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In the preceding paper some of our results on the magnetic-resonance experiments per-
formed at 64 MHz indicated a beginning of N S decoup. ing on the N=1 (ls3p) ll„state of H&

excited by electron impact. In the present paper we present further results on the resonance
experiments performed at higher frequencies in order to determine the fine structure of this
level. Our findings indicate that the energy separation between J=1 and J=2 levels is 160
+5 MHz and between J=1 and J=O levels it is 2100+600 MHz, and in addition the former ex-
hibits a small dependence on the vibrational number. The relative order of these levels is
J=1,2, 0 instead of the theoretically predicted 2, 1, 0. The Lande g factor is 1.249+0. 010,
which corresponds to a pure Hund's-coupling case (b).

I. INTRODUCTION

As was suggested in Paper I, ' a study of the
Bitter-Brossel resonance as a function of frequen-
cy is performed on the optical transition (X = 5994 A)
arising from the (1s3tr) 'P. „(v=0, N = 1, S= 1, 1=0)
state of H2. This resonance, previously carried
out at 21, 35, and 64 MHz, is extended to 105 and
147.6 MHz where the N S decoupling is strong
enough to separate the different resonances due to
the Zeeman sublevels. The study of the position
and the intensity of the resonances at 147.6 MHz
enables us to deduce the following information about
the fine structure of the level: the energy separation
between the J=1 and J=2 levels, an order of mag-
nitude of the energy of the J= 0 level, and the rela-
tive disposition of those three levels.

Similar work has veen performed" ' on the 2 P
and 3'P levels of He'. Our present theoretical
treatment is similar to the one of Lamb, except
for the intensity calculation. On the other hand,
experimental conditions are more difficult than those
of Ref. (4) (the lifetime v. of the studied level is
three times shorter, the fine structure four times
smaller, and the observed intensity is roughly
1000 times weaker in our case).

An extension of this experimental work at the next
three vibrational (v) levels of the same electronic
and rotational state enables us to estimate the de-
pendence of the fine structure on v. We have also
deduced from this study the Lande g factor of this
state at zero magnetic field.

A level-crossing experiment at nonzero magnetic
field' may also be used to determine the magnitude
of the fine structure. Such an experiment, current-

ly being performed in our laboratory has given pre-
liminary results'& ' which are in agreement with
those reported here.

II. EXPERIMENTAL

The experimental setup for the excitation of H2

and for the detection of the signal is the same as
described in Paper I. At 105 MHz, as for 64 MHz, '
the resolution of the resonances from the different
Zeeman sublevels is not sufficiently good to justify
precise measurements.

We present in Fig. 1 a resonance curve obtained
at 147.6 MHz in the region of 60-180 Oe. We can
see on this figure the continuous base line becoming
increasingly curved with the magnetic field. The
evaluation of the relative heights of the resonances
depends on the determination of this base line. The
shape of the base line which was found to be un-
changed in the absence of rf field can be explained
as follows: (i) a level anticrossing' whose shape is
the same as our base line; this effect exists even
for constant excitation process, i.e. , Q, —

Q&
= const (see Appendix); (ii) a possible continuous
change in the excitation process due to the modifi-
cation of the electron trajectory by the static mag-
netic field which implies that Qo —Q~ is a function
of H~; (iii) a, continuous change in the total emitted
intensity with the magnetic field which can be as
high as 30/o and is only partially compensated by
the detection system.

The experimental resonance curves obtained at
35, 64, and 147.6 MHz are reproduced in Fig. 2,
the base line being subtracted. The observations
were repeated several times to verify the repro-
ducibility of the measurements.
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I IG. 1. Experimentally observed resonances on the
5994-A line at 147.6 MHz. This measurement required
20 h of multichannel accumulation. The shape of the con-
tinuous baseline (drawn in full line) was checked by com-
parison with the baseline obtained in the absence of rf
field. The lower curve is the negative of the upper curve
after the baseline is subtracted. The centers of the reso-
nances are determined with a precision of 1 Oe.

termine the energy separation of the levels J= 0, 1
and 2 which best fit the experimental results. These
separate steps are considered in subsections A,
B, C, and D below.

