman discussed the
polarization effect for inelastic scattering and con-
cluded that nonadiabatic effects may be larger in
this case than for elastic scattering, i. e. , b may
be very large.

There are at least two reasons why we might ex-
pect nonadiabatic effects to be larger for elec-
tronically inelastic scattering than for electronical-
ly elastic scattering. (i) A change of electronic
state is a nonadiabatic phenomenon. (ii) Elastic
scattering is dominated by large la (large impact
parameters in semiclassical language). At any
given energy, the relative velocity along the line
connecting target and projectile is smaller for
larger impact parameters than it is for smaller
ones. Consequently, electronic adiabaticity (which
roughly depends on the relative velocity being
smaller than the average kinetic energy of the
bound electrons) is more likely when /~ is large.
Inelastic-scattering cross sections are smaller
than elastic-scattering cross sections, so that they
depend more on low-partial-wave scattering; thus,
the adiabatic approximation should not be as ac-
curate for inelastic scattering as for elastic scat-
tering.

Polarization corrections must become small at
very high energies. Nevertheless, in treating
electronically elastic scattering, it has been found
that use of the static polarizability and a value for
the cutoff about equal in magnitude to that of the
target dimensions provides a reasonable approxi-
mation even at energies as high as VOO eV. '

Holt and Moiseiwitsch's second Born calculations
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{eV)
Ag

(ap')
k2

(ap')

gFW

(ap)

pe
{ap)

TABLE IV. Values of the cutoff parameter $& com-
puted using the Fetter-Watson formula [Eq. (16)].

equal for zero momentum transfer, we use b
= (const)&&b&", where the constantis —,'m, 3 4 and 1 for
forms A, B,B', and C, respectively. We will also
consider an empirical determination of b in Sec.
IVA1.

26. 50
44. 00
81.63

150.00
300. 00
500. 00

25 000. 00

1.40
1.80
2. 45
3.32
4, 70
6. 06

42, 87

0.66
1,31
2. 12
3. 08
4. 53
5. 94

42. 85

1.54
1.99
2. 71
3.67
5. 20
6. 71

47. 43

29. 72
59.24
95.69

139.35
204. 77
268. 23

1836.24

B.Wave Functions

Many approximate wave functions for the 1 S
ground state of helium have been reported in the
literature. Calculations based on two of these wave
functions are presented here. One of these is the
53-term correlated wave function of Weiss. 6~ The
other is Clementi's self-consistent-field (SCF)
double-$ Hartree-Fock function

show that polarization corrections become small
at a lower energy for inelastic scattering than for
elastic scattering.

As shown above, we obtain different adiabatic
polarization potentials if we consider polarizing
interactions in the initial and final states. Since
we do not have a good method for quantitatively
estimating nonadiabatic effects, we wish to use the
case which has smaller nonadiabatic corrections.
Fetter and Watson'1 (FW) show that a reasonable
criterion for validity of the adiabatic approximation
in state j for an electron with wave number k~ at a
distance x much greater than the atomic radius is

t,'"=u, /«-E,")«r ..
In Eq. (16), (bE,")is the effectiv.e average value of

~E~, the energy difference between state n'P and
state j S, over all n P states causing polarization.
The usual approximation is (M& ) = U&, where U~

is the ionization potential in state j. In our case,
U1=0. 90372 a. u. and we take (nE1) =U, . We note
that excitations from the 2~S state are dominated
by those to the 2 P state. Thus, rather than using
U3=0. 14597 a.u. for an estimate of (DE3), we use
the 2 I' —2 S energy difference, i. e. , (M3) = &E3
=0.02213 a. u. We can now use b& as an estimate
of b (we expect that 5 is at least approximately
proportional to b&

"with an energy-independent con-
stant of proportionality). The results are shown in
Table IV. The table shows that the adiabatic ap-
proximation to polarizing interactions in the final
state is a good approximation only for distances
too large to be interesting. However, it also shows
that we can use the adiabatic approximation to
polarizing interactions in the initial state to obtain
a useful estimate of the polarization effect. For
lack of abetter theory at this time, we will use
n=-a;&=@~2, and we will consider b&" to be the
theoretically most justified choice for b in Eqs.
(7)-(13)

At zero momentum transfer, the scattering
amplitudes f associated with the polarization forms
A, B,B', and C are 3n/4b, 4n/Sb, 5n/4b, and n/b,
respectively. In order to make these amplitudes

$ p(1 1)$ o(r3)rl(1, 2)

In Eq. (17), 1) is a singlet spinor,

2

h)(r, ) = Z c3; xo;(r ), (16)

TABLE V. Parameters for the self-consistent-field
(SCF) wave functions.

State

1'Sb

2 8

1
2
1
2
1
2

3

3

0. 835 188
0. 189 650
0. 998 451
0. 001 185

—0. 000 61
0. 001 299

—0. 117763
—0. 006 733

1.176 333
—0.315 588

1.446
2. 870
1.992
4. 812
0.528
1.210
1.992
4. 812
0. 528
1,210

The orbital exponents are optimized in both the 1 8
and 2 ~S calculations.

Reference 68.

and y3, (r) is a normalized hydrogenic 1s orbital
with orbital exponent Zo~. The coefficients co&

and orbital exponents are given in Table V. These
two wave functions are compared with each other
and with some others in Table VI. For first-order
scattering theories, the spatial extent of the elec-
tron-charge distribution is of primary importance
in determining the accuracy of the calculated cross
sections. ~'Vo Therefore, as an additional check
on the accuracy of the calculations to be presented
in Sec. IIIC, the expectation value (r,'+r', ) is also
included in Table VI. Comparison with the "exact"
results of Pekeris ~ shows that the Clementi wave
function is quite accurate, at least for this expec-
tation value.

