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The Hylleraas-Scherr-Knight variation-perturbation method is applied to the calculation of
oscillator strengths for the dominant transitions from the metastable 2p3p 3P and 2p3d 13D
states of helium and the heliumlike ions. The results explain the absence of the 1s2p 3p — 2p3p 3p
transition of He 1 from recent beam-foil excitation spectra.

I. INTRODUCTION

Many atoms possess rydberg series of doubly
excited states which, although imbedded in the
autoionizing continuum, are prevented from auto-
ionizing by angular momentum and parity selec-
tion rules. Suchstates maybetermed “metastable”
since their lifetimes are determined by the rela-
tively slow process of spontaneous emission of
radiation, rather than autoionization. The 2p23P
metastable state of helium is the most extensively
studied. '-® A recent remeasurement of its energy*
has corrected an earlier error and brought the
theoretical and experimental energies into good
agreement, Progress in the theoretical study of
multiply excited states has been reviewed by
Holdien.®

In previous papers, 2% we have applied the Hyl-
leraas-Scherr-Knight 1/Z expansion perturbation
technique to the calculation of the energies of the
metastable 2p%3P, 2p3p 1P, 2p3p %P, 2p3d'D, and
2p3d 3D states of the helium isoelectronic sequence.
Directvariational bounds have alsobeen obtained
for the neutral helium eigenvalues as a check on
the accuracy of the perturbation expansions. In
this paper, we evaluate the oscillator strengths
for those transitions from the 2p3p3P, 2p3d°D,
and 2p3d D states which are expected to be dom-
inant. Results for the corresponding transitions

from the 2p% 3P and 2p3p P states have been re-
ported previously.? Transitions involving the above
states have been observed in beam-foil excitation
spectra’ and are of interest in the study of solar
flares and the solar corona.®?®

The computational method is briefly summarized
in Sec. I and the results presented in Sec. III.

1II. COMPUTATIONAL METHOD

The Hylleraas-Scherr-Knight variation-pertur-
bation method used in the present work has been
described previously?'® and is only briefly sum-
marized here. In units of Z2 a.u., the Hamilto-
nianfor atwo-electron atom may be written in the
form H=Hy+ Z 'V, where H, is a sum of hydrogen-
atom Hamiltonians and V=1/7;,. The above parti-
tion of H leads to the following perturbation ex-
pansions for the eigenfunctions and eigenvalues:

\11:\1/0+Z)1\I/nz-", (1)

n=

E=E0+Z)1E,,Z'". @)
n=

The perturbed functions ¥, are expressed in terms
of a truncated set of N orthonormal functions ¢, ,
which are constructed from linear combinations of
N correlated functions of the form
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X;= (L£Ppp) rivlvriy e -t ng (7, 7) (3) states since the energy separations are much

where

ryl{dlllz (;‘\/1’ %2) = 2 ( llm1 lz?’ﬂzl LM)

my,my
XY 7L () Y T20,) . @)

H, is diagonalized in the basis set ¢; such that
(@i Ho| @;)=¢€,04; . (®)

P,, in (3) indicates the interchange of labels 1 and
2, with the plus sign referring to singlet states
and the minus sign to triplet states. The scale
factors a and B are set equal to their hydrogenic
values; for example, o= +and = 3for the 2p3d *D
states. Then, as a consequence of the diago-
nalization (5), one of the ¢, say, ¢,, is automat-
ically the exact hydrogenic eigenfunction ¥, with
eigenvalue €,= E;, and the remaining functions
@;(i #s) form a synthetic representation of the re-
maining spectrum of H,. It can be shown from a
variational principle that the ¥, and E, are de-
termined by the recursion relations

o= (@6 R Bloil,) ) o

€s— €y b1 €57 €
6)

n-1
E,,=(‘1’,,_llV"I/(,)—EIE,,<\II,,_,,|\PO), M
p=

its

provided that all the lower order ¥,, E;, i=1,...,

n -1, are known exactly. With a finite basis set,
the lower-order solutions are not known exactly,
but the above equations provide useful approxi-
mations to ¥, and E, (but not bounds beyond E,)
up to some finite order #n,,,. The nonrelativistic
perturbation expansions (1) and (2) summed up to
order n,,, become increasingly accurate with in-
creasing Z and are asymptotically correct. An
advantage of the 1/Z expansion procedure over a
direct variational calculation is that results for
an entire isoelectronic sequence are obtained by

a single diagonalization of H, in the finite basis set.

