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The Hylleraas-Scherr-Knight variation-perturbation method is applied to the calculation of
oscillator strengths for the dominant transitions from the metastable 2p3p P and 2p3d ~ 3D

states of helium and the heliumlike ions. The results explain the absence of the ls2p 3P 2p3p 3P
transition of He 1 from recent beam-foil excitation spectra.

I. INTRODUCTION

Many atoms possess rydberg series of doubly
excited states which, although imbedded in the
autoionizing continuum, are prevented from auto-
ionizing by angular momentum and parity selec-
tion rules. Such states may be termed "metastable"
since their lifetimes are determined by the rela. —

tively slow process of spontaneous emission of
radiation, rather than autoionization. The 2p
metastable state of helium is the most extensively
studied. ' ' A recent remeasurement of its energy4
has corrected an earlier error and brought the
theoretical and experimental energies into good
agreement. Progress in the theoretical study of
multiply excited states has been reviewed by

Holden. '
In previous papers, ~'6 we have applied the Hyl-

leraas-Scherr-Knight l/Z expansion perturbation
technique to the calculation of the energies of the
metastable 2P P, 2P 3p'P, 2p3P P, 2P3d'D, and

2P3d 'D states of the helium isoelectronic sequence.
Direct variational bounds have also been obtained
for the neutral helium eigenvalues as a check on
the accuracy of the perturbation expansions. In
this paper, we evaluate the oscillator strengths
for those transitions from the 2P3P P, 2P3d D,
and 2P3d'D states which are expected to be dom-
inant. Results for the corresponding transitions

from the 2p P and 2P3P'P states have been re-
ported previously. Transitions involving the above
states have been observed in beam-foil excitation
spectra' and are of interest in the study of solar
flares and the solar corona. "

The computational method is briefly summarized
in Sec. II and the results presented in Sec. III.

II. COMPUTATIONAL METHOD

The Hylleraas-Scherr-Knight variation-pertur-
bation method used in the present work has been
described previously ' and is only briefly sum-
marized here. In units of g a, .u. , the Hamilto-
nian for a two-electron atom may be written in the
form H= Ho+ Z 'V, where Ho is a sum of hydrogen-
atom Hamiltonians and V= 1/r, s. The above parti-
tion of H leads to the following perturbation ex-
pansions for the eigenfunctions and eigenvalues:

e =4, ++4„Z-",
n=1

E=EO+Q E„Z ".
n=1

The perturbed functions 4"„are expressed in terms
of a truncated set of X orthonormal functions p, ,
which are constructed from linear combinations of
N correlated functions of the form
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~J (1 ++12) +1 +2 +12 ~I l I ( 1 2)

where

q. . . (y„y,)= Q & i,m, i,m, ILM&
mg, m2

(3) states since the energy separations are much
smaller in the former case.

The "length" form of the oscillator strength for
a transition between two atomic states labeled by
angular momentum quantum numbers LM and

I ~ IJ jll and having energies E and E is defined as'
x y ", ,

~ (y,) 1', 2 (~,) . (4)

H, is diagonalized in the basis set y; such that
f (yLM- 'Y L, M )

)
I

& y'L'M'l~, -., l

yLM& I' (8)

P, z in (3) indicates the interchange of labels 1 and

2, w~. th the plus sign referring to singlet states
and the minus sign to triplet states. The scale
factors ~ and P are set equal to their hydrogenic
values; for example, o.' = —,

' and p = ,' for—the2p3d ' D

states. Then, as a consequence of the diago-
nalization (5), one of the p, say, y„ is automat-
ically the exact hydrogenic eigenfunction 40 with
eigenvalue as= Eo, and the remaining functions
p;(its) form a synthetic representation of the re-
maining spectrum of Ho. It can be shown from a
variational principle that the 4 „and E„are de-
termined by the recursion relations

I@ ) ~ &P I VI+„,& g E~&P I+~&n- i
lAs ~S ~i P i ~S

(6)