In the following calculations we start with unper-
turbed wave functions given by a pure Hund's-cou-
pling case (b}, '0 which we call I SNA, JM~). This is
justified by the fact that the Lande g factor (1.235)
found at the lowest frequency (21 MHz) is very close
to the theoretical value in a pure Hund's case (b)
(1.251). If the final extrapolated value at zero mag-
netic field (when no pure N S decoupling occurs)
is significantly different from 1.251, a correction
to this b-coupling scheme should be applied.

A. Construction of the Energy Level Diagram

ln zero magnetic field the energy of a I SNAJ)'
level of a 'D„state is given by &

Z, =(S=1,N, A= I, JISC,.IS=1,N, A =I, J&

2N(N + 1)
+

I
(N +N —3)BO+(z) N(N+1)Bz]

3C(C + 1) —8N(N+ 1)
4N(N+1)(2N —1)(2N+ 3)

III. DISCUSSION

From a consideration of the Chiu calculation one
can show that the energy separation between the
J=1 and J=2 levels is much smaller than the energy
separation between the J=O and J= 1 levels. Then,
in order to interpret the above experimental re-
sults, we have to plot an energy diagram for the
J=1 and J= 2 levels, evaluate the correction due to
the existence of the J= 0 level on the position of the
Zeeman sublevels (J= 1, M~ =0; J = 2, M~=0), cal-
culate the theoretical ratio of the relative intensity
of the resonances as a function of the static mag-
netic field where the transitions occur, and de-

where

C =J(J+1)—N(N+1) —2 .
The fs subscript denotes fine structure, the minus

sign applies to odd rotational levels in para-H&, A
is the spin orbit and spin-other-orbit coupling con-
stant, and Bo and Bz are the spin-spin coupling con-
stants.

In the following calculation the energy EJ of the
J=1,2, and 0 levels is taken respectively equal to

+ 8 &q H~ With Cl && p.
When a static magnetic field H~ is applied, the

Zeeman energy is given by the eigenvalue
A. Jg J J g J of the matrix

(SNA, JM J I
(@

I
e

I
/2m c)H z(L z + 2S z) +rf. I

SNA, J M ~ ) = f (H z, SNA JJ M ~M
'
~ )5 (M ~M

'
~, ) .

This energy is plotted as a function of the dimen-
sionless number (decoupling parameter) X = (lzI eI'. /
2mc&)Hz for the two levels J= 1 and 2 in Fig. 2.
The eigenfunctions are written I i) =

I SNA, JM ~).
We present here the submatrix corresponding to
MJ =3&'J. =0 whence we deduce the energies XJ of
the M J =0 sublevels and the corresponding eigen-
functions in the limit P/o. - ~:

J 0 1

~ z = ——,'-~-', (I+3X')'~z
(:2)

I
ill, J = IM~= 0) = cos6 I ill, 10) —sin6

I
111,20),

I
111,J= 2M&= 0) = sin8

I
111,10) + cosg

I
111,20),

(1 p 3xz)& & z

tang= — — with 0 & 8& 4m .
x&3

(2)

(3)

+ 0/~ (l)"'
x

1 (z)"'X - l (z)"'X
-'"x

In such a Zeeman diagram we can see that for a
given frequency v the transition !111,21)—!ill, 20)
coincides with I 111,10)—I 111,1 —1), while
! 111,20) —1111,2 —1) coincides with 1111,11)—1111,10}.
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FIG. 2. Energy-level diagram for J = 1 and 2 as a function of the magnetic field or of the N. S decoupling parameter

~ t 0 ~ ~ ~

X=I l e I z/2mc&. This diagram corresponds to the following values; g=l. 25 G. =160 MH, p=~ ~ j z, P = 2000 MHz. The po-
si ions and the intensities of the resonances (Table I) are shown for 35 64 and 147 6 MH . h d
sent the M = 0 ene

an . z. T e ashed lines repre-
sent t e MJ = 0 energy levels and the transitions arising from these levels, calculated by neglecting the J = 0 level,
while the solid lines include this perturbation. The arrows show the direction of the displacement in these transitions
due to the perturbation, the (J= 0) energy being assumed positive in this diagram. In the lower part of this figure the
resonance curves due to these 6J=0 rf transitions are represented by circles. The reconstituted curves are drawn in
solid lines; for this purpose, each resonance is represented by a Lorentzian centered at g of inte 't I d 'dth

0 ( a e ). At 35 and 64 MHz, we show onlyIO and the sum of these Lorentzians; at 147.6 MHz we represent by a
dashed line each of these Lorentzians.