The calculations presented here which use the
Weiss 1'S wave functions also employ his 2 S
wave function. To find a 2 S wave function to
use with Clementi's SCF 1 S wave function, we
consider the orbital approximationv



770 RIC E, TRUH LAR, C AR TWRIGH T, AND TRA J MAR

g = (I/W2)[u(r, )v(r ) +v(rq)u(rg)jn(I, 2), (19)

in which
2

u(r, )= Z 2i c„,X„,(r, )
n=l k=1,

4

v(r, )=a Z c„~&„,(r„) .
n=l i=3

(20)

(21)

S=(@(2 S)
~
kg(1 S)) = —0.01498479 (28)

The properties of the orthogonalized SCF wave
function 4(2~$) are compared in Table VI with those
of several other wave functions, many of which

The X„& are normalized Slater atomic orbitals of
principal quantum number n and orbital exponent
Z„&. The coefficients and orbital exponents were
determined by solving the SCF equation72 and are
given in Table V. The resulting approximate en-
ergy is given in Table VI and is an upper bound to
the exact 2 S energy. To ensure reasonable values
for calculated transition moments (see Sec. III C),
we found it necessary to consider a 2~$ wave func-
tion which was orthogonal to our approximate 1 S
wave function. The new wave function is

~(2'S) = b/(I -S')"'](~.(2'S) —S~,(1 'S)1, (22)

where

include configuration interaction. The table shows
that the orthogonalized SCF wave function gives a
charge distribution for the excited state in good
agreement with the accurate one of Pekeris.
The table also shows that the properties of the
SCF wave function are not much changed by orthog-
onalization to the approximate 1 S wave function.

C. Generalized Oscillator Strengths

The DCS can be written in terms of the general-
ized oscillator strength for all of the first-order
methods discussed here. The effect on the calcu-
lated cross sections of the use of approximate
wave functions has been discussed by numerous
authors. " "

Accurate generalized oscillator strengths for
the 1 S- 2 S transition have been calculated by
Kim and Inokuti' using the Weiss correlated
wave functions, and also by Bell, Kennedy, and
Kingstonv' using the same wave functions. The
results of these two calculations generally agree
to three significant figures. The generalized
oscillator strengths obtained using the orthogonal-
ized SCF wave functions discussed above with both
the theoretical and experimental values of the ex-
citation energy ~E are compared in Table VII with
the values tabulated by Bell et a/. ' Also included

TABLE VI. Energies and second moments for helium wave functions.

State

1 S

2~S

Ref.

Hylleraas
Clem enti
Cohen et al. '
Stewart et al.
Weiss
Pekeris

Morse et al. ~

Marriott et al.
Cohen et al. '
Present (nonorthog. )~

Present (orthog, ) j

Coolidge et al. "
Hylleraas et al.
Knox et al.
Weiss
Pekeris

Energy
(hartrees)

—2. 8475
—2. 86167
—2, 87251
—2, 90332
—2. 903 72
—2, 903 72

—2.1475
—2.14439
—2. 14345
—2. 143 74
—2. 143 74
—2. 14407
—2. 14490
—2. 145 59
—2, 14597
—2. 145 97

(r2 P 2)

(a())

2. 1070
2.3712

~ ~ ~

2. 38-72

2.3870

21.7
38. 8

33 ~ 372
33.419
33.1

~ 0 ~

32.36

32. 178

No. of
parameters

1
3
6
5

54
1078

3
3
8

10
10
13

6
not given

55
444

SCF

Yes
Yes

No

No

No
No

No

No
No

Yes
No
No

No

No
No

No

E. A. Hylleraas, Z. Physik 54 347 (1929).
Reference 68.

'M. Cohen and 8. P. McEachran, Proc. Phys. Soc.
(London) 92, 37 (1967).

~A. L. Stewart and T. G. Webb, Proc. Phys. Soc.
(London) 82, 532 (1963).

'Reference 67.
Reference 71.

~P. M. Morse, L. A. Young, and E. S. Haurwitz,
Phys. Bev. 48, 948 (1935).

"R. Marriott and M. J. Seaton, Proc. Phys. Soc.
(London) A70, 296 (1957).

~Not orthogonal to 1'$ wave function of Ref. 68.
~Orthogonal to 1 S wave function of Ref. 68.
"A. S. Coolidge and H. M. James, Phys. Rev. 49, 676

(1936).
E. A. Hylleraas and B. Undheim, Z. Physik ~65 759

(1930).
H. O. Knox and M. R. H. Rudge, J. Phys. B 2 521

(1969).
"Reference 73.
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TABLE VII. Generalized oscillator strengths 4 as a function of momentum transfer q in the length formation. (The
numbers in parentheses are powers of 10 by which the preceding numbers are to be multiplied. ) ~ is the value of the
excitation energy used for calculating cross sections with each set of oscillator strengths.

q {a.u. ) Orthog. ~ Orthog. ~ Nonorthog. Schneide r
BKK

(accurate)
BK

case A

BK
case B Kennedy'

O. 001
0.01
0. 10
0.20
0.40
0.50
0. 70
0. 80
0.90

v. 2o2v(-8)
V. 46V1(- 6)
v. 3634(—4)
2. 8208(- 3)
9.52S4(- S)
1.314V(-2)
1.8761(-2)
2. O2V6(- 2)
2. 0861(-2)

6. 828S(-8)
v. ov8g(- 6)
6. 9806(- 4)
2. 6V42(- S)
9.0284(- 3)
1.2464(- 2)
1.7786(- 2)
1.9222(- 2)
1.gvvv(- 2)

1.3609(+3)
l.362g(+1)
1.5627(- 1)
5.5V4V(-2)
3.4955(- 2)
3.4198(-2)
3.4201(- 2)
s.s56v(- 2)
3.2263 (- 2)

w 0

3.3588(- 3)

1.554O(- 2)
2. 2OS2(—2)
2. 3722(- 2)
2. 4314(- 2)

8. 241(- 4)
3.154(- 3)
1.061(-2)
1.46O(- 2)
2. ovo(- 2)
2. 228(- 2)
2. 282(- 2)

7.38(- 4)
2. 8S{-3)
9.53(- 3)
1.46(-2)

8.43(-4)
3.22(- 3)
1.08(- 2)

8.3622 (- 6)
8.24O6(- 4)
3.1538(-S)
1.0607(- 2)

2. 01(- 2) 2.21(- 2) 2.2276(- 2)

1.00
1.10
1,20
l.30
1,40
1.50
1.60
1.80
2. 00

2. 0616(-2)
1.9VO4(-2)
1.8S15(-2)
1.6633(- 2)
1,4816(—2)
1.2987(- 2)
1.1234(- 2)
8, 1541(-3)
5. 7544(- 3)

1, 9544(- 2)
1.8680(- 2)
1.vses(- 2)
1.5V68(- 2)
1.4O45(- 2)
1.2312(- 2)
1.0650(- 2)
v. vso2(- 3)
5.4553(—3)