III. CALCULATED OSCILLATOR STRENGTHS

We are concerned with the calculation of oscil-
lator strengths for the dominant transitions from
the 2p3p3P, 2p3d3D, and 2p3d'D states. The
transitions considered are

2p3p°P ~1s2p°P, 1s3p3P, 1s4p3P,
2p3d3D ~1s3d°D, 2p23P, 2p3p°P,
2p3d'D ~1s3d'D, 2p3p'P.
In addition, there are one-electron transitions to

doubly excited autoionizing states, but these should
be less important than transitions to singly excited

smaller in the former case.

The “length” form of the oscillator strength for
a transition between two atomic states labeled by
angular momentum guantum numbers LM and
L'M’ and having energies E and E’ is defined as!®

filvim—~Y'L'M")
=5@® -E) [(v'L'M'|ZF|vLm) |2 @®)

in atomic units. The sum runs over all the elec-
trons in the atom. An averaged oscillator strength
f which is independent of magnetic quantum num-
ber is obtained by averaging over the initial-state
orientation degeneracy and summing over the
final-state degeneracy. It is first convenient to
introduce reduced matrix elements through the
relation involving the 3-j symbol!!

LM | Zrd| vLm)

carf L' 1L -
o B iz, ©
with 7*' =% (v+4y)/V2, v°=2. With the aid of a
sum rule for the 3-j symbols, the averaged oscil-
lator strength can be written

Z(E,'"E) to, -
3oLy | ITE D |2
(10)

The results are presented in terms of the above
reduced matrix elements and averaged oscillator
strengths.

For exact initial- and final-state wave functions,
the length form given by Eq. (10) is formally iden-
tical to the velocity form

fiL—-y'L")=

/)l
%%LT%“ | 'LIZ Bl D)2,
(11)

where P, =(#%/7)V,;. The length and velocity transi-
tion integrals R= (y'L'||3; T;||¥L) and P
= ('y'L'HEi,f),l |¥L) have the Z-! expansions

foyL=v'L")=

R=Z'3 R, Z™, (12)

n=0

P=zZ),P,Z", (13)
n=0
with the exact expansion coefficients being related
through

. n
=3 R,.nAE, (14)

P =
i hm=0

as a consequence of the equivalence of Egs. (10)
and (11). AE,, in (14) is the mth coefficient in
the Z-! expansion of E' — E, With the approximate
perturbed eigenfunctions obtained by expansion in
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a finite basis set, (14) is not satisfied exactly
(except in lowest nonvanishing order) and thus
provides a check on the accuracy of the calcula-
tion. We denote by R'"the R expansion coeffi-
cients calculated directly from the matrix elements
of 3F;, and by RY”’ the coefficients calculated in-
directly from the matrix elements of 3P, and the
use of Eq. (14). Similarly, P{”’ denotes the P ex-
pansion coefficients calculated directly from the
matrix elements of 3P, and P{" those calculated
indirectly from the R{" and Eq. (14). The above
four sets of expansion coefficients each yield

slightly different results for the oscillator strengths.
One could also eliminate the energy difference
between (10) and (11) to obtain the intermediate
form for the oscillator strength

f ('yL—-Y'L'):E(—ziTl) |RP|, (15)
thus generating several more possible procedures.
It is not clear which of the above procedures is

the most accurate. Starace!? argues that the
length formulation is preferable if the wave func-
tions are exact eigenfunctions of an approximate
nonlocal Hamiltonian, but he specifically excludes
correlated variational wave functions. In the lat-
ter case, Dalgarno and Lewis!® and Crossley'*
argue that for large excitation energies the velocity
form is preferable, while Stewart!® has shown that
for transitions between adjacent states involving

no change in principal quantum number, the length
form is preferable. We have adopted the procedure
of calculating the oscillator strengths in the length
formulation, with the transition integrals R ob-
tained by summing the Rf,") for transitions in which
the principal quantum number changes and by sum-
ming the Rf,’ ) for transitions in which the principal
quantum number does not change.