B. Correction Due to the Existence of the J = 0 Level

When u is not negligible compared to P, the
proximity of the J=0 level tends to repel the )111,
JM j=O) sublevels. Then the energy X«o(y) of
these sublevels is given by first order perturbation
theory, where Xoj„o and 0 are given by (2) and
(3):

Xj,(y) = Xj,(y) + (cos'8) —
o o—0 X

~ J=l ~J =0

~ j=o(X) = &j=2(X) + (s &) —
o o

o - 2 3 X.

2 XJ ~
—XJO

Such a displacement of the i 111,ZM j =0) sublevels
implies a change in the position of the resonances
arising from these sublevels. More precisely,
the previously superimposed transitions are now
separated. The direction of the displacement is
determined by the position of the J=0 level with
respect to the J=1 and J = 2 levels. The conse-
quences of the correction are tabulated in Table
I and represented in Fig. 2 at v = 147.6 MHz for

the determined parameters n and p.

C. Intensity of the Optical Resonance Line in the N ' S
Decoupling Zone

The calculation carried out in Paper I is no
longer valid in the present case of partial N ~ S
decoupling. We wish to express the intensity I
of the light emitted by an optical transition con-
necting the initial state II) =

I SNA) to the final
state l I') = i SoNo Ao) [the corresponding magnetic
sublevels are written i f )] in the presence of an
rf field, that is when a rf transition occurs be-
tween the I i) and I j) sublevels of iI). The calcu-
lation is carried out in the noncoupled basis

li)= ~& c,'„,(q) lsiIf, ) lNAf„) .
s

The expression for I(u, A), the observed intensity,
ls

I(u, ~)=IoTrlp(t)(e:, .' D)(e.-' D)l

where e»„, is the polarization vector of the emitted
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Xp

21 MHz Ip (a. u. )

~p (Oe)

Xp

35 MHz I, (a. u. }
~p (Oe)

Xp

64 MHz I, (a. u. )
hap (Oe)

0. 11078
0.356
6. 15

0. 192 50
0.386
6.27

0.3817
0.383
6. 95

0. 107 00
0. 020
6. 12

0. 18026
0.009
6. 15

0.3370
0. 014
6, 36

0. 103 64
0. 098
6.08

0, 17130
0. 121
6.05

0.3077
0. 193
5. 88

1~ 2

0. 10073
0.225
6. 05

0. 163 45
0. 186
5. 98

0. 2840
0. 119
5. 45

1 0

0. 102 36
0. 106
6. 08

0. 16750
0. 082
6. 05

0, 2970
0. 045
5. 88

0~- 1

0. 10830
0. 195
6, 12

0. 184 26
0.216
6. 15

0.3494
0.246
6.64

147.6
MHz

Xp(~u)
Xp

Ip (a.u. )

~p (Oe)

'The centering Xp(&~)

1.1245
l. 1245
0.281

13.9

0. 8000
0. 7855
0. 130
6. 95

0. 6925
0. 7000
0.245
5.45

0, 604
0. 604
0, 033
4. 25

0. 6925
0. 6487
0. 001
5. 65

of the resonance is obtained by neglecting the perturbation resulting from the J = 0 level.

0. 8000
0. 8500
0.310
6. 95

light and D the electric dipole moment. The steady-
state density matrix'(t) is

g(t) = J e " o'U(t, to) p(to) U (t, to)dto . (5)

g(to) is the excitation density matrix and U(t, to)
the evolution operator. This operator is given by
second-order time -dependent perturbation theory'
where the perturbation Hamiltonian is

O'8 +1 [(fN N+ +g 8 S

+(g&N +go S )e'"'] .
The dc term of I(u, X) of second order in II, is

~(u &)=(p III) [(tlgNN +go S l~)]'

where

x(p;, —p, ,) (I,, I,,), (6)-

I; ~
= ~& s (&

I
e, oD I f) ( f I

e a,
' D

I
t) ~

To establish (6) we have taken into account the fact
that we observe only rhM ~= a1 rf transitions. This
implies that neither the electronic excitation
(parallel to the static magnetic field) nor the de-
tection (I„I,) are coherent-, ' i.e. , p„=I,s =0.

