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and 4. Figure 3 is for T = 90'F while Fig. 4 is
for 300'K and the points marked represent the
experimental data summarized in Sec. II. The
dashed line in Fig. 4 is the value for && determined
by the simple theory of dispersion forces which is
in excellent agreement with most of the measure-
ments.

The excellent agreement of these results with
the resolved line data on linewidth magnitude,
temperature, and quantum-number dependence in-

dicates the importance of using a strong-collision
model when large values of the phase integral are
important. Straight-line perturber trajectories,
series expansion of the scattering operator and
impact parameter cutoffs are likely to be invalid
approximations in such a case. Expansion of the
scattering operator in spherical harmonics and
the use of curved trajectories, while generally a
more complicated procedure is straightforward
and for the case of linear molecules, simple.
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Lower bounds to the convergence radii of the 1/Z expansions are reported for some low-
lying states of the isoelectronic series of the helium and lithium atom. It is proven for the
first time that the 1/Z expansion converges for the ground state of the helium atom. The in-
vestigation of the 1 S and 1 P„states of thelithium atom indicated poor convergence proper-
ties of the 1/Z expansion for systems with more than two electrons. The Brillouin-Wigner
perturbation expansion of the ground state of the helium atom is shown to converge if 1/(Z
—0.) is used as perturbation parameter for 0= 0.34.

I. INTRODUCTION

Different kinds of perturbation theoretical ap-
proaches have been used extensively in the quantum-
mechanical treatment of electronic wave functions
and energies of small atoms. Since the perturba-
tion equations cannot be solved explicitly in this
case, one has to use approximate methods of evalu-
ation, e. g. , variational techniques. Most common-
ly used is the Hylleraas-Knight-Scheer (HKS) varia-
tional perturbation method'~ which has been suc-
cessfully applied to treat the Rayleigh-Schrodinger

perturbation expansion (RSPE)3 ' and the Brillouin-
Wigner perturbation expansion (BWPE) of several
electronic states of first-row atoms.

In connection with the use of the HKS method or
a related technique we meet two problems of prin-
cipal interest. (a) Since the variational perturba-
tion procedure yields only an approximation to the
nth-order wave function and energy, it is important
to establish error bounds for these quantities. (b)
A rigorous justification for the use of perturbation
theory its'elf must be given, i. e., to prove the con-
vergence of the usually unknown exact perturbation
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expansion for the wave function and energy under
consideration.

The first problem has been the subject of numer-
ous investigations, 7 but no generally applicable
method seems to have been proposed that allows
one to calculate error bounds for both the individual
nth-order contributions to the wave function and
the energy. An investigation of this problem will
be published elsewhere. In this paper we will be
mainly concerned with the second problem. In
Sec. II we first give a very short account of the
basic mathematical concepts and develop some
formulas to facilitate the subsequent applications.
Of special importance is the investigation of the
"screening approach" (Secs. IIC and IID) which
leads to considerably improved lower bounds of the
convergence radius of the 1/Z expansion. In Sec.
II E we discuss briefly the relationship between the
convergence properties of the exact RSPE and the
"approximate RSPE" as furnished by the HKS meth-
od. The theory outlined in Sec. II is applied in Sec.
III to calculate lower bounds for the exact-conver-
gence radii of the 1/Z RSPE for some low-lying
states of the helium series. The 1 S and 1 P„
states of the lithium series are treated as a simple
but representative example of a system with more
than two electrons. The convergence of the BWPE
is discussed briefly for the ground state of the heli-
um series.

II. THEORY

A. Mathematical Background

In this section we repeat briefly some well-known
facts in order to prepare for subsequent consider-
ations. The starting point of our investigation is
the eigenvalue equation of an atomic system (in
atomic units)

Hz (z=Ez 4 llgzll = I

Hz=T ZU+V

U=Q 1/r, , V= g 1/r. . .

where Z is the nuclear charge. For brevity we

drop the index which labels the different solutions
of (1).

