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Born Series for Potential Scattering
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The Horn series for the T matrix is considered with the class of potentials V(r) V=of dtA(t )
xe " . An explicit knowledge of A(t) is not necessary since the resulting scattering amplitude
can be expressed in terms of V. The exact expressions for the first and second Born approxi-
mations are utilized to approximate the general nth-order term in the series. The series is
explicitly summed to yield an expression for the scattering amplitude which reduces at high
energy to the previous impact-parameter amplitude of Blankenbecler and Goldberger. The
continuation of the series beyond its radius of convergence is discussed and exemplified with
an exponential potential V= Vo8 " . A few specific numerical examples are considered to
illustrate the behavior of the resulting scattering cross section. Improvement of low-energy
total cross sections is noted, particularly for repulsive or weakly attractive potentials.

I. INTRODUCTION related by

The study of elastic scattering cross sections
has yielded much information on chemical and
nuclear interactions. It is a relatively easy task
to compute the phase shifts and resulting cross
sections (provided not too many partial waves are
needed). Nevertheless it is still useful to have
approximate closed form expressions for the scat-
tering amplitude f(&). Two such expressions are
the impact-parameter approximations of Glauber'
(G) and of Blankenbecler and Goldbergera (BG),
given in Eqs. (1) and (2), respectively:

fo(s) = —iKf db b Ja(I k —k'
I
b) [e "' ' —1],

f(n) = (—4"m/fr') & k '
I
T Ik),

where

a &k'I Vlk "& &k"
I TI»

@sf"a/2m+ jq

(4)

V is the interaction potential and the states ik& are
eigenstates of the unperturbed kinetic energy op-
erator. The well-known Born-series solution to
Eq. (4) is

db bz, (lk-k'Ib) (2)

where

ds V((b'+s')"')
where

(5b)

and b is the impact parameter. The total energy
in the center-of-mass system is Z =8 Ka/2m and
Jkl = Ik I =K above. The BG expression was
originally suggested since it removed some singu-
larities in the G result. Both of these expressions
satisfy unitarity at high energy. More recently
Abul-Magd and Simbel considered an extension
of the BG result to obtain the off-shell scattering
amplitude. In this paper an expression for the
scattering amplitude will be derived which gives
a modification of the BG result, and goes over to
it at high energy. Special use will be made of
Gaussian-like potentials.

II. BORN SERIES AND SCATTERING AMPLITUDE

The T matrix and the scattering amplitude are

s &k
I vlk "& &k"

I
T. ilk&

n&2 . (5c)

Consider the class of potentials expressible as

V(r) = Va 1, dtA(f) e-'"

where A(f) can be written as the inverse Laplace
transform of V. It is not necessary to explicitly
know the form of A(f), since we will see that the
scattering amplitude in Eq. (21) can be expressed
in terms of V itself. To better illustrate the
nature of the method we shall first consider A(t)
= b(f —tn) and the more general case later. With
V(r) = Vse 'o", Eq. (5) for n = 1, 2 becomes

620



BORN SE RIES FOR POTENTIAL SCATTERING 621

V0
T~lk) =

8 3/2t3/2 exp(- k —k' '/4t, )
0

(7)

V0 2m „, exp(- Ik" -k'I/«0 —Ik-k" I/«, )
87/3/2t3/2 @2 K2 ytI2+ i&0

V, ' 4iw2mt0
8v" 't'," l3' k+ k'

I

, Ik+k'
I

K Ik+k'
I

(2t )I/2 +
2(2t )1/2 (2t )I/2 2(2t )&/2 (8)

The evaluation of the integral in Eq. (8) and the W

functions are discussed in the Appendix. The on-
shell second Born approximation to T for a Gaus-
sian potential was reported by Wu' some time ago.
Equation (8) is also valid off-shell. Note that both
T, and T2 have a Gaussian factor in ~k-k'~, but
the decay constant 4to for T, is twice that for T2.
Thus, as expected, larger momentum transfer is
allowed with T2.

