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exchange takes place, it is of much shorter range.

IV. DISCUSSION

The results obtained in this paper for the charge-
exchange reaction

H+ Be"- H' + Be'

are of interest from several points of view.
First, the methods which we have employed yield

cross sections at low energies for which conven-
tional linear-trajectory methods are not at all appli-
cable. In this connection it is worth noting that
our technique may be extended in a straightforward
manner to more complex systems. The proton-
hydrogen-atom exchange reaction previously studied
represented a "six-state" calculation and an appli-
cation to atom-molecular collisions is currently
under way.

From the point of view of understanding a reac-
tion process our method is particularly suitable.
The phenomenon of multiple electron exchange
characterizing charge-exchange reactions is a sim-
ple analogue of the type of process commonly con-
ceived for more complex reactions. For example,
it is thought that a "transition state" may execute
several vibrations before energy is distributed in
such a way as to facilitate the conversion from
reactants to products. It is hoped that the present
methods may be applied to such processes in the
near future.
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Absolute cross sections have been measured for the production of Lyman-o. 'radiation by
proton impact on H2 in the energy range from 20 to 120 keV. Radiation from slow H atoms
produced by dissociative excitation of the H~ molecule was separated from the radiation from
fast hydrogen atoms produced by electron capture by using a Doppler-shift technique. Reason-
able agreement is obtained with other investigators where the cross sections overlap. The
fast-atom emission exhibits a sharp monotonic decrease with energy, characteristic of charge
transfer. The slow-atom emission also monotonically decreases with energy but not nearly
as rapidly. It is estimated that about 4% of the total charge transfer goes into producing fast
atoms in the 2p state.

INTRODUCTION - H(2p)+ H2', (4)

-H'+ H'+ H(2p) + e

H+ H'+ H(2p)

(2)

(2)

Lyman- o' (2p - 1s) radiation from fast-proton im-
pact on H~ can be produced by several reactions.
They are

H'+ Hz- H'+ H+ H(2p)

where the underlined species represent the fast
particle. Reactions (1), (2), and (2) produce slow
Lyman-& emitters by dissociative excitation of the
target Hz molecule. Reaction (4) produces a fast-
atom emitter through the process of electron cap-
ture by the incident proton.

Production of Lyman-& radiation by proton im-
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pact on H2 has been experimentally studied by sev-
eral investigators. Van Zyl et al. ' have measured
the radiation emitted perpendicular to the proton-
beam direction, using an oxygen-filtered helium-
and-iodine-filled counter, in the range from 1 to
25 keV. Andreev et al. ' separated the fast-atom
emission [reaction (4)] from the slow-atom emis-
sion by using the Doppler effect. The emissions
were viewed at an angle to the proton beam with a
vacuum monochromator spectrally resolving the
slow- and fast-atom emissions. Their range was
from 10 to about 35 keV. Dahlberg et at. also
used a vacuum monochromator but no attempt was
made to resolve the fast and slow emissions since
they observed only at 90' to the beam. Their ener-
gy range was from 20 to 130 keV. McNeal and
Birely have measured both the fast and slow emis-
sions by observing them both at 90 and at an angle
of 54. 5' with their oxygen-filtered detector. Since
the Doppler shift at 54. 5' is appreciable relative to
the band pass of the 02 filter, the fast-atom emis-
sion is greatly attenuated at this angle. The 02
transmission coefficients for the unshifted emis-
sions and the shifted emissions were determined
for each energy by the observation of the trans-
mission of the filter for H' impact on Ar at 90'
and 54. 5'.

EXPERI1ULENTAL TECHNIQUE

Our technique for separate determinations of the
fast- and slow-atom emission cross sections is
similar to that of McNeal and Birely since we also
used an 02 filter for isolating the Lyman-& radia-
tion. The Doppler-shift technique using an 02-fil-
tered counter was also used by Stebbings et al. ' for
studying proton impact on H.