3.O346(- 2)
2. V959(- 2)
1.5280(- 2)
2.2489(- 2)
1.gvo2(-2)
1.VO54(- 2)
1.46O9(- 2)
1.0463(- 2)
v. s2ev(- 3)

1.48S5(- 2)
1.2806(- 2)
g. 3686(- 3)
6.5311(-S)

1.188(-2)
8. 526(—3)
5. 946(- 3)

1.05 (- 2) 1.11(-2)

5. 16(—3) 5.41{-3)

2. 3936(-2) 2. 245(- 2) 2. 03(-2) 2. 19(-2) 2.2450(-2)

1.976(- 2) 1.78(- 2) 1.90(-2)
1.9105(-2)

1.582(- 2)

1 1317(-3)
1.9828(- 4)
4.2439(- 5)

8.4708(—4)
1.4v26(- 4)
3.1S1V(-5)

8. 9353(-4)
1.5533(- 4)
s.sos4(- 5)

0.75768

S.00
4. 00
5. 00

10.00
20. 00
~(a.u. ) 0. 7576~ 0.7182"

7.4671(- 2) 7.079(- 2) 1,3629(+5)~0 2

Present work.
"Reference 76.
Reference 75.
K. L. Bell and A. E. Kingston, J. Phys. B 1, 521

(1968).

8. 605(—4)
1.4O6(-4)
2. 896(- 5)
1.085(- 7)
1.791(- 10)
0. 75775" 0 7599h 0, 729

1.0849(- 7)

0. 7578"

'D. J. Kennedy, J. Phys. B 1 526 (1968).
Reference 5.

~Experimental value.
"Theoretical value.

8.3616(-2) 7.5(- 2) 8.6(- 2) 8.3261(-2)

in the table are the results obtained for the non-
orthogonalized 2 S wave function and the recent
results of Schneider, ~~ who calculated this quantity
utilizing linear-response theory. One notes that
the result obtained with the nonorthogonal 2~S SCF
wave function is extremely poor for momentum
transfer q & 1.5, even though this wave function
gives reasonably accurate energies and second
moments. The result from the orthogonal SCF
wave function is smaller than the accurate result
of Bell et al. ' for all values of q & 2. 4 a. u. , and
the same conclusions reached in the study of the
2~P excitationv concerning the reliability of SCF
wave functions also apply here. On the other hand,
the results obtained by Schneider~ are larger than
the accurate values for all values of q. Since a
separate wave function was not calculated by
Schneider in applying linear-response theory, the
differences between his results and the accurate
values cannot be analyzed in the same manner.

All our calculations of 2~S DCS's and 2'S/2~P
DCS ratios using the methods which include polar-

ization were carried out using the experimental
value of bE and SCF wave functions, i.e. , 4~ [Eq.
(17)]for the 1~S state, 4(2~$) [Eq. (22)] for the
2~S state, and the 2~P wave function of Eq. (33) of
Ref. 7. When it is not stated otherwise, calcula-
tions of DCS's and ratios which do not include
polarization are performed using the accurate 1 S
-2 S generalized oscillator strengths. '

IV. COMPARISON OF THEORETICAL AND EXPERI-
MENTAL DCS's

A. Ratios

In this section we consider the ratio of the DCS
for excitation of the 2 S state to that for excitation
of the 2'P state.

1. Energy Dependence

At energies above 100-150 eV the Born and

polarized Born approximation give similar results.
The intermediate- and low-energy-ratio data ex-
hibit two trends which are qualitatively predicted
by the calculations. First, the low-angle (8 & 15')
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E(ev)

FIG. 9. 2~S/2~P intensity ratio at a scattering angle
of 0' as a function of impact energy. The dashed line
is the (interpolated) experimental results of Chamber-
lain et al. (Ref. 19), the circles (with error bars) are
the present experimental results, the asterisk is the
result of Lassettre et al. (Ref. 25), and the square is
the result of Lassettre et al. (Ref. 18). The curves are
calculated in the indicated approximation. & = 1.584ao
and b=+4b~ at each energy. (Note the change in the im-
pact energy scale at energies above 100 eV. )

0.6 I'l I ~

0.5- e=s

—0.4-0
1-

H 0.3-
(0
LLJ1-
Z 0.2-

0. 1-
O~~+ ~ y~~~e ~ ~ ~ ~ ~

0
20

I I s I a ~ I

50 100
E (ev)

I

200 500

FIG. 10. 2 S/2 P intensity ratios vs energy at 8=5'.
The circles are interpolated from the present experimen-
tal results, the square is an experimental value from
Ref. 25, and the triangles are experimental values from
Ref. 14. The curves are calculated in the Born (B) and
polarized Born (B/pB') approximations. The dotted
curve is calculated with n =-1.584ao and b=+4b& (see
Sec. IIIA) at each energy; the dashed curve is calculated
with 0.'=1.584ao and with b equal to the value determined
empirically (see Sec. IVA1).

ratios increase with decreasing impact energy (see
particularly Figs. 2 and 9—11), and second, the
large-angle (8 & 60') ratios increase with increasing
impact energy (see particularly Figs. 2 and 12).

B

1.4 l.6 1.8 2.0 2.2 2.4 2,6
log (E)

FIG. 11. 2 S/2'P intensity ratio at a scattering angle
of 10' as a function of impact energy. The triangles are
the experimental data of Vriens et a$. (Ref. 2), the
asterisk is the result of Lassettre et al. (Ref. 25), and
the square is interpolated from the results of Silverman
and Lassettre (Ref. 10). The curves are calculated in
the approximations as indicated. The dotted curve is
calculated with e =1.584ao and b =+4b& at each energy.
The dashed curve (shown only for E» 200 eV) is calcu-
lated with 0.'=1.584ao and with b equal to the value de-
termined empirically from the 2 S/2 P ratios at 0' at
each energy.

Figures 9-12 show that the theory and experiment
are in better agreement for the ratios at small ~

than at large 0. They also show that the theory
predicts the energy dependence of the ratios better
than it predicts the ratios themselves. The Born
approximation (either with or without correcting
for exchange) is about a factor of 3 too low for the
2 S/2 P ratios at O'. Including polarization in the
calculation of the DCS for the 2'S state (using the
theoretically most justified polarization model; see
Sec. IIIA) gives DCS ratios at 0' and 6' in much
better agreement with experiment, especially in
the intermediate-energy region. This result in-
dicates that including polarization in the description
of the 2 S excitation is necessary to describe the
2 S and 2 I' excitation processes to the same de-
gree of accuracy.