E„=&+„,
I
vI+, &- QE, &e„,Ie, &,

provided that all the lower order 4', , E;, i= 1, . . . ,

n —1, are known exactly. With a finite basis set,
the lower-order solutions are not known exactly,
but the above equations provide useful approxi-
mations to 4„and E„(but not bounds beyond E~)
up to some finite order n,„. The nonrelativis ic
perturbation expansions (1) and (2) summed up to
order v,„become increasingly accurate with in-
creasing Z and are asymptotically correct. An

advantage of the 1/Z expansion procedure over a
direct variational calculation is that results for
an entire isoelectronic sequence are obtained by
a single diagonalization of Hp in the finite basis set.

in atomic units. The sum runs over all the elec-
trons in the atom. An averaged oscillator strength
f which is independent of magnetic quantum num-
ber is obtained by averaging over the initial-state
orientation degeneracy and summing over the
final-state degeneracy. It is first convenient to
introduce reduced matrix elements through the
relation involving the 3-j symbol"

I
= (- t)' "'(, )b 'L'llr. ;.r,. II yg, (u)

with r"=+ (x+ iy)/W2, y'= z. With the a.id of a,

sum rule for the 3-j symbols, the averaged oscil-
lator strength can be written

I

f, (yL-y'L') =,„„I
(y'L'IIX, r; IIyL) I'.

(10)
The results are presented in terms of the above
reduced matrix elements and averaged oscillator
strengths.

For exact initial- and final-state wave functions,
the length form given by Eq. (10) is formally iden-
tical to the velocity form

f.(yL-y L)=
L 1 I(y L IIZ;p;IlyL)I',

(11)

where p; = (h/i)V, The le. ngth and velocity transi-
tion integrals R = (y L

I I g; r;
I I

yL) and P
= (y L

I IL,p, I IyL) have the z ' expansions

III. CALCULATED OSCILLATOR STRENGTHS R = Z-' g R Z-"
n=o

(12)

We are concerned with the calculation of oscil-
lator strengths for the dominant transitions from
the 2p3p P, 2p3d D, and 2p3d'D states. The
transitions considered are

2p3p P-ls2p P, ls3p P, ls4p P,
2P3d D-ls3d D, 2P P, 2P3P P,
2p3d D-1s3d'D, 2p3p'P.

In addition, there are one-electron transitions to
doubly excited antoio~iz&zg states, but these should
be less important than transitions to singly excited

f =zP p„z
n~Q

(13)

as a consequence of the equivalence of Eqs. (10)
and (11). hE in (14) is the mth coefficient in
the Z ' expansion of E —E. With the approximate
perturbed e''genfunctions obtained by expansion in

with the exact expansion coefficients being related
through
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a finite basis set, (14) is not satisfied exactly
(except in lowest nonvanishing order) and thus
provides a check on the accuracy of the calcula-
tion. We denote by R„'"the R expansion coeffi-
cients calculated directly from the matrix elements
of gr;, and by R(„") the coefficients calculated in-
directly from the matrix elements of gp( and the
use of E(l. (14). Similarly, P'„"' denotes the P ex-
pansion coefficients calculated directly from the
matrix elements of gp; and P„' ' those calculated
indirectly from the R„")and Eq. (14). The above

four sets of expansion coefficients each yield

slightly different results for the oscillator strengths.
One could also eliminate the energy difference
between (10) and (11) to obtain the intermediate
form for the oscillator strength

f (yl. -y'l. ')=, ~RP (15)

(y &, & I- JIZ r; lly& 1 I-)

thus generating several more possible procedures.
It is not clear which of the above procedures is

the most accurate. Starace' argues that the
length formulation is preferable if the wave func-
tions are exact eigenfunctions of an approximate
nonlocal Hamiltonian, but he specifically excludes
correlated variational wave functions. In the lat-
ter case, Dalgarno and Lewis" and Crossley
argue that for large excitation energies the velocity
form is preferable, while Stewart" has shown that
for transitions between adjacent states involving
no change in principal quantum number, the length
form is preferable. We have adopted the procedure
of calculating the oscillator strengths in the length
formulation, with the transition integrals R ob-
tained by summing the R„"'for transitions in which

the principal quantum number changes and by sum-
ming the R'„"for transitions in which the principal
quantum number does not change.