At first we note that Hz is invariant under the
rotation reflection group 03, and under the group
of all permutations of the electrons. Although we
will take advantage of these symmetry properties
(see Secs. IIID and III E), we will not discuss these
matters in detail and refer the reader to the litera-
ture. ' " We only note that the invariance of Hz
under symmetry operations allows Hz to be de-
composed into the direct sum of several parts acting
in mutually orthogonal subspaces [of the total Hil-

Hg=Hp+I V& Hp= T U (4)

where &&= 1/Z.
The eigenvalues and eigenfunctions of (1) and (3)

are related through

Ez=Z E» 4z(r&, . . . , r„)=Z "
g,(Zr&, . . . , Zr„)

(6)

Equations (3) and (4) are a common starting point
for the use of perturbation theory. In the RSPE the
wave function (~ and energy E~ a,re expanded in
power series in g:

4&, =&. &&"&I&&.
& E&,=& &&"E&.&

~ (6)

Both E&„& and g&„&, the latter up to a common phase
factor, are uniquely determined by the ansatz (6)
and the eigenvalue equation (3). Kato'z has shown
that FT, , defined in (4), forms a self-adjoint
holomorphic family of type A for all complex X,
This assures that the series expansions (6) con-
verge for sufficiently small ~, provided Ep is an
isolated eigenvalue of Hp with finite multiplicity. '
Since Hp is bounded from below, H, is also a
holomorphic seU-adjoint family of type B.'

B. Lower Bounds to Convergence Radius

Let Ep be an isolated nondegenerate eigenvalue
of Ho and Eo, Eo (Eo & Eo & Eo) be the neighbor ing
points of the spectrum of Ho. Let a and b (b ~ 0) be
real constants, such that

~(&f, f)~ &&z(f, f)+b(Hof, f), f & D(H&&) (I)

where D(HO) denotes the domain of Ho. The RSPE
(6) is then convergent, at least if I &&I & r, , with r,
given by

IE -E'I
1 ( +7 ) 1 ~k 2 b(E E+) (8)

For the derivation of (8), which is essentially based
on the results of Kato, ' the reader is referred to
Ref. 14.

bert space H= L (Rz")j characterized by various
symmetry properties. We will thus have to con-
sider only that part of Hz which is determined by
the symmetry of the state under consideration.
Although the total wave function depends on the
space and spin variables of the electrons, it is suf-
ficient to consider the eigenvalue equation (1) in the
Hilbert space H=L (R ") of spin-independent func-
tions, since there is a one to one relationship be-
tween the total spin and the behavior of (z under
particle permutations. "

~e return to the discussion of Eqs. (I) and (2).
Replacing the variables r,. by the scaled variables
(Z r,.) yields the new eigenvalue equation

(3)

with the Hamiltonian
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Ho+y V& —C,(y),
Ho —y V& —C (y) .

(9a)

(9b)

[For a Hermitian operator T, we write T & C if

(Tf f) 'C(f f)—, f& D(T) ~

It should be noted that D(H~) = D(Ho), since H, is
also a holomorphic family of type A (Sec. VII 2 of
Ref. 13).] Defining

In order to facilitate subsequent applications we

will now rewrite (I) and (8). Since H„ is a holo-
morphic family of type B for all complex A., the
operators Ho+ y V and H& —y V are bounded from be-
low for all real y & 0.'o (It is convenient not to use
the perturbation parameter ~ in this context, but to
introduce a new real positive parameter y. )

I et C,(y) and C (y) be two functions, such that
(9a) and (9b) are fulfilled for y & 0,

H', =H, + LL(
W' W'= V-oU

~= I/(Z -o), (Is)

gy& 2gj, ,

provided the following conditions are met.
(a) C (y) [see (9b)] is of the form

C (y) = —Eo o(1+qy), g&0

where Eo o denotes the lowest eigenvalue of Ho.
(b) Then, we require

(16)

where the superscript o indicates the explicit de-
pendence of the solutions E'„and g'„of (13) on the
parameter o.

