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The incoherent-scattering factor (S) derivation of Heisenberg is extended to include the
Thomas-Fermi-Dirac (TFD) model of the atom. TFD neutral-atom calculations of the
electron densities and potentials are made with the use of a slope-iteration scheme. The
calculations of S show that the TFD values of S are much smaller than the Thomas-Fermi
values for small momentum transfers and, therefore, are in better agreement with Hartree-
Fock values. The improvement is much greater for small-Z atoms. A comparison of
Hartree-Fock and TFD S values is given over a wide range of momentum transfers for the
rare gases.

I. INTRODUCTION

Inelastic (Compton) scattering of x rays from a.

free atom with Z electrons is often calculated by
utilizing the free-atom incoherent-scattering factor
S(k) in the equation

where

4o is the ground state of the atom, and

(2a)

is the coherent-scattering factor. ' The term
(da/dQ), „represents the scattering cross section
for a free electron at rest which at low incident
photon energies is the Thomson cross section. Equa-
tions (1) and (2) can be derived from a nonrelativis-
tic lowest-order Born-theory calculation (ignoring

p ~ A terms) where a sum up to some highest ener-
getically possible continuum state is replaced by a
sum over all states~ so that closure can be invoked.
In addition, a term (~2/&, ), where v, is the incident
photon frequency and wz is the scattered frequency,
within the sum is set identically equal to 1. At
higher incident photon energies and/or large mo-
mentum transfers, (da/dA) „is usually taken to be
the Klein-Nishina scattering cross section. We
note that no relativistic treatment from first princi-
ples has been performed to obtain this r esult. One
observes that S(k) is a monotonically increasing
function going from 0 to 1 as k varies from Oto ~.

Thus, the effect of binding is to reduce the inelastic
scattering cross section below that resulting from
2 independent free electrons at rest. In the for-
ward direction the inelastic scattering cross sec-
tion goes to zero, while at large momentum trans-
fers S(k) goes to 1 andwe obtain scattering from free
electrons as one expects physically.

The values of S(k) have been previously calcu-
lated by utilizing numerical Hartree-Fock (HF)"
wave functions for all atoms of the periodic table.
These values are considered to be the most accu-
rate calculations for all but the smallest atoms. Re-
cently, many-parameter var iational wave functions
have beenutilized to calculate S(k) for two-, three-,
and four-electron systems by Kim and Inokuti and
by Brown. ' Their calculations have shown that
S(k) varies much more with the choice of ground-
state wave function that does E(k). This is not
surprising since S(k) depends on expectation
values of two-electron operators. For He for
0 ~ 0. 5 A ', S(k), calculated by using HF wave
functions, lies about 5/~ above calculations which
utilize many-parameter var iational wave functions.
In Be for k ~ 0. 1 A ', the HF S(k) lies about 30%
above the many-parameter configuration-interac-
tion calculation. This is consistent with the study
of Dawson' who observed that the use of configura-
tion-interaction wave functions which include elec-
tron correlation leads to charge distributions which
are less extensive radially than those of the HF
model. . In larger atoms, many-parameter varia-
tional wave functions are not available. Therefore,
our Thomas-Fermi-Dirac (TFD) S(k) values are
compared with HF results, and here the term "ac-
curate" refers to agreement with the HF results.
However, from the foregoing discussion one should
bear in mind that for small momentum transfers
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TABLE I. —)( (10 cm3/mole}.

Ne
Ar
Kr
Xe

TF

67. 0
81, 0

102.0
117.0

TFDb

14.33
22. 13
35.48
45. 97

HF

7. 42
20. 62
31.3
49. 62

Expt. '
6. 96+0. 14

19.32
29. 00+0.4
45. 5+0. 7

P. Gombas, Die Statische Theone des &toms Nnd
ice &nseendgngen (Springer-Verlag, Vienna, 1949},
p, 233.

Our results may differ from those in Ref. 13 by as
much as 0. 03 in the values shown.

'C. Barter et al. , J. Phys. Chem. 64, 1312 (1960).

the HS S(k) values may themselves be inaccurate.
The TFD statistical model of the atom, which in-

cludes exchange effects omitted in the Thomas-
Fermi (TF) model, has been discussed widely in
the literatur e. ' ' Thomas' has obtained solutions
to the TFD equation by changing to a new dependent
variable and numerically integrating in from the
outer radius. Thomas and Umeda utilized the re-
sulting electron density to calculate E(k)(Ref. 15)
and (r2) '6

Th. e expectation value (r ~) is simply re-
lated to the diamagnetic suspectibility y of an atom
by"

—y (cm'/mole) = (0. 791 987 && 10 ') (r3).