The reduced R„"and R„"' transition integral ex-
pansion coefficients calculated from 5Q-term basis
sets, as discussed in Sec. II, are given in Table

I. The relative phases are internally consistent
and correspond to radial wave functions which are
positive near the origin. The zero-order coef-
ficients are related to the one-electron hydrogenic
reduced transition integrals by"

TABLE I. Electric dipole reduced transition integral
expansions. ~

Order

0

lg2p P-
2p3p 3P

—0. 516 69
—0.516 69

0, 623 32
0. 62349
0. 837 95
0. 837 87
0. 65075
0. 654 90
0.31499
0, 31070

—0. 01135
—0. 01176
—0, 15775
—0 ~ 142 31
—0. 10841
—0. 09739
—0. 162 61
—0. 138 19

2p3p P-
2p3d 3D

12.3238
12, 3236
10, 2498
10.2542
12.7032
12.6693
12.7187
12. 8288
10.8103
10, 6355
7. 7642
8. 1217
5.5383
6. 0997
5. 4518
5.4294
7.5644
6.4057
9. 1916

1+3p P
2p3p P
1.29027
1.29027
0.211 86
0. 215 36
0. 02627
0. 034 87
0. 402 91
0. 390 94
0. 58033
0. 593 26
0. 545 68
0. 552 45
0„39178
0. 376 23
0. 09111
0. 108 81
0. 035 74
0. 00869
0, 572 99
0. 628 83

2p3p P
2p3d'D

12.3238
12.3235
9. 0039
9. 0048
8. 0555
8, 0529
7. 6641
7. 6693
7. 3500
7. 3586
6. 8461
6. 8742
6. 0260
6. 0334
4. 7931
4. 7689
3.2092
3.2181
9. 9709

1s4p 3P-
2p3p P

0. 00000
0. 00000

—0.33944
—0. 347 17
—0.243 93
—0.224 92
—0. 084 97
—0. 102 57
—0, 03708
—0. 085 01
—0.298 59
—0.20077
—0. 27426
—0. 152 68

1g3d D-
2p3d'D

—1.665 73
—1.665 73

0. 07448
0. 083 47
0.263 62
0.253 94

—0.204 32
—0.212 01

0. 00928
—0. 002 79
—0. 185 75
—0. 156 99
—0. 156 42
—0. 195 00
—0. 103 93
—0. 132 95
—0. 146 52
—0. 142 82
—0. 073 63
—0. 06926

2p2 3P

2p3d 3D

—8. 2238
—8.2238
—0.4037
—0.4036

2. 2576
2, 2587
2. 8142
2. 8140
1.9665
l. 9791
0. 6815
0. 6775
0. 0461
0. 0613
0. 4751
0. 4738
l. 4647
1.4537
2, 4277
2. 2368

1g3d 3D-

2p3d 3D

—1.665 73
—l. 665 73

0. 037 30
0. 03908

—0. 049 08
—0, 04736

0. 030 03
0. 021 97
0. 07430
0, 06630
0. 00816
0. 019 74

—0. 067 70
—0. 051 98
—0. 072 78
—0, 08120

0. 03628
—0. 04032

0. 135 04
0, 00852

R=& (Ro+R(Z +R2Z + ''')+, where Z is the nuclear
charge and ao is the Bohr radius. For each pair of num-

bers, the first is R„& and the second is R„" as defined in
the text.

( ] )l(+)a+L+( [(2I,+ 1)(2J + ] )](/2

./ C

x ' ' y'/', r yl. , y6
1

pans ions

26E
3(21.+1)

nmax 2
R( ()g-(n+()

n
n~0

A comparison of the R„'" and R„'"' in Table I in-
dicates that the accuracy varies considerably from
transition to transition. The neutral helium oscil-
lator strengths calculated from the truncated ex-

2bE
3(2I + 1)

n max
P(u) g-(n-()

n
n&0

are compared in Table II. Although the above two
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TABLE II. Comparison of f~ and f„for the He r tran-
sitions as defined by Eqs. (17) and (18).