The 0 ratios are predicted more accurately by
the first Born approximation at very high energies
than at lower ones. Boersch, Geiger, and Schro-
der obtain a 2~$/2 P intensity ratio of (1.43+0. 27)
&&10 at 25 keg and 6=0 . This ratio is calculated
to be 1.03&&10 and 1.05&10 using the Born ap-
proximation with the accurate ' and orthogonalized
SCF (with the experimental bE) oscillator strengths,
respectively. The inclusion of polarization in the
2 S state slightly improves the agreement between
experiment and theory. With n =1.584ao and b =4
&&8,"", the B/PB' approximation yields a 2'S/2'P
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5.0
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I I I I
I

I I I I
I

I I I I scattering angles. However, these effects are
presumably large at 60'. Also, the short-range
form of the polarization potential (i.e. , the choice
of polarization cutoff function in the present cal-
culations) is much more important at 8 = 60' than
it is at small scattering angles. For these reasons
the present calculations do not predict the cross
sections accurately at scattering angles as large
as 60' (see Fig. 12).

2. A.ngl, e Dependence
~ I.OI—

Z',
LLI

Z'
0.5—

I I I I I I I I I I I I I I I I I I I I I I I I I I I
'
22 35 60 85 I IO 135 l60

E(ev)

FIG. 12. Ratio of the DCS for excitation of the 2 S
state to that for excitation of the 2 P state as a function

of incident energy at 0= 60 . The curve is calculated in

the symmetrized Born-Ochkur-Budge approximation
(BORH I) . .The circles are the present experimental re-
sults. The error limits are the average deviation for
3—6 runs. No error estimate has been made for the
81.6-eV point.

Table VIII compares the 2 ~S/2 'I' DCS ratios
given by the Born approximation and three methods~
which include exchange at several angles and two
energies. The angular dependence of these pre-
dicted ratios are quite similar, particularly at
higher impact energies and lower scattering angles.
Thus, the form chosen for the exchange correction
has only a small effect on the calculated ratios.

The present calculations are shown to be in ex-
cellent agreement with the high-energy ratio data
of Silverman and Lassettre at 500 eV (see Fig.
14), with that of Lassettre, Krasnow, and Silver-
man at 511 and 417 eV (see Fig. 14), and with the
experimental results of Vriens, Simpson, and
Mielczarek~ at 400 (see Fig. 15) and 300 eV (see
Fig. 16). Apparently, theory and experiment~ dif-
fer at 604 eV. The lack of high-energy experi-
mental data for 8&15' precludes a more rigorous
test of these first-order methods for large-angle
high-energy scattering. At high energies, polar-
ization is only significant at relatively small scat-

ratio of 1.10 ~10 . Calculations using the other
polarization forms give results within a few percent
of this value. The polarization potential is highly
nonadiabatic at this energy (note the large b~" in
Table IV), and, hence, it contributes relatively
little to the scattering even at 0'.

The calculations including polarization with the
theoretically justified value of b are not in exact
agreement with experiment for the 0' ratio (see
Fig. 10). If, however, with a fixed a we let the
cutoff parameter b in the polarized Born approxi-
mation for the excitation of the 2~S state be an em-
pirical quantity, we can adjust it at each energy to
make the calculated 2~S/2~I' DCS ratio at 0 equal
the experimentally measured one. The value of b

determined in this manner depends on the form
chosen for the polarization potential cutoff function.
These results are shown in Fig. 13, which compares
these empirically determined cutoff parameters to
the theoretically justified b~". The agreement is
very good. Thus, we can use the Fetter-Watson
criterion to obtain a good estimate of the cutoff
parameter b.

The effects of distortion of the scattering-elec-
tron wave function and exchange are small at small

I I I I I I I

—6—0
O

CL

I—
LL}

LLI

CL 4—
CL

OI—
(3

20
I I I I I I I I

50 IOO 200

IMPACT ENERGY (eVj

500

FIG. 13. Cutoff parameter (b) vs impact energy. The
solid line is b =b~ =ko/0. 903 72. The shaded area en-
closes the range of b values determined empirically
from the 2 S/2~P cross-section ratios at 0 . The empi-
ically determined b values for the A, B, B', and C
forms of the polarization potentials are scaled by multi-
plying them by 4/x, 43, +&, and 1, respectively. The low-
est value at each energy corresponds to the C form of
the polarization potential and the highest to the A form.
The scaled b values for the B, B', and C forms differ
by only 1-2% at each energy.
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CL

lo

IOo

IO

I
'

I
'

I

BORP

tering angles. The data presently available do not
cover the low-angle region well enough to allow a
definitive test of the importance of polarization at
these energies.

As the impact energy is lowered to 225 eV and

below, the ratios calculated either with or without
polarization increase more rapidly with increasing
angle than do the experimental ones (see Fig. 16).
However, even at impact energies as low as 81.6
eV (see Fig. 3), the calculated ratios are within
about a factor of 5 of the experimental ones to
angles as large as 80' and exhibit a variation with

angle which is qualitatively correct. At energies
below 81.6 eV, the ratios calculated without polar-
ization differ markedly in both magnitude and shape
from the experimental ones (see Figs. 1 and 2).
However, Figs. 9-11 show that the inclusion of
polarization in the calculation significantly improves

0 4 8
I I I I I I I I I I I I.

12 l6 0 4 8 I 2 l6

8(deg)
l02

FIG. 14. 2iS/2 P intensity ratios vs scattering angle.
The squares (417 and 604 eV) and triangles (511 eV) are
the results of Lassettre et al. (Ref. 9), and the circles
(500 eV) are the results of Silverman and Lassettre
(Ref. 10). The dashed curve is calculated in the B/PC
approximation with e =1.584ap and 5 = b&~ = 6.13ap The
solid curves are calculated in the post Born-Ochkur-
Rudge approximation (BORP). The results of the BORP
and the first Born approximation are indistinguishable
in the energy and angle range of this figure.

TABLE VIII. 2 iS/2 ~P DCS ratios calculated in the
Born (B), prior Born-Ochkur-Rudge (BOR), post Born-
Ochkur-Rudge (BORP), and Born-transferred Kang-
Foland (BTKF) approximations.