The calculation of hl(u, X) is performed for an

I, detected signal. Experimentally we detect the
signal I, -I, which is proportional to 47, . The
calculation of I;; is then simplified by the fact that
the final level I E) is a N = 0 level and we obtain

I ~u„~„-o(x)I'.
M

The calculation of p« is simplified by the axial
symmetry of the excitation and by the fact that the
electronic excitation can be described as a product
of an isotropic matrix in the spin space (S) and an

anisotropic matrix in the orbital space (N). ' We
shall show (Appendix) that due to the fact that we
observe a N=1 excited level, the ratio of the in-
tensities of the various rf resonances is indepen-
dent of the unknown cross sections of excitation
of the various sublevels of I I). We obtain

I &~,.~„=o (x)
I

S

The calculation carried out by Lamb concerning
the intensities of the resonances in the 'P level
(J= 0, 1 and 2) of the He is similar to this one, ex-
cept that our calculation is valid for any excitation
density matrix instead of the particular one cor-
responding to the threshold excitation of He: The
latter is not valid in our case.

We have plotted in Fig. 3 the calculated relative
intensities of the different resonances lines cor-
responding to the M = 0,, rf transitions as a function
of X the decoupling parameter. We have also
evaluated the intensities of the M= 1 resonances
for the 147.6 MHz frequency; but their weak in-
tensities together combined with their large widths
make them undetectable with the present signal to
noise ratio.

D. Reconstitution of Spectra

We have finally three adjustable parameters,
g, n, and P, to reconstitute the spectra obtained
at 21, 35, 64, and 147.6 MHz. We proceed by
successive approximations. As a first approxima-
tion we choose a g value of 1.25 corresponding to
a pure Hund's-coupling case (b) which permits us
to calculate the Zeeman diagram and determine
the constants n and P. Then we evaluate the center
of gravity of the resonance at 21 and 35 MHz, which
gives us the deviation from the value 1.25 of the
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decoupling pararne)er: x

FIG. 3. Calculated relative intensities of the resonance
curves for a (S=1, N=1, &=1) level as a function of the
N S decoupling parameter X=A I e I Hz/2m'&. Each line
represents the relative intensity of the resonance due to
a (M=O, LQfz ——+1) rf transition between the sublevels
[$=1, N=1, A=1, JMz). The calculation is carried out
by neglecting the second-order perturbation due to the
J=0 level.

Lande g factor measured at those frequencies due
to the partial N ~ S decoupling. This deviation will
allow us to deduce the Lande g factor at zero field
from the experimentally measured g-value of the
resonances at 21 and 35 MHz. '

The experiment shows that the relative order of
the J levels is 1, 2, 0. The fine constants thus found,

n = 160 MHz, 8= 2000 MHz,

are used as the basis of Table I. In this table are
shown: the calculated resonance centers Xo as de-
duced from the Zeeman diagram corresponding to

g = 1.25, the calculated intensity Io at the center of
the resonance (for convenience we have chosen
QIO= 1), and the relative full width at half-maximum
(FWHM) &IIO= (l. 25/x) nIIO, where r is the relative
slope of thetwo sublevels; we have chosen AHO

=6.1 Qe, double the Hanle FWHM at zero pres-
sure, '~ which corresponds to a zero rf field.
Each of these quantities is calculated for different
frequencies and shown in Fig. 2 for 35, 64, and
14V. 6 MHz.

In Fig. 4, we have plotted by a dashed line the
theoretical resonance curve occurring at v = 35 MHz
when the N S decoupling is neglected; this implies
that the Lorentzian curve is centered at X, = 35/gn,
withg=1. 25, a height normalized to unity, and a
width of hHo=6. 1 Oe. By means of a solid line we
have plotted the resulting theoretical resonance
profile taking into account the N ~ S decoupling; each
resonance due to each rf transition i111,JMz)

ll11, JMz) is represented by a Lorentzian char-

acterized by yo, Io, and AHO (Table I); the center of
gravity X& of this resulting curve corresponds to an

apparently modified g factor g = 1.25 -0.035. A

similar calculation for v = 21 MHz gives g = 1.25
—0.013.