Transition n~ fl ftg

ls2p P-2p3p P 8 0.00089
ls3p P-2p3p P 9 0. 13573
ls4p P-2p3p P 6 0. 005 38

2p P-2p3$ D 9 p. 454
2p3p P-2p3d D 9 0. 255
2p3p P-2p3Q D 9 P. 3890
ls3g D-2p3$ D 9 0. 12688
ls3g D-2p34 D 9 0.13611

g~~ is the highest order retained in perturbation
summations (17) and (18).

0. 000 90
0. 13576
0. 005 35
P. 451
0. 257
0. 3883
0. 12680
0. 136 14

forms tend to be the most discrepant of the various
possible formulations discussed earlier, the com-
parison in Table II probably overestimates the
accuracy by about an order of magnitude. The
agreement for the 1s3d ' D - 2P3d "D transitions
is particularly good.

The energy differences, absorption oscillator
strengths, and emission Einstein A coefficients
are given in Table III for the isoelectronic se-
quences up to Z= 18. Although the nonrelativistic
results become increasingly accurate with in-
creasing Z, it is important to consider relativistic
corrections to the energy differences for large Z,
particularly for transitions between adjacent states.
The effect is to increase the decay rate through
the bE dependence of the A coefficient. Relativ-
istic and retardation contributions to the transition
integral itself are probably not important for
Z& 25.

IV. DISCUSSION OF RESULTS

Berry et a/. ' have observed several transitions
from the doubly excited states of He r, including
the 1s2p 'P - 2p3p 'P and 1s3p 'P - 2p3p 'P transi-
tions at 295. 2 and 309.0 A, respectively. For the
corresponding triplet transitions, they observe only

a single line at 306 +1 A which they tentatively
identify as the 183p3P- 2P3PSP transition predicted
to be at 305. 7 A. ' The unexpected absence of the

1s2P P - 2p3P P transition at 291.1 A from their
spectra is understandable from our calculated
oscillator strengths. The transition integral is
anomalously smail (and inaccurate) due to severe
numerical cancellation in the summation of the Z '
expansion series given in Table I. The oscillator
strength in Table II is nearly an order of magnitude
smaller than that for the two-electron jump1s4P3P-
2p3p3P, even though the latter is forbidden for
simple product-type eigenfunctions and proceeds
only through correlation effects. The lifetime
of the 2P3p P state is then determined primarily
by the 1s3P P- 2p3PSP transition. In contrast,

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18

(a. u. )

1.5654
3.6541
6. 6342

10.5040
15.2629
20. 9110
27. 4480
34.8741
43. 1890
52. 3929
62. 4857
73.4674
85. 3380
98. 0975

111.7459
126.2832
141.7094

ls2p P-2p3p P

f(S- j)
0. 0009
0. 0032
0. 0081
0. 0116
0. 0141
0. 0158
0. 0172
0. 0182
0. 0190
0. 0197
0. 0203
0. 0208
0. 0212
0. 0215
0. 0218
0. 0221
0. 0223

zg-i)'
(sec" )

7. 1 x 107
l. 37 x10~
l. 15 x 10~0

4. 12 x 10~0

l. 05 x 10~~

2. 22 x 10
4. 15 x 10
7. 11 x lp"

]012

1.74 x 10
2. 54 x 10
3 60x lp
4. 95 x 1Q

6. 65 X10~2

8.75 xlQ
]., 13 x 10~3

1.44 x lpi3

l.4903
3.3569
5. 9738
9.3409

13.4579
18.3250
23, 9421
30.3092
37.4263
45. 2935
53.9106
63. 2777
73.3948
84. 2619
95.8790

108.2461
121.3632

ls3P P-2P3P P

0. 136
0. 147
0. 147
0. 146
0. 145
0. 145
0. 144
0. 143
0. 143
0. 143
0. 142
0. 142
0, 142
0. 142
0. 141
0. 141
0. 141