The reduced R" and R!" transition integral ex-
pansion coefficients calculated from 50-term basis
sets, as discussed in Sec. II, are given in Table
I. The relative phases are internally consistent
and correspond to radial wave functions which are
positive near the origin, The zero-order coef-
ficients are related to the one-electron hydrogenic
reduced transition integrals by!!

('/I l{ lzL'” E .fi ||'}’l1lzL)
i

= (= 1)1*2*2+1 [ (2L + 1)(2L" + 1)]V2
x { b le IZ-Z}(y'z;u Fllvly).  (16)

A comparison of the R and R{’ in Table I in-
dicates that the accuracy varies considerably from
transition to transition. The neutral helium oscil-
lator strengths calculated from the truncated ex-

jor

TABLE 1. Electric dipole reduced transition integral
expansions. *

1s2p °P- 1s3p °P- 1s4p’P-  2p*°P-

Order  2p3p°P 2p3p P 2p3p°P  2p3d°D
0 =—0.51669 —1,29027 0.00000 —8.2238
~-0.516 69 —1.29027 0.00000 - 8,2238

1 0.62332 —0.21186 —0.33944 —0,4037
0.62349 —0.21536 —0.34717 —0.4036

2 0. 83795 0.02627 —0.24393  2,2576
0. 837 87 0.03487 —0.22492  2,2587

3 0.65075 0.40291 —0,08497  2,8142
0.654 90 0.39094 —0,10257  2,8140

4 0.314 99 0.58033 —0,03708  1,9665
0.31070 0.59326 —0.08501  1,9791

5 =0.01135 0.54568 —0.29859  0.6815
—0.01176 0.55245 —0,20077  0.6775

6 —0.15775 0.39178 —0.27426  0.0461
-0.14231 0.37623 —0.15268  0.0613

7 —0.10841 0.09111 0.4751
—0.09739 0.10881 0.4738

8 —0.16261 —0,03574 1.4647
—-0.13819 0.00869 1,4537

9 —0.57299 2.4277
_0.62883 2.2368

2p3p 3P~ 2p3p 1P~ 1s3d'D-  1s34°D-

2p3d °D 2p3d D 2p3dD  2p3d°D

0  12.3238 12.3238 -1.66573 —1.66573
12,3236 12,3235 —1.66573 —1.66573

1 10,2498 9.0039 0.07448  0.03730
10, 2542 9.0048 0.08347  0.03908

2 12,7032 8. 0555 0.26362 —0,04908
12,6693 8. 0529 0.25394 —0,04736

3 12.7187 7.6641 —-0.20432  0.03003
12. 8288 7.6693 -0.21201  0.02197

10. 8103 7.3500 0.00928  0,07430

10, 6355 7.3586 —0.00279  0,06630

5 7.7642 6. 8461 —-0.18575  0.00816
8.1217 6. 8742 ~0.15699  0,01974

6 5.5383 6.0260 —0.15642 —0,06770
6. 0997 6.0334 ~0.19500 —0,05198

7 5.4518 4,7931 —0.10393 —0.07278
5,4294 4.7689 —-0.13295 —0.08120

8 7.5644 3,2092 —0.14652  0,03628
6.4057 3.2181 —0.14282 —0.04032

9 9.1916 9. 9709 -0.07363  0.13504
—0.06926  0.00852

2R =Z"Y(Ry+R4Z"1 +RyZ"%+ *** )4, where Z is the nuclear
charge and a; is the Bohr radius. For each pair of num-
bers, the first is R,(u” and the second is R:,”) as defined in
the text.