IO

O

K

I- IO'
M

LLI

Z'.

IO-'

Scattering
angle
(deg)

Method
BOR BORP

E=30 eV

BTKF

0
30
60
90

120
150
180

0
30
60
90

120
150
180

0. 170
0.289
0. 620
1.18
l. 81
2.27
2. 44

0. 008 98
2. 83

17.5
52. 2
92. 8

124
135

0. 168
0.285
0.609
1.16
1.78
2.24
2.41

E =300 eV

0. 00898
2. 83

17.5
52. 1
92.4

123
135

0. 173
0.297
0.650
1.29
2. 08
2. 66
2. 86

0.008 98
2. 84

17.7
61.4
96.6

126
137

0. 169
0.288
0. 617
1.16
1.77
2.24
2.42

0. 008 98
2. 84

17.5
52. 7
94. 7

126
137

lo

I

IO

I

20 60
e(deg)

I I

I 00 I 40 I 80

FIG. 15. 2 S/2 P intensity ratios. The triangles and
circles are the experimental results of Vriens et al.
(Ref. 2) at 400 and 100 eV, respectively. The squares
are the experimental results of Lassettre et al. (Ref.
25) at 48 eV. The solid curves are calculated in the
Born-transferred Kang- Foland (BTKF) approximation
at the indicated energy. The dotted curve is calculated
at 48 eV in the B/PB' approximation with e =1.584ap
and b empirically determined to be 2.08ap. A curve for
the Born approximation at 400 eV would be indistinguish-
able from the BTKF curve on the scale of this figure.
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FIG. 16. 2 S/2 P intensity ratios as a function of
scattering angle at the indicated energies. The circles
are the experimental results of Vriens et al. (Ref. 2).
The solid curves are calculated in the BTKF approxima-
tion. The dashed and dotted curves are calculated in the
B/PB' approximation with n =1.584ao, b =+4bg =4.59ao
for the dashed curve, b =2 (4 g &~ = 9.18ao for the dotted
curve at 150 eV; b=+4b~~=5. 30ao for the dotted curve
at 200 eV; and b =+4b&~=6. 50ao for the dotted curve at
300 eV.
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Previous work on the effect of polarization for
elastic scattering showed that polarization is es-
pecially important for small-angle scatter-

. ing. '4 '4 '~ ~' ~ In the present case of inelastic
scattering, the best agreement behveen the exper-
imental and theoretical angular dependence at
small angles is obtained for the B/PB' calculations
as shown on Figs. 5-7. These curves are easily
seen to be much steeper than the Born (B) curve.
Unfortunately, at very small angles the magni-
tudes of these curves deviate the most from the
experimental values. (For ease of comparison of
their angular dependence with experiment, these
curves were renormalized to the experimental
DCS's at 10' by multiplying the calculated values
by a factor of 0. 281, 0. 230, and 0. 193 for the en-
ergies of 34, 44, and 55. 5 eV, respectively. )

The plane-wave theories used here overestimate
the magnitude of the DCS as they did for excitation
of the 2'P state. v However, in that case we found
that the Born approximation and the Ochkur-like
approximations gave approximately the correct
angle dependence of the DCS for momentum trans-
fers less than about 1.6 a. u. This corresponds
to about 40 in the intermediate-energy range.
Figures 4-7, however, show that the Born approx-
imation and the Ochkur-like approximations (ne-
glecting polarization) do not predict the correct
angular dependence for excitation of the 2~S state

the agreement between theory and experiment at
small angles.

B.M'S Angle Dependence

X IOOeV
+ I508V

44

X 'I

x l75 eV
+ 200eV. o 225eV

300".

500

x 300 BV
+ 400 eV

The experimental and calculated DCS's for the
0'-90 angular range are shown in Figs. 4-8 for
several energies below 100 eV (26. 5, 34, 44, 55. 5,
and 61.6 eV) and in Fig. 1V for the 0' —20' range
at several higher energies (100, 150, 175, 200, 225,
300, and 400 eV). Although the Ochkur and the
symmetrized Born-Ochkur-Budge DCS's have zeros
at some scattering angles, the different first-order
calculations predict approximately the same angu-
lar behavior, which can be simply characterized
in most of the cases as monotonically decreasing
as the scattering angle increases and becoming
steeper as the impact energy increases. The agree-
ment between the theoretical and the available ex-
perimental results becomes much better at impact
energies of 81.6 eV and above.

The comparison of theory and experiment is most
interesting in the small-angle region where the ef-
fects of distortion and exchange are minimum.

)io

l50

}l75
200
225

IO

I ~ I I i I i I I i I s

IO 20 0 IO 20 0 IO

SCATTERING ANGLE (deg)
20

FIG. 17. 2~$ DCS. The solid curves are the DCS cal-
culated in the post Born-Ochkur-Budge approximation
(BORP) and the symbols represent the data of Ref. 2.
The impact energies in eV are indicated next to the
curves and symbols. The dotted curves are calculated
in the polarized Born approximation (B/PB') with
n =1.584ao and b =+4b& at each energy.
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FIG. 18. 2~S DCS at E = 34 eV calculated in the polari-
zed Born-Ochkur-Budge approximation (BOR/P) with

form A and form C polarization potentials. The numbers

1, 2, and 3 after the designations refer to ~ =1.584ao,
n =3.Oao, and o.'= 7.Oao, r espectively. The cutoff
parameter used in the polarization potential is b& for
the BOR/PC-1* and xw bt for the BOR/PA-1~ curves,
and is determined empirically (see text) for the others.
The circles with error bars represent the present data.

Attempts at determining the transition polariza-
bility empirically from the present data indicate
that it cannot be determined with any accuracy. The
best agreement with experiment at 34 eV is ob-
tained with polarization form C and with n = 7ao.
This value of 0. is considerably larger than the
theoretically justified value of 1.584ao. However,
the value of n required for the best agreement with
experiment decreases with increasing energy in
contrast to the energy independence of this quantity
when it is determined theoretically. At higher im-
pact energies (81.6 eV) all the calculated curves
fall into a relatively narrow band, and they pre-
dict the magnitude of the DCS's in agreement with
experiment out to about 70 . The calculations are
not expected to be reliable at large scattering
angles because of uncertainties in the proper short-
range form of the polarization potential. At en-
ergies near 100 eV and higher the influence of n
and b is significant only at small scattering angles,
where the lack of experimental data precludes a
definitive test of these calculations.