9. 69 x 10~
5. 34 x 10~0

1.69 x 10~~

4. 10 x].p~~

8.46 x 10~~

1.56 x 10~2

x jp12

4. 23 x 10"
6.43 x 10"
9.40 x 10"
1.33 x].0
1.83 x ].0~3

2.45 x10~3
3.23 x 10"
4. 18 x ].0~3

013

6. 68 x 10"

(a. u. )

l.4647
3.2548
5.7465
8. 9396

12.8340
17.4298
22. 7270
28. 7256
35.4255
42. 8268
50. 9296
59.7337
69. 2392
79.4460
90.3543

101.9640
114.2750

ls4p P-2p3p P

f(i-j)~ Z2

0. 021
0. 016
0. 014
0. 013
0. 012
0. 012
0. 011
0. Pll
P. 011
0. 011
0. 011
0. 010
P. 010
p. 010
0. 010
Q. 010
0. 010

~(j-z)
(sec )

3.69 x]08
5.88 xlp8
8. 99 x lp
1.29 x 10'
1.75 x lp'
2. 29 x].0'
2. 91 x lp'
3.60 x 1{}'
4. 36 x 10~

5. 20 x ].0~

6. 12 x 10~
7. 10 x lp'
8. 16 x].09

9.30 x lp~
1.05 x 10
1.18 x lp"
l. 32 x lp"

TABLE III. Absorption oscillator strengths and
spontaneous emission rates.
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TABLE III. (Continued)

(a. u. } f(i- j)

2p2 3P-2p3d 'D

A(j-» i)
(sec ')

DE
(a. u. ) f(i- j)

Table III. (Continued)

1s3d 'D —2p3d 'D
x(j-i)

(sec )

2
3

5
6
7
8

9
10
11
12
13
14
15
16
17
18

2

3

5
6
7

9
10
11
12
13
14
15
16
17
18

0. 1512
Q. 4395
Q. 8664
l.4321
2. 1365
2. 9799
3.9621
5. 0831
6. 3430
7.7419
9.2796

10.9562
12.7716
14.7260
16.8192
19.0513
21.4224

(a. u. )

0. 0085
P. 0165
O. 0245
0. 0325
0. 0406
0. 0487
0. 0568
Q. 0648
0. 0729
0. 0810
0. 0891
0. 0972
Q. 1053
0. 1134
0. 1215
0. 1296
0. 1377

0.454
0. 690
0. 796
0.853
Q. 890
0. 915
0. 932
0. 946
Q. 957
P. 965
0. 972
0. 978
O. 983
0. 987
0. 991
0. 994
0. 997

2P3P P —2P3d B

f(i-j) ~

0. 510
0. 387
0. 345
0. 325
0. 314
0. 307
0. 302
0. 298
0. 295
0. 293
0. 291
0. 289
0. 288
0. 287
0. 286
0. 285
0. 284

2 oox lp8
2. 57 x].p~

1.15 x ].p"
3. 3V x]p"
V. 83 x 10"
l. 5V x lp"
2. 82 x].pii

4. Vl x lp"
42 x lpii

1.12 x lpi~
l. 61x ].0"
2. 26 x lpi2
3. Q9 x ].Qi~

4. ].3 x lpi2
5.41 x ].Oi2

6. 96x]p"

A(j-i)
(sec" )

3.53x 10~
6.74 x].0'
9. 98 x]p5
1.33 x ].p'
1.66x 106
2. 00x lp'
2 34 x]p6
2. 68 x 106
3. O2x ].p'
3. 3V x].p'
3.71 x]p'
4. O5 x lp6
4.40 x 106
4. 74x]p'
5. 09x 106
5.43x ]p6
5.77 x 10'

3

5
6
7
8
9

10
11
12
13
14
15
16
17
18

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18

1.4918
3.3508
5. 9586
9, 3161

13,4235
18.2807
23.8879
30. 2451
37. 3522
45. 2093
53. 8164
63.1735
73. 2806
84. 1377
95.7447