pansions
£ _ 2AE mex (1) 7=(n+1) 2
f’"3(2L+1) Zo B2 (17)
and
__28ET | Sy et |
fo3Gr.n | & P2 (18)

are compared in Table II. Although the above two
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TABLE II. Comparison of f; and f, for the He1 tran- TABLE III. Absorption oscillator strengths and
sitions as defined by Eqs. (17) and (18). spontaneous emission rates.
" 2
Transition Tmax f1 Jo 1s2p °P-2p3p 3P
Z P a
152p *P-2p3p 3P 8 0.00089 0. 000 90 (fﬁ ) Fie ) A(Zecﬂ;
1s3p 3P-2p3p 3P 9 0.13573 0.13576 -t =
1s4p 3P-2p3p 3P 6 0.005 38 0. 005 35 2 1.5654 0.0009 7.1 x107
2p?°P-2p34°D 9 0.454 0.451 3 3.6541 0.0032 1.37 x10°
2p3p °P-2p3d °D 9 0.255 0.257 4 6.6342 0.0081 1.15 x 101
2p3p 1P-2p3d 1D 9 0.3890 0.3883 5 10.5040 0.0116 4.12x 101
1s3d'D-2p3d ‘D 9 0.12688 0.12680 6 15.2629 0.0141 1.05 x 1011
1s3d3D-2p3d °D 9 0.13611 0.13614 7 20.9110 0.0158 2.22.x10!!
8 27.4480 0.0172 4,15 x 10!
%mx iS the highest order retained in perturbation 9 34,8741 0.0182 7.11 x 1011
summations (17) and (18). 10 43.1890 0.0190 1.14 X 1012
11 52,3929 0.0197 1.74 x 1012
12 62,4857 0.0203 2.54 x 10%?
: ) . 13 73,4674 0.0208 3.60 x 102
forms tend to be the most discrepant of the various 14 85. 3380 0.0212 4,95 x 1012
possible formulations discussed earlier, the com- 15 98. 0975 0.0215 6.65.x10!2
parison in Table I probably overestimates the 16 111.7459 0.0218 8.75 x 102
accuracy by about an order of magnitude. The 17 126. 2832 0.0221 1.13 xlof;
agreement for the 1s3d 3D - 2p3d 3D transitions 18 141.7094 0.0223 1.44 x10
is particularly good.
p ¥ "_g . . 1s3pP-2p3p °P
The energy differences, absorption oscillator
strengths, and emission Einstein A coefficients 2 1.4903 0.136 9.69 x 10°
are given in Table III for the isoelectronic se- 3 3.3569 0.147 5.34 x 1010
quences up to Z=18. Although the nonrelativistic 4 5.9738 0.147 1.69 x 10!
results become increasingly accurate with in- 5 9.3409 0.146 4.10 x 10
. i s . s 6 13.4579 0.145 8.46 x 101!
creasing Z, it is important to consider relativistic 1
ti to th diff for 1 z 7 18.3250 0.145 1.56 x10
corr'ec ions to the ene.r.gy ifferences ?r arge Z, s 23. 9421 0. 144 2. 65 x 1012
particularly for transitions between adjacent states. 9 30. 3092 0.143 4.23 x 1012
The effect is to increase the decay rate through 10 37.4263 0.143 6.43 x 1012
the AE® dependence of the A coefficient. Relativ- 11 45,2935 0.143 9.40 x 1012
istic and retardation contributions to the transition 12 53.9106 0.142 1.33 x 1012
integral itself are probably not important for 13 63,2777 0.142 1.83x10
295 14 73.3948 0.142 2.45 x10%
Ta. 15 84.2619 0.142 3.23 x 1013
IV. DISCUSSION OF RESULTS 16 95,8790 0.141 4.18 x 1013
7 . 17 108. 2461 0.141 5.32 x10%
Berry ef al.” have observed several t'rans1t'1ons 18 121. 3632 0.141 6.68 x10%
from the doubly excited states of He1, including
1p_ 1 1p_ 1p transi-
tl}e 1s2p 'P-2p3p'P and 1s3p'P 2P?P P transi 1s4p *P-2p3p 3P
tions at 295.2 and 309.0 A, Fespectxvely. For the z AE AG—14)
corresponding triplet transitions, they observe only (a.u.) fl—j) 22 (sec™)
a single line at 306 +1 A which they tentatively .
identify as the 1s3p%P - 2p3p 3P transition predicted 2 1.4647 0.021 3.69 %10
P 3 3.2548 0.016 5.88 x 108
to be at 305.7 A.® The unexpected absence of the 4 5. 7465 0.014 8.99 x 108
3 3 N 2 . . . .
1s2p3P - 2p3p °P transition at 291.1 A from their 5 8. 9396 0.013 1.29 x10°
spectra is understandable from our calculated 6 12.8340 0.012 1.75.x10°
oscillator strengths., The transition integral is 7 17.4298 0.012 2.29 x10°
anomalously small (and inaccurate) due to severe 8 22.7270 0.011 2.91 x10°
numerical cancellation in the summation of the 2! 9 28.7256 0.011 3.60x 10:
expansion series given in Table I. The oscillator ig ig'ggzg g' gﬂ ‘;'zg Xiog
strength in Table II is nearly an order of magnitude 12 50'9296 0' 011 6- 12 );189
N 3p_ . . .
smaller than that for the two-elc.ectron ].ump 1s4p°P 13 59.7337 0. 010 7.10 x10°
2p3p 3P, even though the latter is forbidden for 14 69. 2392 0.010 8.16 x 109
simple product-type eigenfunctions and proceeds 15 79.4460 0.010 9.30 x10°
only through correlation effects. The lifetime 16 90. 3543 0.010 1.05 x10%
of the 2p3p °P state is then determined primarily 17 101. 9640 0.010 1.18 x 100
18 114, 2750 0.010 1.32x10%0