The values of F(k) calculated in the TFD approxi-
mation can be observed to lie within a few percent
of the HF calculated values for k-1. 5 A ' for all
atoms of the Periodic Table. TFD values of (r~)
are much improved (smaller) than those calculated
by using TF charge distribution. The TF charge
density falls off as r at large r rather than ex-
ponentially. Thus, the TF charge density is too
smeared out at large x, and expectation values of
operators which probe the outside of the atom such
as (r ) are much too large. The TFD electron
density drops sharply to zero at some finite outer
radius and therefore, one obtains substantially
improved results for (r ). Note that p(r) calcu-
lated either in the TFD approximation or in the
TF approximation diverges -x 2 as x-0. In
Table I"we make a comparison of the HF" a.nd
our TFD calculated X's and experiment in the rare
gases. For purposes of completeness, we also in-
clude the TF values. In the special case of Xe one ob-
serves that the TFD(r~) is closer to experimentfor
Xe than the HF (r'). For spherically symmetric atoms
at small k,

Bewilogua'~ has calculated a universal S(w) curve
(w is simply related to k) using the TF model and the
theoretical treatment of Heisenberg. Pohler and
Hanson ' have calculated a table of the Heisenberg-
Bewilogua S function over a much smaller grid size
than was obtained originally. For small k, the
Heisenberg-Bewilogua S function lies far above the
HF values for any atom. This is again a result of
the smeared out TF charge distribution on the out-
side of the atom.

In the present paper we have extended the treat™
ment of Heisenberg in order to calculate S in the
TFD approximation. This is discussed in Sec. G.
In so doing we have also modified an ion TFD code
of Barnes 2 so that it applies to free atoms to ob-
tain the TFD electron density and potential. We
have performed these calculations primarily be-
cause they are of interest within the TFD model ap-
proach. Such statistical models giving accurate
averages are of value in providing a clear concise
description of the relevant physical phenomena.
We also wanted to observe the extent to which S(k)
for small k is improved (decreased) from the TF
result, since the TFD charge density is much less
diffuse than the TF density. We give TFD re-
sults for S for the rare gases to Xe and also
for Hg. Comparisons are made with HF and TF
ca).culations. We note that a recent calculation
utilizing a modified TF statistical model to calcu-
late S has been performed by Singh. ' In Singh's
approach the experimental values of the diamag-
netic susceptibility were utilized to obtain the elec-
tron charge density parameters.

II. TFD CALCULATION

The TFD nonlinear differential equation can be
written

ps' ~ /! 1/2 3

(5)

where

(3v)2/'
27/3 ~P

and ap is the Bohr radius. In terms of the usual
radial coordinate r potential energy V(r), r is
equal to xb and

F(k) -2 —k (r )/3! + 0 (k ') . (4)
gg 2 g 2 ]

V (r) = y+-—
Qp 2W

Therefore, if one has confidence in the experimental
diamagnetic susceptibility of Xe, the TFDF(k) val-
ues for small k will also be more accurate than the HF
values of E(k). This, of course, is fortuitous, and
we imply no generalizations from the Xe case.

In terms of x, the electron density p(x) is

P*) 3 3 5 ( ) (Va)
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TABLE II. ZS(k) for t4e rare gases.

0. 005
0. 010
0. 050
0, 100
0, 150
0.200
0, 300
0. 400
0. 500
0. 600
0. 700
0. 800
0. 900
1, 000
1.500
2. 000
3. 000
4. 000
5. 000
8. 000

TFD

0. 136
0.272
1.349
2, 612
3, 621
4. 416
5. 621
6.489
7. 139
7. 640
8. 033
8. 347
8. 599
8. 806
9.418
9.686
9. 888
9. 951
9. 975
9. 994

Neon
HF

0, 002
0. 009
0.218
0. 812
l. 637
2. 547
4. 269
5.644
6. 640
7.320
7. 774
8. 085
8. 312
8, 490
9, 113
9.517
9. 875
9.967
9.991

10, 000

TFD

0. 189
0.378
l. 876
3.650
5. 127
6. 346
8. 292
9.785

10.969
11.928
12.719
13.378
13.933
14.406
15, 953
16.751
17.465
17.737
17.857
17.965

Argon
HF

0. 006
0. 024
0.571
1, 956
3.588
5. 033
7.377
8. 998

10.106
10.967
11.726
12.424
13.061
13.629
15.489
16.324
17.132
17.573
17.800
17.978