This permits us to deduce from the experimental
measurements' the extrapolated zero-field g value:

(35 MHz) g = (1.215 + 0.010) +0. 035 = l. 250 a 0.010,
(21 MHz) g = (1.235 s 0.010) +0.013= 1.248 a 0.010 .
Moreover, we detect a broadening of 1.4 Qe in the
reconstituted curve at 35 MHz and of 0. 2 Qe at 21
MHz. This last result shows to a precision of 5/~

that we can neglect this broadening at 21 MHz in
the evaluation of the 5 parameter defined in Paper
I.

This above reconstitution is possible only within
a certain range of a and P values determined by the
experimental accuracy. The final values are

g=1.249~0. 010, ~=160~5 MH=,

P= 2000 MHz .—500

We have performed similar resonance experi-
ments at 147.6 MHz on the upper vibrational levels
(N= 1, I=0) of the same electronic (1s3p) ~IT„state.
The wave lengths of the observed optical transitions
are 6098 (v = 1), 6201 (v = 2), and 6303 A (v = 3).
The present results together with those found at
low frequencies in Paper I give the same value for
g within the experimental errors, and exhibit a de-

rh8

C8
C

I0
0
O

I.
0'.1 x,'x,0.'2 x

decoupling par arne)er

FIG. 4. Calculated resonances at 35 MHz on the
(S=1, A=1, A=1) level assuming a pure Hund's-coupling
case (b) (g =1.25). The resonances are represented by
a dotted line for the case when the N ~ S decoupling is ne-
glected and by a solid line when the N' S decoupling is
taken into account using the fine structure pa"ameter
a=160 MHz. The respective centers of gravity of these
two curves are g'& ——0. 17547 and X&

-—0. 18060.



FINES 7RUCTUREOFTHEN= 745

Q N nAK
Lij

LLI

10

10

10

Y
J=2

h-3 0=2
J=0

J-2

h=2 h 3
A

&heo theo exp
J=O

rytma

l J 0
; J=0

J 1 1 J=2

termine accurately A and (B,+ v'6 B,).
These results, concerning a molecular level

without rotational energy, can be compared (Fig.
5) to those experimentally obtained on the (1snp)
ot He ' '6 and to those concerning the N= 1 (lsygp)
of Hz. The N = 1 (ls 2P) 'P., „of H~ is obtained from
the experimental A, B0, and B2 determination of
Lichten. " The scaled N= 1 (1s3P) ?I„of Ha is ob-
tained by extension of the preceding result using
the fs variation law with n deduced from the He
experimental results .

We can see that present measurement gives a
result different from the one predicted by a simple
scaling procedure .

10
3 J=2

He n3Fo H2 nP rr3

FIG. 5 . Comparison between the np II„, N = 1 fine
levels in parahydrogen and np P in He. For the sake of
legibility in both diagrams we drop an energy scale of the
form: (s ign of E)x log(p (1 + ) E ( ) ~ The origin of E is taken
to be the center of gravity of the two fine levels J= 1 and
J= 2, appropriately weighted . The values quoted for the
He n P are taken from Lamb (Ref . 4) and De scoubes
(Ref . 6) . The levels in hydrogen shown as dotted lines
are inferred theoretic ally (Ref . 9) for n = 2 using the ex-
perimental results of Lichten (Ref . 15), while those for
n = 3 are obtained using the same scale reduction factor
as between the n = 2 and n = 3 levels in He

APPEND IX

We wish to show that in the case of a N = 1 level,
the relative intensities of the resonances are in-
dependent of any excitation parameters .

For a N = 1 level, assuming 3n electronic exci-
tation of axial symmetry, the orbital part "p(to)
of the excitation density matrix is a 3 & 3 aniso-
tropic matrix,

Qq 0 0

0 Qo

0 0 Q

pendence of the parameter n on the vibrational
level. We obtain: ot = 160 + 1 2 MHz (for v = 1);
n=195+12 MHz (for v=2); and n=230+25 MHz
(for v = 3). The above experimental accuracy is
worse than for v = 0 due to the proximity of optical
transitions which ne cessitat a better resolution .