Next, we prove a relationship between the lower
bound xq for the convergence radius of the BSPE
of E'„and g in p, and the lower bound r, for the A.

expansion (6),

C(y)=max(C. (y), C (y)), (io) 1-yo & 0 (18)

the inequalities (9a) and (Qb) can be combined to
give

l(vf, f) l
~(c(y)/y) (f,f)+(i/y) (H,f,f) .

This is a relationship of the form (I) with a= C(y)j
y and b= 1/y. Inserting this into (8) we obtain

y~&o-&o~
1 ( +& -) 1 k 2C( ) E Ek

The expression for y, makes the relationship be-
tween the calculation of lower bounds (r, ) of the
convergence radius and the calculation of lower
bounds of Hp+y V more transparent. In order to
make ~& as large as possible, we will always op-
timize o, with respect to y. Equation (ll) is a
convenient starting point for this procedure.

The perturbation V defined in (2) is a positive op-
erator V& 0. Consequently, we have C (y) & C,(y)
and hence

c(y) = c (y)

in this case.

(12)

C. Screening Approach

In Sec. II B we used a scaling transformation with

scaling parameter Z to bring the eigenvalue equa-
tion (1) to the form (3) which is suited for a treat-
ment by perturbation theory. Froman and Hall'
and later Kato'6 have investigated a different ap-
proach where (Z —o) is used as scaling parameter.
The so-called screening constant o can in principle
be any real number with Z —o & 0; otherwise the
scaling transformation is unreasonable. It turns
out, however, that we have to discuss only positive
screening constants, o & 0.

We now obtain the new eigenvalue equation

C'.(y) = (1+yo)' c,[y/(I+y&)l,

c'(y) =(I - yo)'c [y/(I -y~)l .

Combining (20b) and (17) yields

(20a)

(20b)

C'(y) = —Eo o(1-yo+ qy)' .
As V is positive a lower bound C,(y) is given by

(21)

c.(y) =-E...
which gives

C'.(y) = —Eo, o(I+y~)'

(22)

(23)

Next, we will determine cr in order to make x~ as
large as possible. In analogy to (11), r& is given

y I EO —Eo I

rf= min(r'„~'), ~„'=2,
( )

(24)

for all values of y and o of interest, i. e., for those
values of y and o for which z& assumes a maximum.

(c) o is chosen in a particular way, namely, ac-
cording to (25).

We note that (17) and (18) are fulfilled in all ap-
plications treated in Sec. III of this study.

While V was a positive operator, W is indefinite
and we have to consider both cases in (9). Perform-
ing appropriate scalings one easily obtains

Ho+y tv- (1+yo) ILHo+ [yj(1+yg)] V] & —C,'(y),
(i9a)

y W-(I -yo)'(Ho+ [y/(I-yo)] V] & —C'(y),
(19b)

where we have used (18) in order to obtain (19b).
Relationships (19) relate the bounds C,'(y) to the
bounds C,(y) defined in (9):

H' g' =E' g, (13) with C'(y) = max(C;(y), C '(y)).
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It is now an easy matter to verify that x& as-
sumes a maximum for

0'= p 'g (25)

independent of the actual values of all other quanti-
ties entering (24). From (25), (21), and (23) one
obtains immediately

C (y)=C (y)=C (y)= —Ep, (01+-,' )&y)' (26)

Inserting (26) into (24) yields, by comparison with

(11),

~;(y) = 2 ~,( 2 y), (27)

which proves (16). In the unscreened expansion

(4) and in the screened expansion (14), we are deal-
ing with the same unperturbed operator Hp, hence
Ep Ep Ep have the same values in each case. The
"greater than" sign in (16) appears because we used
the rather crude estimate (22) for C,(y). If a better
lower bound to Ho+y V than (22) is available one
will, of course, obtain a larger value for yz than
2f'g ~

D. Relationship between Screened and Unscreened
Perturbation Expansions

Starting from the definition (14) of H', we perform
a scaling transformation with the scaling parameter
p/(I+ a», ), which is reasonable for real positive
p., and obtain

H'- (I+ay) f H&&+[»/(I+ay)] V] .
From (28) we deduce immediately

E ~g &&,~„&= [1/(I + a&&)] E ~ . .