Since the integral in Eq. (5c) is in general very
difficult to evaluate for n & 3, it will be necessary
to approximate (k'

I T2lk) in order to obtain the
higher-order terms. As the wave number K [or
A= K/(t0)~/ ] increases we would generally expect
the scattering to become more peaked in the forward
direction. We shall therefore approximate the
"sum" variable Ik+k' l-2K, where we have used
Ikl = Ik'

I =K. Then ( k'I T2lk) becomes

2 4' 2

(k lT/lk) (k,3///3/2 I ( k2 )

&&exp — W K2 to —1 9
Sto

where we have used the property W(0) = 1. Equa-
tion (9) is a small-wavelength approximation of
(k'

I T2 I k) which retains the strong dependence on

the difference variable I k -k'
j and approximates

the weaker dependence on 1k+k'I. Note that the
structure of Eqs. (9) and (7) are essentially the
same, but with different coefficients (complex for
T2) and decay factors in the Gaussians.

Equation (9) can be used in Eq. (5c) to obtain
(k'

I T3 Ik), and the process continued to obtain
(k'

I T„I k):

(k'~IT [)= (k. 3„//3/// ) ( //k/ ) wl //( —
) [

-z w/ //( )
( ( n ~/2x" wI KI —exp n~2

( (n —1)t0 j n 4nto

where the same small-wavelength approximation was made after each iteration. Equation (10) could be used
to numerically sum the Born series; however, if we approximate all the [iV —1] factors by the second-order
one [W(K(2/t0)'/ ) —1], then the series can be summed explicitly. ' Equations (10) and (5a) become

n-1 lk —kr )a
&k'l T'. lk) =(k&3/2, 3/2 ) (k / //sg2k lw(//(k//o)"')- &1' ' »k

V0 1 X" ( Ik-k'I
///////// & &»k

(

— —
)0 X n ~ n ( 4nt0

(12)

where

!

&K= Ik —k I (4nt0) / . Equation (12) can be re-
written as

0

It is interesting to note that X= 2(kI T2!k)/(k! T, Ik)
with fk l

= K. As expected, each term in the Born
series allows for increasing momentum transfer
according to the relation for the nth term

(k ITlk)
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&& Z (Xe '" )" (13)
n "-1

m vV, " bJ, (lk —k' lb)e 'o'

(t )'i'I' 1 —Xe 'o"

where we have used the identity

exp(- r'/4s )/s = 2 J "db b Jo(bx)e '"

The series in Eq. (13) can be summed easily,

2 Xe '0' 2

(
tg ~-)n

n1 ] ~e ~0

and the resulting scattering amplitude is

(14)
It is easy to show that this reduces to the BG
result with a Gaussian potential for K/(to)' ~» 1,
since I W(K(2/to) t ) I «1 in this limit.

Now consider the more general potential in Eq.
(6). Procedures exactly analogous to those used
for the Gaussian potential also apply here. For
example, Eqs. (7) and (8) for the exact first- and
second-order terms become

&k'l r, lk&=
&(t,)dt1 3/2

— exP
1 1

&k
l

Z, Vo 2m "dt &(t ) "dt &(t ) dy„exp(- Ik" -k' I'/« —Ik —k" I'/4t )2 / 8~3/2 g 2 1 t3/2 2 t3/2 K -k "„'.
0 0 2

V, iVov mm
"

d &(t ) "d A(t ) exp[ —Ik-k'I'/4(t +t )]6~"' 2b'' ' (t)"' ' (t)' ' Itk'+t kl

+t2 "' It~i'+tPkl —W It +lt t~+t2 "' It~k'+t~k I

( 2 tqtq 2[tata(tq + t2) ] ~ I( 2 I, tqt2 2[tqtq(tq + ta)] )
The Fourier transform of the potential V(t') was assumed to exist. Even if the Fourier transform of V(x)
does not exist, regularization procedures can sometimes be applied to circumvent this (an example of
such a potential will be considered in Sec. III). With the assumption of small wave numbers and mostly
forward scattering, the "sum" variable can be approximated, Ik't, +ktz!-K(t, +t2). The nth-order term
becomes

V, im&~ V, " ' " " A(t, ) ~ ~ X(t„)
&k ITnlk&= 6 3(a ~2~' ''

dt's «. (
' . , »ia"