The counter was a helium-and-iodine-filled
counter, similar to the one used by Stebbings et
al. ' The fast-atom emission was attenuated when
the counter was positioned to detect photons emanat-
ing at an angle of 75' to the beam direction by
Doppler shifting the fast-atom emissions to the
short-wavelength side of the unshifted Lyman- &

wavelength. Shifting the radiation to the short-
wavelength side takes advantage of a very rapid
increase in absorption of the 02 filter as the wave-
length decreases from the Lyman- o.'wavelength. ~

The transmission coefficients for the filter (an
absorption path of 1.5 cm at 1 atm) were deter-
mined for the Doppler-unshifted radiation and the
Doppler-shifted Lyman- & radiation by observing
signals from the 90 and 75 positions using the
radiation from H' on Ne which contains no Ne emis-
sions within the spectral window of the unfiltered
counter. '

The analysis of the Doppler-shift technique used
in this investigation with the 0, filter is as follows.
Let

Qp(Hp) = Qp(fH) + Qp(SH) + Qp(BG)

= [qo(H, )/qo(Ne)][qo(Ne)],

Q2(H2) +lqo(fH)+ bÃo(SH)+ ciqo(BG)

= [Q, (H, )/Q, (Ne) ][Q,(Ne) ],
Q,

'
(Hz) = a~ Qo(f H) + b Ao(SH) + c&Qo(BG),

Q, (Ne) = a~qp(Ne j,

Q&(Ne) = a,' Qp(Ne),

b1 [Ql(Ne)]/[Qo(Ne) ] l &0 & v

(5)

(6)

(7)

(6)

(9)

(10)

where Qp(Hz) and Qo(Ne) are the apparent cross sec-
tions for the production of radiation by H' impact
on Hz and Ne, respectively, that is passed through
the unfiltered detector spectral window (1050 to
1317 l); Qo(fH) and Qo(SH) represent the no-filter
apparent Lyman-& cross sections for fast H atoms
and slow H atoms, respectively; Qo(BG) is the no-
filter apparent cross section for producing back-
ground radiation other than Lyman & that passes
through the counter spectral window. The apparent
cross sections designated by the subscript "1"are
the corresponding filter cross sections. The un-
primed and primed filter cross sections are the ap-
parent cross sections at 90' and 75, respectively.
It is assumed that the no-filter apparent cross sec-
tions (subscript "0")are independent of the angle
(the no-filter detector sensitivity does not change
appreciably over the small Doppler-shift range in
wavelength). The coefficients a„b,, and c, are
the filter transmission coefficients at the unshifted
Lyman-o. ' wavelength from the fast atoms, un-
shifted Lyman & from the slow atoms, and the (un-
shifted) background wavelengths, respectively; a]
is the filter transmission coefficient at the shifted
Lyman-o. ' wavelength and is generally much less
than a, . [Generally a, &b„because of the Doppler-
broadening effects in the fast-atom emission caused
by the finite cone of radiation accepted by the detec-
tor. However, at 20 keV the Doppler correction is
small, hence, Eq. 6. ]

Subtracting Eq. (7) from Eq. (6) we obtain

Qy (Hp) —Q,'(H2)
qo( ) =

q (N ) q (N )
Qo( )

This gives the fast-atom Lyman-& emission cross
section.

We now define a slow-atom emission cross sec-
tion

Qo(slow) = (1/b, ) [b,Qo(SH)+ c,Qo(BG)]

which is related to the emission passed by the 02
filter. It is generally expected that c,/b, «1 so
that Qo(slow) = Qo(SH). However, this statement
may not be true if the molecular background radia-
tion is appreciable and is located near one of the 02
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The ratio Q&(Ne)/Q, (Ne) was nearly 0. 06 and 0. 05
at 20 and 30 keV, respectively. The ratio rapidly
decreased to a negligible fraction at the higher en-
ergies. Thus, to a good approximation Eq. (11)
becomes

Qo(f H) [Qy (H2) —
Qg (Hg) ] Qo(Ne )/Qy (Ne). (15)

The ratio Qo(Ne)/Q, (Ne) is energy dependent be-
cause of the Doppler-broadening effect. The ratio
at 120 keV differs from that at 20 keV by about 30%%.

[Equation (11) was actually used in evaluating Qo(fH)
even though the difference between Eq. (11) and Eq.
Eq. (15) is only about 6'%%uo at 20 keV and is less at
the higher energies. ]

Ip-ir

8-

(
p-18 I I I I I I I I I I I I I I I I I

5 lp 20 30 40 60 80 ipp i20 l40
Energy (keV)

FIG. 1. Upper plot is a graphical display of the total
Lyman-e cross sections along with the results of Refs.
1, 3, and 4. The uncertainty in the absolute value of
the present cross sections is about +40%. The lower
plot is a graphical display of the fast- and slow-atom
emissions along with the results of Refs. 2 and 4.
I'Energy is plotted on a square root scale. )

transmission windows. It follows from Eq. (7) that

Qo(slow) = (1/b, ) [Q,'(H2) —a,' Qp(fH) ]; (13)

since generally aq/b, «1 for our case, Qo(slow)
= (1/b, ) [Q,'(H.)).