IV. CONCLUSION

which is a function of only two parameters Qo
and Q, = Q ~, the excitation cross sections of the
M&= 0 and M„=~ 1 sublevels. When ¹ 2,
"p(to), which is a (2N + 1)&& (2N + 1) anisotropic
matrix, is a function of N + 1 & 2 parameters, and
the following argument is no longer valid .

The absolute intensities of the r esonance s are
given by(4). Let us calculate p(t) using (5). We
have

The preceding experimental results concerning
the N = 1 level of the (1s3&) 311„state of H~ give the
two parameters of the fine structure of this level
(n, P) and the relative position 8 = 1, 2, 0 of the fine
levels. The experimental va, lues of n and P can be
expressed in terms of the physical constants A, B0,
and 82 which are independent of N. By the use of
(1) we obtain

P + o & = Eo —E p
= —pA + gp (- Bo —v'6 Bg

+ 1940 MHz
+ 700

with

o o)
1 (00)0 T 0 1 (00)2 T 2~v —Poo+Poo~

o o o,f

~ = Z, -Z, = A + ~~ (-B,- v"6 B,)
+ 160 ~ 5 MHE ~

In this evaluation we have fixed the position of the
J= 0 level as E0 & E&, E2, using an extension of the
work of Lichten, ' Chiu, and Fontana. ' The lack
of experimental precision does not al low us to de-

1 (00) 2
p 0 g6 (Ql QO) tlv

where nv is the flux of the incident electron beam
and p is defined in Paper I. Using the relation
U 70 ' U = T 00) due to the unitarity of U, we ob-
tain

p (t) ~p(00)o To + lp(oo& 2 F (X t)
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Then (4) becomes

I(u ) =Ip (Qp +29&) 3p Tr
1
(e p z

' D)(e p, ' D)
I

+ Ip (Qg —Qp) Ip ~ (X~ f ) ~

The first term of this sum is independent of the
applied magnetic fields and gives a constant base
line at fixed electron beam intensity. Experi-
mentally the electron beam intensity varies with

the static magnetic field which introduces a field-
dependent base line (see Sec. II). The second
term represents the intensity of the resonances
and is proportional to (Qp —Q, ) which is the same
for each resonance. Therefore, we carry out the
calculation for the simple case where Qp = 1 and

Q, = 0, and obtain

i 2
pH .-I CM ~MN 0

M
g& N"
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Excitation of Lithium by Electron Impact Using the Glauber Theory

K. C. Mathur, A. N. Tripathi, and S. K. Joshi
Physics Department, University of Roo~kee, Roo~kee, India

(Received 4 March 1971; revised manuscript received 10 May 1971)

The Glauber approximation has been applied to calculate the excitation cross section for
the 2s-2p transition in lithium by electron impact using the frozen-core approximation. The
integrated inelastic cross section has been compared with other theoretical calculations and
with the experimental data. With this frozen-core, effectively one-electro&~ formulation of
electron-lithium excitation, it is found that the Glauber approximation provides better agree-
ment with experimental data than the Born approximation.

I. INTRODUCTION

The Glauber approximation has been widely ap-
plied in studying the scattering problems in nuclear
and particle physics. Recently, this approximation
was employed by Franco~ in order to study the elas-
tic scattering of electrons by hydrogen and helium.
Tai et al. and Ghosh et al. have used this approx-
imation to study the excitation of hydrogen by elec-
tron impact. The success of the Glauber theory in
electron-atom collisions can be ascribed to the fact
that it takes into account the interaction of the inci-
dent electron with the target electrons and protons,
whereas in the usual approximations the interaction
between the incident electron and the target proton
produces a zero scattering cross section, as in the
first Born approximation, or else a negligible scat-
tering cross section, as in the impulse approxima-

tion.
In the present paper we have used the Glauber

approximation to study the inelastic scattering of
electrons by lithium atoms. Here we have assumed
the lithium atom to behave like a one-electron sys-
tem. The effect of the core electron has been ig-
nored by adopting the frozen-core approximation.
Thus, with this approximation we have only to
evaluate a five-dimensional integral instead of an
eleven-dimensional integral (3Z+2) for the scatter-
ing amplitude.

II. THEORY

The scattering amplitude for the transition of an
atom from an initial state i to a final state f is given
by

I~;(j)= ')l C~(r)I"(b, r)C,.(r)e"' d bdr,
(l)