Sm

t+ +t
wl K '

l
—1 wlK-' l-1 ~ wK ' "

l

—1
tgtP ) ( (t + t2)tg ) I

(t + ~ ~ ~ + tn ~)tn

exp [- I k —k '
I '/4 (t, + ~ ~ ~ + t„)]

t1+ ' ~ ~ +t
(19a)

This could be used directly for numerical summation of the Born series, but there is an enormous simpli-
cation if the product of functions in brackets is approximated. We shall let

wlz ' " l-1 - [w(ff(2/t„)"') -1];
(t, + t„ ,)t„ )

this approximation can be viewed as a partial decoupling of the potentials in the nth-order term (the re-
maining factor

exp[- Ik —k'
I /4(t, + ~ ~ ~ +t„)]

(t, + ~ ~ ~ +t„)

is not approximated). This finally leads to

(k Ir„lk)=(, „,I( „, ) f d~, , „,
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dt2
(t )1/2 [&(K(2/t2)" ') —l1 «3 t 1/2 [+'(K(2/t3)" ') —1]

So 3 0 3

( „)
[ ( (2/ )1/2) ]

exp[- ik —k'
I /4(t1+ ~ ~ ~ t„)]

II (t )1/2 n (19b)

Using Eqs. (5a), (14), and (19b) the Born series becomes

db b &0(lk-k' Ib) (20)

where

mi&mV0 ', A(t')
m'K (t ')"'

x [W(K( 2/t') / ) 1].
The geometric series in Eq. (20) can easily be

summed to X/(1 —X), which is also the analytic
continuation' of this series beyond its radius of
convergence IX( = 1. The resulting scattering
amplitude is

where

b J()( I k —k '
i b) 6(b)

1+&„(b)-i [5(b)+&;(b) ]

m 11v, ",A(t) „2
0

( )
mi mV0 A(t) „2 F2/,
2''K

(21)

(22a)

x erf(- i(2/t)'/'K), (22b)

(b) 0 dt ( ) e-tb sf /3 -(22c)

&(b) = &,(b) —i~;(b)

im I/17V0 dt 122 A(t)
iV(K(2/ )1/ 2)

~

~2b'K

f(0) in Eq. (21) should then be an approximate con-
tinuation of the tme Born series. The expres-
sions in Eq. (22) explicitly depend on A(t), but it
is possible to express them in terms of V by using
Eq. (6) and the identity3

&(K(2/t)1/ ) = 2(t/1/)'/ f "dz exp(- tz2+ iz2'/ K)

b 5(b)
1+ t „(b) —i[6(b)+ ~,(b)]

g0

b '5(b ')
1+6„(b ')+i[5(b ')+&;(b ')]

x f 'd0sin0&0(b' lk-k'l) J0(b k-k'l)

Kith our previous assumption that most of the
scattering is in the forward direction, the angular
integral2 gives (1/bK )5(b —b') to yield

h, (b)=(m/52K) f dz cos(2'/ Kz) V((b +z )' ) .
(23c)

By comparison of Eqs. (2) and (21) it is clear
that the new scattering amplitude differs from the
BG result by the presence of &„and ~;. The in-
tegrands in Eqs. (23b) and (23c) contain terms
which oscillate in sign more rapidly as K increases.
Therefore ~„and ~; will become negligible' for
sufficiently large K and f(0)-f»(0) in this limit.
Furthermore, all the amplitudes f(0), f»(8), and

f~(8) eventually take the limiting form of the first
Born approximation (assuming it exists for the
particular potential) as K becomes very large. "
Although we did not explicitly introduce the impact
parameter b, the limiting behavior f(8)-fee(0)
shows the connection between the series method
here and the impact-parameter expression of BG.
Since fee(8) can be derived from V(r) without re-
lying on Eq. (6) (Refs. 2 and 3) and f(0)-fee(0) in
the large K limit, it is interesting to speculate that
the amplitude in Eq. (21) with the factors in Eq.
(23) is more general than the use of the potential
form in Eq. (6) might imply. '4

The total cross section from Eq. (21) is given by

to obtain

&(b) = (—m/O2K) f" dz V((b'+ z')'/'), (23a)

b 6'(b)
[1+t „(b)]'+ [6(b)+ ~,.(b)]'

b„(b)=(m/@2K) f,
"

dz sin(2/ Kz) V((b +z )' ),
(23b)

The total cross section from the optical theorem
ls

Q = (411/K) Imf(0)
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FIG. 1. Total cross section in units of 7(o shown for
the potential V=4e (0/y) at B=100. The solid curve was
computed from Eq. (25). It is approximately 5% in error
at A =0 and approaches the BG results for A& 10. The 6
curve is essentially exact for A»10. Both the BG and 6
curves diverge for A —0.