We further define a "total Lyman-&" cross sec-
tion

Qr(Ly-&)= Q, (slow)+ Q, (fH) . (14)

The cross sections were placed on an absolute ba-
sis by determining the ratio Qo(Hz)/Qo(Ne) at 20 and
30 keV. Previously determined absolute values for
Qo(Ne) were then used to obtain Qo(H2). The ratio
Q, (Hz)/Q, (Ne) was also determined at these ener-
gies. It was discovered that Qo(Hz)/Qo(Ne)
= Q~(H2)/Q, (Ne) to within a reproducibility of 10/0
with no systematic discrepancy. Thus, values of

Q, (H2)/Q, (Ne) were also averaged in to determine
Qo(Hp)/Qo(Ne). The fact that the no-filter ratio is
the same as the filter ratio implies that the molec-
ular background is small compared to the Lyman-&
radiation [Qo(BG) «Qo(SH)+ Qo(fH)] at 20 and 30

RESULTS AND DISCUSSION

Figure 1 includes a plot of our total Lyman-&
cross sections which include a Doppler correction
for the fast-atom emission. The uncertainty in
the absolute value of the cross sections is esti-
mated to be about 40/o. Also plotted are the results
of Dahlberg et al. ' from 20 to 130 keV. Their ex-
periment involved measurements at 90 to the beam
with a spectrometer. Since they could scan through
the background radiation at the Lyman-o' wave-
length, they presumably could subtract off the mo-
lecular background and actually obtain Lyman-&
radiation free from the molecular background. Ac-
cording to Ref. 3, they normalized to the value ob-
tained by Van Zyl et al. ' at 25 keV, which was ob-
tained with an 0, filter. However, there appears
to be a discrepancy between the two sets of data at
this energy. It is unclear how Dahlberg et al.
reached calibration; however, there is good agree-
ment between the shape of their curve and our curve
from 30 to 120 keV. If our conjecture is correct
that there is little molecular background compared
with Lyman- & in the unfiltered detector spectral
window at 20 and 30 keV, then the agreement with
the shape of Dahlberg's curve at the higher ener-
gies implies that the background is also small at
the higher energies. Figure 1 also shows excellent
agreement with McNeal and Birely at 20 keV where
the two sets of data overlap. Such agreement is to
be expected since the two laboratories have essen-
tially the same optical calibration. The apparatus
of Birely and McNeal was calibrated by normaliz-
ing to the measurements of Pretzer et al. and
Andreev et al. for the production of Lyman-&
radiation by H impact on Ar. The present appara-
tus was calibrated" by normalizing to Pretzer et
al. ' for H' on He, Ne, and Ar. This procedure
produced cross sections in good agreement with
Andrecv. ' Lyman- & measurements for H' impact
on O~ and N~ taken with the present apparatus are
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FIG. 2. Plot of the direct 2p capture cross sections
(cascade corrected) along with a scaled version of the
3p cross sections (Ref. 12) and the total capture cross
sections (Ref. 13).

also in agreement with those taken by Birely and
McNeal. '

Also shown in Fig. 1 are our fast-atom cross
sections [Qo(fH)] which are measures of charge cap-

ture into the 2P state, and our slow-atom cross
sections [Qo(slow)j which are measures of the dis-
sociative excitation of the target H~ molecule
producing H atoms in the 2P state. Plotted also
are the fast- and slow-atom cross sections as de-
termined by McNeal and Birely and by Andreev
et al.

Error bars on the fast-atom cross-section curve
indicate the estimated relative error in subtracting
the slow-atom curve from the total Lyman-& curve.
The error gets very large at the high energies where
the fast-atom emissions are small compared with
the slow-atom emission.

Figure 2 shows our values for direct capture into
the 2P state. This curve is the fast-atom curve
corrected for cascade based on 3s and 3d mea-
surements. " (Cascade from the d states is neg-
ligible compared with s cascade. ) The cascade
correction was always less than 10%.

Also shown are the 3P cross sections scaled up

by a factor 10. If the capture followed an n ' be-
havior, then it would be expected that scaling the
SP by a factor of 3. 4 would superimpose the two
curves. There is considerable error in both the
3P and 2P curves, but it does indicate that an n

scaling of P-state capture, unlike the s-state cap-
ture, may not be a particularly valid procedure
for all gases. " Also plotted is a scaling of the
total charge-capture cross-section curve which
seems to indicate that about 4% of the total capture"
for H on H2 goes into the 2P state. This percentage
is very close to that obtained for H' impact on the
diatomic gases O~ and N, ."
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