108.1018
121.2089

(a. u. )

1.4963
3.3654
5. 9843
9.3531

13.4719
18.3407
23. 9594
3Q. 3282
37, 4469
45. 3157
53. 9344
63.3032
73.4219
84. 2907
95.9094

108.2781
121.3969

0. 127
Q. 130
0. 132
0. 134
0. 135
0. 135
0. 136
0. 136
0. 136
0. 137
0. 137
0.137
0.137
0. 137
0. 137
0. 137
0. 138

1s3d D —2P3d D

f(i-j)
0. 136
0. 137
0. 137
0. 137
0. 138
0. 138
0. 138
0. 138
0. 138
0. 138
0. 138
0. 138
0. 138
0. 138
0. 138
0. 138
0 ~ 138

9.07 x 10
4. 69 x 1P
1.51xlo '
3.73 x 10
7.80x 10
1.45 xlp
2. 49x 10
4. 00 x 10
6. 12 x loi2

8. 97 x 10
1.27x 10"
1.76 x lpi3

2. 37 x 10"
3, 12xlo
4. 05x 10"
5. 16 x 1Qi3

6.49 x lpi3

z(j-i)
(sec )

9 79 xlo
4. 98 x 10
l. 58 x 10
3.86 x 10

p2 x lpii
1.49 x 10
2. 54 x 10
4. pv x].p"
6. 22 x 10"
9. ].]. x ].Qi2

1.29 x lO"
1.78 x 10"
2. 39 x].pi3

3.15 xlo
4. 09 x 10
5. 21 x].0
6. 55 x 10

2

3

5
6
7
8
9

10
ll
12
13

15
16
17
18

(a. u. )

P. 0164
0. 0298
0. 0424
0. 0548
Q. 0671
Q. 0794
0. 0916
0. 1039
0. 1161
0. 1283
0. 1405
0. 1527
Q. 1649
0. 1771
0. 1893
0. 2015
Q. 2136

2p3p iP —2p3d iD

f(i-j) ~

Q. 778
0. 611
0. 547
Q. 514
0.494
0.480
Q. 470
0.463
0.457
0.453
0.449
0.446
O. 443
O. 441
0.439
O. 437
0.436

a(j-i)
(sec ')

2. O3 x 10'
3.49 x 106

4. 74 X]0
5. 95:x106
7. 15 x].06

8. 34 x lp'
9.52 xlQ6
1.07 x 10'
1.19 x lp~

]..31 x].0~

1.42 x 107
l. 54 x].p~

1.66 x ]p7

1.78 x ]p7
1.89 x ]0~
2. Ql x lo~
2. 13 x 10

&(j-i)=~ (g~lg~) f(i j)x3 2130x 10 sec where

g~ and g& are the statistical weights.

the oscillator strengths for both the 1s2P 'P —2p3p 'P
and 1s3P 'P —2p3p 'P transitions are large and

of roughly equal magnitude. ~

The line observed at 306 + 1 A may also contain
a contribution from the 1s3d'D —2P3d'D transition
at 305.4 A since the experimental resolution is
not sufficient to separate the two possible con-
tributions. One would further expect the 1s3d'D-
2PM D transition at 304.5 A to be present since
the companion 2P 3P - 2p3ds D transition predicted
to be at 3014 A has been observed in unpublished
work by Berry. Higher-resolution wavelength and
lifetime measurements would make possible a
positive identification of these transitions.

The selection rule preventing autoionization ap-
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plies rigorously only in the limit of exact L S
coupling. Holy'ien' has pointed out that some of
the fine-structure levels of the doubly excited
metastable states are coupled directly with the
continuum by the spin-orbit, spin-other-orbit,
and spin-spin interactions, thereby making auto-

ionization possible. Although the autoionization
rate for the He r states is small compared to
radiative decay, the rate increases rapidly with
increasing nuclear charge and eventually leads to
the selective depopulation of some of the triplet
fine-structure levels.
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