0. 272
0.544
2. 703
5.288
7.522
9.446

12.670
15.291
17.479
19.337
20. 936
22. 325
23. 542
24. 616
28. 477
30. 802
33.284
34. 454
35. 061
35. 723

0. 009
0. 035
0. 812
2, 703
4. 805
6.760

10, 157
12. 828
14.969
16.849
18.562
20. 123
21.535
22. 804
27. 313
29. 870
32. 659
33.919
34.562
35.504

Krypton
TFD HF TFD

0.333
0.667
3.312
6.494
9, 300

11.763
15.987
19.516
22. 533
25. 152
27.451
29.489
31.307
32. 938
39.072
43. 040
47. 661
50. 084
51.459
53. 144

Xenon
HF

0. 013
0. 052
1.194
3. 841
6.677
9.340

13.892
17.307
20. 175
22. 833
25. 324
27. 619
29. 680
31.488
37.628
41.477
46. 254
49. 030
50. 673
52. 591

For k —l. 5 A ', Hf results are taken from Ref. &. For larger values of k, the HF values are taken from D. Cromer
(private communication) .

and the local Fermi momentum P~ is

Equation (5) is solved by utilizing the boundary
conditions

e (0) =1,

(7b)

(8a)

Heisenberg evaluated Eq. (2) for 8(k) for an
antisymmetrized single-particle product wave
function, the orbitals of which were plane waves
with momentum values at any radial coordinate
x ranging from 0 to P~(r), to obtain Eq. (20) in
his work. This equation may be written

e(x.)
XO dX

0

QXO

p(x)x' dx= Z, (8b)

S=1 —— --
3 dV Pz r —— Pzr+—

(Sa)

where xp denotes the outer radius of the neutral
TFD atom and

with d V the spatial volume element and x, deter-
mined from

&,& (x ) /x = P /16, (8c)
P, (~,) = ka/4s.

which follows for a free atom (pressure equals 0
at x= xo). Abrahamsons' has shown that the latter
boundary condition is equivalent to p(xo) = 0.002 127/
a 0. Our numerical integration procedure consisted
of putting in a value for xa (our results for xo agreed
with Thomas to four and sometimes five signifi-
cant figures and, therefore, Thomas values rep-
resented a very good starting point), putting in an
estimated slope at the origin, and testing if g goes
negative before xa (which is unphysical since it
would lead to complex electron densities). For P
remaining positive, the slope was iterated on until
charge neutrality at x= xp was obtained. A further
set of iterations to fulfill Eq. (8c) was then per-
formed. We did not, use the asymptotic series of
Feynman, Metropolis, and Teller~' at small values
of x in our numerical integration procedures.

S=1— dx xa — + P —se — + +—

where x, is determined from
(loa)

p(x, )/x, = (w- p)'

for the case

(w —p) & p/4

and

(lob)

(10c)

To this point the derivation may apply to any local
electron gas approximation, although his final re-
sult, Eq. (23) in his paper, is restricted to the TF
atom. Thus, to obtain the TFD incoherent scatter-
ing factor, we transform to x and utilize Eqs. (7a)
and (7b) with Q determined from Eq. (5), and obtain
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FIG. 1. Ratio R of STFD/STF as a function of w for
Ne, Ar, Kr, Xe, and Hg.

for

Xf Xo (lob')

III. DISCUSSION OF RESULTS

In Table II we compare ZS»D with ZS» for the
rare gases. We observe that although S»D values
are much smaller than STF at small k, they still

(w- P) ~ P/4 ~ (1Oc')

In the above, w= 2. 21215k (A ')/Z 3, with k (A. ')
=(I/X) sin —,'e.

lie substantially higher than S„F. At values of
k= 0. 5 A ', the S»D results are larger than S„F
values by about IO%%up. Much closer agreement is
found as we go to larger values of se. At very
large momentum transfers (k & 4 A ' for Ne),
ST» becomes smaller than S„F. This is related
to the larger charge density (infinite) near the
nucleus in the TFD atom.

In Fig. 1, we plot the ratio R of ST~/S» as
a function of sv for Ne, Ar, Kr, Xe, and Hg. Fnr
low atomic numbers, ST~ is observed to be much
smaller than S» at low momentum transfer (ao).
Thus, a considerable improvement over TF results
is found in this region when TFD calculations are
utilized. For Z= 80 where exchange effects are
smaller, 8 remains much closer to 1 for small
u. As u increases, 8 increases to 1 and then be-
comes greater than 1 by as much as 2'%%uo before de-
creasing back to 1 at large se.
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