by the 1s3p3P - 2p3p 3P transition. In contrast,
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TABLE III

(Continued)
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14
15
16
17
18

(a.u.)

L1512
.4395
. 8664
.4321
1365
9799
9621
. 0831
3430
L7419
. 2796
. 9562
L7716
.7260
.8192
. 0513
L4224

N o0 Ww N NHE O OO

DO = b b
WO O NN O

(a.u.)

. 0085
. 0165
. 0245
. 0325
. 0406
. 0487
. 0568
. 0648
0729
0810
0891
. 0972
.1053
1134
1215
.1296
L1377

OO OO OO ODO0OOOOOOOOOO

(a.u.)

. 0164
. 0298
. 0424
0548
0671
0794
. 0916
.1039
.1161
1283
. 1405
L1627
1649
1771
. 1893
. 2015
2136

f=)

OO OO0 OO0 OOOODOO OO

2p*3P-2p3d °D

f@—3)

2p3p°P —2p3d°D
fe—-2

(=]

2p3p 1P —2p3d D
fe—j)z

.778

.611

. 547

.514

.494

OO OO OO OO OOOOOOOOO

OO OO OO OO O0OO0OOOOOOO

OO OO0 OO0O OO

454
690
796
8563
890
915
932
946

. 957

965
972

. 978

983

. 987

991
994

. 997

510

. 387
. 345

325
314
307
302
298
295
293
291
289
288
287

. 286

285

. 284

480

.470
.463

457
453
449
446
443
441

.439
. 437
.436

A(j—1)
(sec™)

.00 x 108
.57 x10°
.15 x 1010
.37 x 1010
.83 x 1010
57-x 101!
.82 x 10!t
.71 x 10t
.42x 10!
.12 x 1012
.61x 102
.26 x 1012
.09 x 1012
13 x 1012
.41 x 102
.96 x 1012
.82x10!2

0 DU W TR N ST W NN

AGj—1)
(sec™)