I
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I
I
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I
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even at angles considerably less than 40'. The
inclusion of polarization, making the adiabatic
approximation in the initial state, brings theory
and experiment into better qualitative agreement
for the angle dependence. In the Appendix, we
discuss more fully the angle range over whichplane-
wave theories agree with experiment for the helium
2 P and 2 S excitations as well as for elastic scat-
tering by He, Hg, and Ha.

The effect of the choice of polarization potential
on the DCS's is explicitly shown in Figs. 18 and 19
for E= 34 and 81.6 eV, respectively. The calcu-
lations shown in these figures were carried out in
the BOR/P approximation with different types of
cutoff functions and with different values of a and

b. At lower impact energies (e. g. , 34 eV) we can
draw the following general conclusions: In the
BOR/PA calculations the angle dependence of the
DCS's are not affected appreciably by changes in
either n or b. In the BOR/PC calculations, as
the value of e is increased the DCS curves become
steeper at low angles and a minimum and a maxi-
mum develop in the curve at intermediate angles.
These minima and maxima shift to lower angles
as z is increased. The behavior of the DCS's cal-
culated in the BOR/PB and BOR/PB ' approximations
is intermediate between those of the BOR/PA and

BOR/PC approximations.

I04
PA-3

0 20 40 60 80 IOO I 20 I40 I60 I80

8(deg)

FIG. 19. 2~S DCS's at 81.6 eV calculated in the polari-
zed Born-Ochkur-Rudge approximation (BOR/P) with form
A and form C polarization potentials. The numbers 1
and 3 after the symbols refer to e =1.584ao and &=7.0ao,
respectively. The cutoff parameter used in the polar-
ization potential is determined from the experimental
2 S/2 P intensity ratios at 8=0' (see text). . The BOR/
PA-3 curve is shown only up to 0=40' because at higher
angles it cannot be distinguished from the BOR/PA-1
curve on the scale of this figure. Curves for BOR/PA
and BOR/PC with n =3.0ao are not shown since they are
intermediate between the two cases shown. The circles
are the present data.
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It is interesting to consider using the final-state
polarization interaction with the very large values
of the cutoff parameter suggested by the Fetter-
Watson criterion (see Table IV). Although n» is
much larger than n&~, b~" is so large that adding
this interaction does not even change the first few
significant figures of the calculated DCS.

V. COMPARISON OF THEORETICAL AND EXPERI-
MENTAL INTEGRAL CROSS SECTIONS

The integration of our experimental 2'S DCS's
to obtain 2 S integral cross sections is discussed
in Sec. II, and the results are plotted in Fig. 20.
The high-energy (200, 225, 300, and 400 eV) ex-
perimental integral cross sections obtained by
Vriens, Simpson, and Mielczarek are shown in
this figure. The cross sections at 100, 150, and
175 eV were obtained by integrating the 2 S DCS
fits given by these authors. These latter results
are subject to some uncertainty since only a small
range of angles (8 & 20 ) was studied. We obtained
the remaining experimental cross sections in Fig.
20 by an analysis of the excitation-function mea-
surements of Dugan, Richards, and Muschlitz
as discussed below.

Dugan, Richards, and Muschlitz~~ measured the

FIG. 20. 1 S 2~$ integral cross sections as a func-
tion of impact energy. The squares are the experimental
results of Dugan et al. (Ref. 27) (corrected for cascade,
see text); the triangles and diamonds are those of Uriens
et al. (see text) (Ref. 2); and the circles (with error bars)
are the present experimental results (see text). The
curve labeled SML is obtained by scaling the 3 ~S excita-
tion function data of St. John, Miller, and Lin (Ref. 79)
(see text). The other curves are calculated using the
indicated approximations. For the polarized Born
approximation (B/PB'), 0'. =1.584go and b =+4b& at
each energy. The low energy rise in the 8/PB' cross
section (not shown) is steeper than that of the Born-
Ochkur-Rudge approximation (BOR).

relative electron-impact excitation function R(E)
for production of the 2'S state for 26~«136 eV.
Their excitation function includes contributions
from radiative decay to the 2 S state by higher
states (cascade) excited by electron impact, i.e. ,

Q(E):XR(E) —Q Q„(E)A.(n'P —2'S)
tl=2

(24)

where the last term is the cascade correction, X

is independent of E and normalizes their relative
data to the absolute scale, Q„(E) is the integral
cross section for excitation of the n P state, A is
the branching fraction for n~P-2 S radiative de-
cay, and Q(E) is the 2'S integral cross section.
The branching fractions for n = 2-8 are calculated
from the table given by Gabriel and Heddle. Since
the 3~P state is the largest contributor to the cas-
cade correction, we use the n rule to express the
other P cross sections in terms of the 3~P cross
section, i.e. ,

Q.(E) = (3/n)'Q (E), n = 2, 4, 5, . . .
We then obtain

Q(E) =- &R (E) —0. 052VQs(E)

(25)

(26)

We use the absolute values of Qs(E) of St. John,
Miller, and Lin (SML). The value of Z in Eq.
(26) is determined by requiring that Q(136 eV)
= 0. 030ao2, which is chosen to be in reasonable
agreement with the lower energy data of Vriens,
Simpson, and Mielczarek. ~ The resulting cross
section values Q(E) are plotted in Fig. 20.

The curve in Fig. 20 labeled SML is obtained
by assuming that the shape of the 2 S integral cross
section curve is the same as the 3 S one measured
by SML7 as a function of the incident energy in
threshold units [&/n E(1 'S —n ~S)]. The ordinate
for this curve is determined by normalizing it to
the E= 300-eV integral cross-sectiondata of Vriens,
Simpson, and Mielczarek.

The different measurements for the 2'S integral
cross section shown in Fig. 20 are in good accord
with each other with the possible exception of the
result deduced from the SML data below about 50
eV.

The other curves in Fig. 20 represent the various
theoretical models discussed in Sec. III, both with
and without polarization as indicated. The total
cross sections calculated with the BOR and B/PB'
(o. = 1.584as) models reach maxima of about 0. 21
&&a~and 0. 37ao, respectively, within1 eV of 26eV.
Figure 21 presents some additional integral cross
sections calculated using several forms of the po-
larization potential. This figure shows the sensi-
tivity of the magnitudes of the B/P cross sections
to the form of the short-range part of the polariza-
tion potential.