" db b5 (b)
QBG [1 52(b)]

(aea)

QG = 8(( J db b sin 5(b) (aeb)

Qso and QG are incorrectly independent of an
over-all sign change of the potential (V- —V),

while Q in Eq. (25) does depend on such a sign
change (due to the presence of b,„). Also note that

Q» and QG diverge as K- 0. Although Eq. (21)
was derived with a small-wavelength approximation,
we shall see in Sec. III that the result is also good
at K = 0 for some cases.

III. NUMERICAL EXAMPLES

In this section a few numerical examples will
be considered to illustrate the behavior of the
amplitude in Eq. (21) and the effect of the new terms
4„and ~;. The primary effect of 4„and ~; is ex-
pected to show up at low energy since f(&)-fso(&)
at high energy. Rather than just use the special
case of the simple Gaussian potential in Eq. (16)
[A(t) = 5(t —t3) in Eq. (21)], a few other potentials
will be used to better illustrate the utility of Eq.
(21). We shall first consider total cross sections

b 5(b) [5(b) + t3, (b) ]j, [1.~,(b)]"[5(b).~, (b)]'

The optical theorem and the integrated cross sec-
tion will agree at high energy, since 5(b)» tI, ((b) in
that limit. The corresponding cross sections
from fso(g) and fo(e) are

from Eq. (25).
As a specific example consider the potential

V= 4e (a/r)", 6 & 0 and n & 2, where & and o are in
units of energy and length, respectively. For this
case" we have

A(t) = t'" '"'/r(-'n)

The scattering amplitude for this potential is well
behaved, but the Fourier transform of V and the
Born series do not exist for such a singular poten-
tial. In Sec. II the Fourier transform of V was
assumed to exist. For this new case our summa-
tion of the Born series should be viewed in terms
of a regularization of the potential. This can con-
veniently be done by considering the potential
V= 4&a"/(r + o()", (2 & 0 and letting n —0 af ter summing
the series. Also since the Born approximation
does not exist for this singular potential, f-fso
at high energy. It can be shown directly from Eq.
(23) t a.t

aW~ a " ' r(-,'(n-1))
A b r (-,'n)

aWwn W2no )'" '"'
( )=Ar( „)

x K(„,Ii2 (23i Ab/o), (27b)

( )
2B (o " ' sin(23~2Abt/a)

( 7 )r A ] b (1 t2)n12

where A =Ka, It = am&a2/i(2, and K„( ) is a modified
Bessel function. " For odd integer values of n the

quantity tI,„can be expressed in terms of Bessel
and Struve functions, "but a more convenient com-
putational form from Eq. (22b) is

n-1
g (b) d&e-n (n-3&/2

Ar(-,'n) b

where

32mm2 " db bp, (b)p, (b)
[1+(2"2m/a2) p, (b)]' (28)

p, (b) = J "dz 2' V((b2+22)'~2)

For inverse-power potentials this becomes

x ImW(A(2/x)'~'b/a) . (2Vd)

The W function was computed by the method of
Salzer' and the integral was done by Gauss-La-
guerre quadrature. " Figure 1 shows a plot of the
total cross section Q* = Q/7(a2 (Figs. 2 and 3 are
also in units of ma ) as a function of A for n = 5 and
B=100. The solid curve is from the optical theorem
in Eq. (25) and the arrow indicates the exact re-
sult at A = 0. Equation (25) is 5% in error at A = 0, '3

while the BG and 6 results diverge as expected.
At zero energy Eq. (25) reduces to
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2w I'(-,'-(n —I))I"(~(n —3))[2~t ~BI (2 (n —2))/I'(~n)] '" @ I'(2/(n —2))I"((2n —3)/(n —2))

I"'(-,' (n —2))(n —2)

n& 3. (29)

This expression agrees Jest with the exact result'
for small values of n; the error is —

5/~ for n & 20,
10% at n- 100, and - 20% for n- ~. Finally, in the
limit A. » 10 the G curve is essentially exact' and
can be considered as a reference for comparison
(as noted before Q -Qao- Qo for A» 10).