.53x10°
.74 x10°
.98 x10°
.33x10°
.66 %108
00x 10°
34 x 108
.68x10¢
02x 108
37 x 108
. 71 X 106
.05 x108
.40 %108
LT4 x108
.09x108
.43x108
LT7 %108

T UL O W W WD NN OO W

A(j—1)
(sec™)

.03x10°
.49 x 108
.74 % 10°
.95:x10°
.15:x10°
.34 x10°
.52 x10°
07 x 107
.19x 107
.31 x107
.42 %107
.54 x107
66 x 107
.78 x 107
.89 x 107
01 x107
.13 x107

DO DO k= b= b b b R O 00 =T o DO

Table III. (Continued)

1s3d'D - 2p3d D

z AE AG—1)
(a.u.) f@—3) (sec™!)
2 1.4918 0.127 9,07 x10°
3 3. 3508 0.130 4,69 %101
4 5.9586 0.132 1.51 x 10!
5 9,3161 0.134 3.73 x 10!
6 13.4235 0.135 7.80x 10t
7 18. 2807 0.135 1.45 x 1012
8 23.8879 0.136 2.49x 102
9 30.2451 0.136 4,00x10%
10 37.3522 0.136 6.12x 1012
11 45.2093 0.137 8. 97 x 1012
12 53. 8164 0.137 1,27x 101
13 63.1735 0.137 1.76x 1018
14 73.2806 0.137 2.37x 101
15 84.1377 0.137 3.12x10%
16 95. 7447 0.137 4,05%x 101
17 108.1018 0.137 5.16x 1013
18 121. 2089 0.138 6.49x 10
1s3d°D —2p3d°D
z AE A(G—1)
(a.u.) fE—7 (sec™)
2 1.4963 0.136 9.79 x10°
3 3.3654 0.137 4,98 x 10%
4 5.9843 0.137 1.58 x10'
5 9.3531 0.137 3.86 x 101!
6 13.4719 0.138 8.02 x 10!
7 18. 3407 0.138 1.49 x 10
8 23. 9594 0.138 2.54 x 10t
9 30.3282 0.138 4,07 x 1012
10 37.4469 0.138 6.22 x 10%2
11 45,3157 0.138 9.11 x 102
12 53.9344 0.138 1.29 x 10
13 63.3032 0.138 1.78 x10%
14 73.4219 0.138 2.39 x1013
15 84.2907 0.138 3.15 x 1013
16 95,9094 0.138 4,09 x10%
17 108. 2781 0.138 5,21 x10%3
18 121, 3969 0.138 6.55 x 1013

34 (j— ) = AE%(g;/g;) fli— j) X 3.2130% 10" sec™?, where
g; and g; are the statistical weights.

the oscillator strengths for both the 1s2p*P — 2p3p 1P
and 1s3p 'P - 2p3p 'P transitions are large and
of roughly equal magnitude.?

The line” observed at 306+ 1A may also contain
a contribution from the 1s3d!D - 2p3d 'D transition®
at 305.4 A since the experimental resolution is
not sufficient to separate the two possible con-
tributions. One would further expect the 1s34°3D~
2p3d ° D transition® at 304.5 A to be present since
the companion 2p?3P - 2p3d° Dtransition predicted
to be at 3014 A has been observed in unpublished
work by Berry. Higher-resolution wavelength and
lifetime measurements would make possible a
positive identification of these transitions.

The selection rule preventing autoionization ap-
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plies rigorously only in the limit of exact L S
coupling. Holdien® has pointed out that some of
the fine-structure levels of the doubly excited
metastable states are coupled directly with the
continuum by the spin-orbit, spin-other-orbit,
and spin-spin interactions, thereby making auto-

ionization possible. Although the autoionization
rate for the He1 states is small compared to
radiative decay, the rate increases rapidly with
increasing nuclear charge and eventually leads to
the selective depopulation of some of the triplet
fine-structure levels.

*Research supported by the National Research Council
of Canada.
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