The cross sections predicted by the first-order
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theories apparently agree well with experiment
for energies greater than about 400 eV but are too
large for lower energies. Lassettre used the
Born approximation and a generalized oscillator
strength fitting procedure to obtain the 2~S integral
cross section at all energies based on experimental
generalized oscillator strengths measured only at
high energies. His cross-section curve lies very
close to the Born-transferred Kang-Foland (BTKF)
curve in Fig. 20 and somewhat below the Born
approximation results based on the accurate gener-
alized oscillator strengths of Kim and Inokuti.
Schneider used a generalized oscillator strength
calculated using linear-response theory to calcu-
late an integral cross section at 500 eV. His value
is just slightly (10~/0) larger than that given by the

pure Born result using the orthogonalized SCF
wave functions. As in the case of the 2 'P excita-
tion, the Ochkur (0) and symmetrized Born-Ochkur-
Rudge (BORBI) approximations give considerable
improvement over the Born approximation in the
shape of the cross section, although they still over-
estimate it. The inclusion of polarization with a
given first-order theory results in an even larger
integral cross section.

VI. SUMMARY AND CONCLUSION

Experimental and quantum-mechanical results
are presented for the integral and differential cross
sections for excitation of the 2 S state and for the
ratio of DCS's for excitation of the 2'S and 2'P
states in the impact energy range 26. 5-81.6 eV.
Calculations based on seven first-order theories
which do not include polarization are presented: the
Born (B), the prior form of the Ochkur (0), the

prior form of the Born-Ochkur-Rudge (BOR), the

post form of the Born-Ochkur-Rudge (BORP), the
symmetrized Born-Ochkur-Rudge (BORB I), the
Born-transferred Kang-Foland (BTKF), and the
Born-transferred Vainshtein-Presnyakov-Sobel-
man (BTVPS) approximations. Scattering by
several forms of a polarization potential is com-
bined with scattering in the Born and Born-Ochkur-
Rudge approximations to yield the polarized Born
(B/P) and polarized Born-Ochkur-Rudge (BOR/P)
approximations. Calculations using these two ap-
proximations are presented for excitation of the
2 S state. To explain the angle dependence of the
small-scattering-angle (8 ~40') DOS for & = 34-
81. 6 eV for either transition, it is unnecessary to
include an accurate treatment of the distortion of
the scattering-electron wave function or of ex-
change of the incident electron with the bound elec-
trons. This property of the scattering is accurately
predicted using plane-wave scattering functions
and an effective potential (optical potential) to
represent the interaction of the scattering electron
with the target. For the 2'P excitation, the po-
tential may be determined in the static approxi-
mation (unperturbed initial and final state) but for
the 2 S excitation it is necessary to include the
induced dipole in the description of the target.
Although the adiabatic polarization model was pre-
viously shown to be an adequate way to include the
effect of the induced dipole on elastic scattering
at impact energies at least up to a few hund'ed
eV, this model is not adequate for the 1'S-2'S
transition. Evidently, nonadiabatic effects are
more important for inelastic scattering than for
elastic scattering. We use Fetter and Watson's
theoretical criterion for the applicability of the
adiabatic approximation to evaluate a cutoff param-
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eter for including some nonadiabatic effects in the
polarization model. This procedure gives results
in better agreement with experiment than those ob-
tained by including only the static interaction,
especially in the 44-81. 6-eV energy range.

The present calculations agree better with higher
energy (E 100 eV) experimental DCS data than do
previous theoretical treatments (the first Born
approximation) .

We find that the calculated magnitudes of the
DCS's are in poor agreement with experiment in
intermediate energies. The agreement is worse
in the present case than in the case of the 2'P ex-
citation. 7

The usefulness of SCF single-configuration wave
functions for describing the target is examined.
We find, on comparing the results to those from
more accurate calculations, that orthogonalized
SCF wave functions reproduce many facets of the
more accurate calculations with good accuracy.

The criteria developed here for the importance
of polarization can be used to discuss in a consis-
tent way the DCS's for elastic scattering of elec-
trons by He and Hz and for excitation of the 2'S
and 2'P states of He. '

Many more details of the theoretical work and
the comparison of theory and experiment are in-
cluded in an extended version of this article.
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APPENDIX: ANGLE RANGE OVER WHICH PLANE-
WAVE THEORIES AGREE WITH EXPERIMENT

Both Rice and co-workers' ' and Miller,
Mielczarek, and Krauss have attempted to use
the experimentally measured angle dependence
of the DCS as an indicator of the state symmetries
involved in a transition which produces a particular
energy-loss peak.

The method used by Rice and co-workers is
empirically based on the comparison of measured

DCS ratios as a function of angle for various types
of transitions. However, Miller et al. attempt
to match the angle dependence of the experimental
DCS to that of a Born-approximation calculation.
They argue that a dip in the experimental DCS
means the transition is of the type for which the
Born-approximation DCS has a dip. If such reason-
ing is to be used confidently, we must be reason-
ably certain that the Born approximation predicts
the correct angle dependence of the DCS in cer-
tain situations. Further, in order to decide whether
plane-wave calculations for different types of tran-
sitions can be useful in guiding the method of Rice
and co-workers, we must determine the range of
angles for which plane-wave calculations predict
the correct angle dependence of the DCS.

Table IX summarizes some of the presently
available data on the range over which the Born
and polarized Born approximations predict the ap-
proximately correct angle dependence of the DCS.
The first three columns list the target, transition,
and impact energy, respectively. The fourth column
contains the maximum angle ~ ~ for which plane-
wave theory and experiment have approximately
the same shape. This angle is determined by
normalizing theory to experiment at 8 = 20' and
finding the angle at which they deviate by 50%. The
fifth, sixth, and seventh columns contain, respec-
tively, the momentum transfer q(8 ), the exper-
imental DCS I'""(8 ), and the calculated DCS
I'"(8 ) evaluated a,t 8= 8

The plane-wave cross sections agree qualita-
tively with experiment at small 8, where many
partial waves contribute appreciably to the DCS.
At large 8 the scattering is due mainly to the lowest
few partial waves where distortion of the plane
wave may be appreciable. ' To obtain a rough
estimate of the contribution to scattering involving
large distortion, we present in the eighth column
one-half the maximum theoretical cross section
for s-wave scattering I (The s-wav. e limit for
the DCS is 1/k for elastic scattering and 1/4k2
for inelastic scattering. ) Finally, the ninth and
tenth columns list, respectively, the experimental
and calculated DCS's divided by —,