Consider the case of an exponential potential
V= Voe

" '. As Aincreases Q, Q», andQoall go to
the first Born approximation for the total cross
section. At the other extreme of A. =0 it is inter-
esting to look at the total cross section as a func-
tion of B = 2m Voo2/5 (Qzo and Qo again diverge
here). Equation (28) becomes

8 2 d
y'i~i(y'2(y)

y [I+&Be '(I+y))' ' (30)

Figure 2 shows Eq. (30) (solid curve) along with

the first Born and exact results~ for the repulsive
potential case Vo &0. The good agreement of Eq.
(30) with the exact result for B even greater than

unity is related to the continuation of the Born series
beyond its radius of convergence. For the series
in Eq. (20) to converge it was required that IXI & 1,
and for this case X= HB e~ (1+y). Therefore the
radius of consequence is lB I

= I/R. Figure 2

shows that Eq. (30) produces a fairly accurate con-
tinuation beyond B= I/H. More generally, note
that the denominator of the integrand in Eq. (28) is
never zero for a repulsive potential, regardless
of its strength.

The attractive exponential Vo &0 case behaves
differently. Q should go through successive zero-
energy resonances as the potential well supports
more bound states (i.e. , as -B increases). The
first bound-state resonance" is at —8 = 1.44; Eq.
(30) becomes singular for B & —I/R. Therefore,
for the attractive case Eq. (30) does not give an
accurate continuation of the series. The location
of the first zero-energy resonance is somewhat
sensitive to the approximation of

(t&+ ' ~ +t„)
(ti+" ~ +t.i)t. &

in going from Eq. (19a) to Eq. (19b), and may like-
wise be sensitive for other potentials.

These results indicate that, for cases where V

is repulsive or perhaps just has a weakly attractive
well (i.e. , it does not support any bound states),
the total cross section in Eq. (25) should give fairly
accurate results for A & 0. However, if V can sup-
port at least one bound state, then Eq. (25) will be-
come a poor approximation for small values of A.
The precise region where Eq. (30) breaks down

in the latter case is not clear, but it is reasonable
to expect it to occur for 2 & (I 8 I) ~ . This cor-
responds to the region where the scattering wave
undergoes a large distortion.

As an example to illustrate this behavior, con-
sider a Lennard-Jones 12-6 potential of depth c,
V=4&[(a/x)' — (o/x) ]. Figure 3 shows the total
cross section from Eq. (25) (solid curve) and the

2 I 1 I
I

I I I

I

O

u IO
UJ
M

V)
M
O
K
C3

I—

O

FIRST
APPRO

Z,'0
I-
hj
rn

V)
V)
O
K
(3

/
/

/
EXACT

v=oK (—„)
B =125

10 IO

-I
IO

IO IO I IO

FIG. 2. Total cross section in units of xo. at A= 0

shown for the exponential potential. The solid curve,
computed from Eq. (30), agrees fairly well with the exact
curve. The arrow on the B axis indicates the radius of
convergence of the series in Eq. (20).

A

Flo. 3. The total cross section in units of mo. shown

at B=125 for a Lennard-Jones 12-6 potential. The solid
curve was computed from Eq. (25); it begins to break
down for A & 20 - MB, where the large quantal oscillations
appear in the exact result. For values of A greater than

shown here, Eq. (25) goes over to the BG result with the

poten. tial t/'= 4e (o/z)
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FIG. 4. Differential cross section shown in units of
0 for a Yukawa potential with A. =1.82 and B =- —2.37.
The solid curve was computed from the amplitude in Eq.
(21). The accuracy is best for 0 & 0& 90' and poorest at
8=180', where the calculated and exact results differ by
a factor of 3 (0.015 and 0.049, respectively),

exact resultse2 for B = 125. Equation (25) begins
to break down near A & 20- v B, where large-ampli-
tude quantal oscillations appear in the exact result.