' I .
In a previous paperv we noted that for excitation

of the 2'P state, the angle dependence of the DCS
was predicted out to q= l. 6 a. u. The more exten-
sive collection of data presented in Table IX shows
that for elastic scattering the plane-wave theories
often predict the angle dependence correctly out
to even large q. The data also indicate a systern-
atic trend in which the angle dependence of the
DCS is correctly predicted out to larger q at higher
energies than at lower ones. Further, the magni-
tudes of the experimental and theoretical DCS's
agree better at higher energy. In discussing scat-
tering from a central potential of finite range,
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TABLE IX. Range of angles over which plane-wave theories predict approximately the correct angle dependence of
the DCS for elastic and inelastic scattering. The column headings are defined in the Appendix. The theoretical cross
sections for elastic scattering and excitation of the He 2 S state are calculated in the polarized Born approximation.
Those for excitation of the 2 P state of helium are calculated in the Born approximation. In cases where the theory and
experiment still satisfy our criterion for agreement at the largest angle for which experimental data are available, we
can only obtain lower bounds on the fourth and fifth columns and upper bounds on the sixth and seventh, and ninth and
tenth columns.

Target

He

Transition

elastic

(eV)

39R

81.6
500b

(deg)

80
50
60

Vmax

(a.u. )

~2. 18
2. 07
6. 06

Icapt

(ap/sr)

«0. 23
0. 18

«0. 011

IcRlc

(ap/sr)

«0. 23
0. 27

«0. 011

2
1 ls

(ao/Sr)

0. 174
0. 084
0. 014

«1.3
2. 1

«0. 78

«1.3
3.2

«0. 78

2I exyt/is 2Palc/I s

He

He

Hg

Hp

1S 2S

1'S-2 'I'

elastic

elastic'

34
44
55. 5
81.6

100
175
300
400

34
44
55 5
81.6'

100
175'
300
400'

300K
400'
500'

7
10
13.6
20
45
60
81.6
30
50

100

22'
26c

42
45

~20
~15
o 10
o 10

40
58
45
49

o20
15

~10
o 10

115
120

%80
100

~80
120

80
100
110
105

0. 76
0. 85
1.36
l. 77

~0. 94
~0. 93
«0. 82
—0. 95

1.04
1.56
1.44
l. 91

~0. 94
~0. 94
~0. 82

0. 95

~1.61
1.86

~2. 1

l. 21
l. 48

~ l. 29
1.86

~2. 34
3.64

~3. 15
2. 28
3.14
4. 30

0. 020
0. 007
0. 0016
0. 002

«0. 029
—0. 044
«0. 069
«0, 052

0, 017
0. 0072
0. 014
0. 0067

«0. 18
«0. 19
«0. 35
«0. 20

«7. 5
«4. 7
«3. 3

2. 0
1.0

«1.2

0. 5
«0. 15

0. 043
«0. 058

0. 18
0. 11
0. 013
0. 0052

«0. 051
«0. 055
—0. 074
«0. 061

0. 084
0, 010
0. 019
0. 0027

«0. 20
«0. 22
«0. 37
«0. 21

«33h
«20h
«12h

1.3
0. 65

«1.2

0. 30
«0. 12

0. 03
«0. 05

0. 14
0. 05
0. 018

0. 050
0. 039
0. 031
0. 022
0. 017
0. 0097
0. 0057
0. 0042

0. 050
0. 039
0. 031
0, 022
0. 017
0. 0097
0. 0057
0, 0042

0. 028
0. 017
0. 014

0. 97
0. 68
0. 50
0.34
0. 15
0. 11
0. 084
0.23
0. 14
0. 068

0.40
0.18
0. 052
0, 091

«1.7
«4. 5
«12
«12

0.34
0. 18
0.45
0. 30

«11
«20
«61
«48

«268
«276
«236

2. 1
1.5

—2.4
1.5

«1.0
0, 39

«0. 69

3.6
2. 8

0.42
0.24

«3. 0
«5. 7
«13
—14

1.7
0.26
0.61
0, 12

«12
—23
«65
«50

1.3
0. 96

«2. 4
0. 88

«0. 80
0.27

«0. 60
0.61
0.36
0.26

~Reference 81.
"J. P. Bromberg, J. Chem. Phys. 50, 3906 (1969).
'These angles, obtained by interpolation, are so close to 20' that they imply there is very little quantitative

agreement in the angle dependence of theory and experiment.
Experimental data of Ref. 2 and polarized Born-approximation calculations of present work.

'Reference 7.
Experimental data of Ref. 2 and Born-approximation results of Ref. 7.
J. P. Bromberg, J. Chem. Phys. 51, 4117 (1969).

"These values are (36.5/18. 65) times greater than the values in footnote g, due to an error in that calculation.
Reference 65.

Schiff ' suggests that the Born approximation can
be used at all angles provided the incident energy
is high enough while at lower energies the small-
angle scattering may be given correctly when the
large-angle scattering is not. Such a trend is con-
sistent with the present results.

The entries in the ninth column of Table IX are
near unity for the elastic scattering data and pos-

sibly the 1'S- 2'P DCS's. This indicates that s-
wave scattering may account for the values of
0 obtained in these cases. However, the angle
dependence of the 1~8- 2~S DCS's is predicted to
angles at which the cross section is considerably
lower than our estimate of the maximum probable
s-wave contribution. Possibly our use of —,

' I for
this estimate is not as realistic in this case. In
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general, the ninth column provides a less-energy-
dependent criterion for the validity of the plane-
wave theories than do either the fourth or fifth
column.

Table IX shows that plane-wave theories are
more successful for elastic scattering than for in-
elastic scattering. This success is probably due
to the larger contributions to the cross sections

from higher partial waves in the elastic case. For
the two inelastic transitions in the table, the
Born approximation is less valid for the 2 8 ex-
citation than for the 2'P one. This is probably
due to the much greater difficulties in estimating
the effective potential for the 2'S case. This points
up the importance of further study of the non-
adiabatic —transition polarization potential.
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tract No. FO-4701-7O-C-0059, and by the National Aero-
nautics and Space Administration under Contract No.
NAS7-100.
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