As a final example, consider the calculation of
the differential cross section f(8) = If(6) I with f(8)
from Eq. (21) using a, Yukawa potential

V(~)=V, (a/~)s "', V, 0

-(1/4)o r

(7rt)" '

The calculation is rather straightforward, but a
little more difficult than calculating total cross sec-
tions. The problem stems from the oscillatory
nature of Je (Ref. 15) in the integrand of Eq. (21).
The integration over b in Eq. (21) was done by
Gauss-Legendre quadrature' on finite intervals;
suffici. ent intervals were taken so as to obtain con-
vergence. Equations (22) and (23) yield

b(b) = (-B/2A) Z, (b/o),

that this potential can support one bound state and
A-(-B)' in Fig. 4 so that the conditions in this
ease should be close to the estimated breakdown
region for the amplitude in Eq. (21). As A de-
creases below -1 the accuracy decreases (more
rapidly in the backward direction), while as A in-
creases the accuracy improves and the cross sec-
tion finally approaches the first Born limit. Also
note that f is complex in Eq. (21) while f„,e,„„is
real, and f-f», s„„asA increa, ses.

The few examples in this section certainly do not
present a complete analysis or test of the scattering
amplitude in Eq. (21). In particular, a more
thorough test of angular distribution calculations
would be useful. Nevertheless, the examples do
give an indicatioa of the expected range of validity
and accuracy of the amplitude. It is clear that Eq.
(21) shows an improvement over the BG results in
Eq. (2), particularly for low energy total cross
sections. Finally, V(x) was assumed to be real
here, but a complex optical potential could just as
easily be handled. Likewise if specific internal
states I i) are present and if (iI V(x) Ij) can be writ-
ten as J"dtA;;(t) e '", then the treatment in Sec.
II can be carried out with specific inelastic chan-
nels (the quantities 5, tI„, and n; will become ma-
trices).
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APPENMX

To derive Eqs. (8) and (18), integrals of the type

,» exp(-IF' —k I/4~ —Ik -k
I /4s)

1 K'-k '+is
(31)

must be performed (the lim, „e is implied). After
completing the square in the exponential the integral
becomes

r(~s) =
exp (-,(k"s +k'r)

4xs

z,.(b) = —Ke(b(1+ BA )'i /rr),

exp I'- tb' —1/(4o't) )n (b)=-
4A. t

0

x I mW(A( 2/t)
~ /o)

Figure 4 shows the calculated differential cross
section (solid curve) along with the exact resulte'
for A =1.82 and B= —2. 37. The angular distribu-
tion is most accurate in the forward direction,
0'& 6 & 90' (recall that mostly forward scattering
was assumed in the derivation in Sec. II). Note

where a = (r+s)/4xs and b = (sk~+xk)/4«.
angular integrations can be performed to obtain

(k"s + k'~)
f(~, s) = —exp — -- — — —exp4xs 8b 4g

„expI-a(k" —b/2a) ']
dk p gga

~ oo

I et t = va (k —b/2a) and separate the denominator
by partial fractions to obtain
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(k s+k r) () b a & 1
f(r, s) = —exp — —exp —

I dt exp(- ts)
Kb 4xs eb 4a g Pa%+(b/2/a)+)E —) PaK —(b/2/a)+ye —t)+

&b exp 4
— —exp — W g&+

2
g~ (32)

where W(x) =e ' erfc( —ix) and the ]im, , has been
taken after performing the integration. 24 A few
properties of the 5' functions for real argument are

W(O) =1, ae W(x) =e

Im W(x) = i exp (-x') erf (- ix) & 0,
lim ImW(x)- (1/Emx)+O(l/x ) .
x»1

Finally, after performing the differentiation 8/Bb

and using the definitions of a and b, it is easy to
obtain

2im xs tk -k'I
f(r, s)=, - — exp

2 'Ys 2 'Ys 'Y+

K y'+s I sk'+ yk)
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