Setting

z = »,/(I+ a p) —
&U.

=
&&, /(I —a&&)

we can rewrite (29) as

(26)

(29)

(30)

E&, (1 —a&&) E
& & &&,z& . ——

Now both E„and E', are analytical functions for suf-
ficiently small z and», , and hence (29) and (31) are
not only valid for p, & 0 but also for complex values
of «(principle of analytic continuation; see, e.g. ,
Ref. 17).

Since E'„ is an analytical function, at least for
l p, I & r ~, we have thus proven the regularity of E,
for all A fulfilling

+I
I -a'(r', )'

~&/(I —a&) &~', .

In the complex && plane the set defined by (32) forms
the interior of a circle with radius

1 —a'(~;)'
The largest circle centered at the origin contained
in the set defined by (32) has the radius j:

Stated differently, we have proven the convergence
of the expansion (6) of E„ for

~&& cI . (34a)

Using r &
& 2 x, [see (16)], (34a) implies the conver-

gence of the I/Z expansion for

Z & Z&&
= I /2'Y& + a . (34b)

E. Comments on HKS Method

In this subsection we discuss briefly some fea-
tures of the variation perturbation technique in
connection with convergence properties. Let us
denote by g&„& and E&„& the approximations for the
corresponding exact terms furnished by a HKS cal-
culation. In theoretical investigations and practical
applications the i&&&„& are almost exclusively written
as. linear combinations of the very same basis set
&&;, i= 1, . . . , m (see, e. g., the discussion in Ref.
4)~

It is now an easy matter to see that even the RSPE
for g~ [Eq. (6)] has no singularities for the subset
of the complex plane defined by (32). From the way
the lower bound for the convergence radius is ob-
tained in the treatment of Kato' it follows immedi-
ately that the eigenvalue E', of H', does not cross
any other eigenvalue of H', for I p. i &xq. Since the
relationship (31) holds for all eigenvalues of H'„and
H„, we conclude that E„does not cross any other
eigenvalue of H~ if (32) is fulfilled. This finally
proves the regularity of g„, since P„can have a
singularity only if the corresponding eigenvalue E,
crosses some other eigenvalue of H~ (Secs. II 1 and

VIII of Ref. 13).
These somewhat difficult considerations were

necessary because the scaling parameter»/(I + o p, ),
which was used to establish the relationship between
H', and H„and consequently g', and („, depends on the
perturbation parameter used. This makes it almost
impossible to compare the perturbation expansions
of g~ and g„directly.

Expansion (6) must in fact have a larger conver-
gence radius than r given in (33). The circles
enclosing the sets of complex numbers defined in
(32) and (34) have only the point &&= r in common.
As has been proven by Rellich, no singularity of
E~ or P~ can occur for real values of the perturba-
tion parameter, hence the RSPE [Eq. (6)] can be
continued analytically beyond the circle I A. i

= V.

centered at g&„&
—-Q, C,'"&&&,-, v=0, 1, 2, . . . (35)
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The subsequent discussions are based on the fol-
lowing interpretation of the variational perturba-
tion method. The coefficients C,.'"' [see (35)'] and
perturbation energies E&„& furnished by a. variation-
al perturbation calculati. on are identical with the
corresponding terms obtained from a perturbation
expansion (37) of the secular equation (36), which
results from the variational treatment of the eigen-
value problem (3) by using the same linear basis
)(g as 1I1 (35):

Q,(a,),„C,, = E„C.. . (36)

E„=Q„A"E(,.), Cg, ) = Q„X"CI"', (3'I)

(f~,);,=&X, l~. X, ) ~(X, i VlX, ).
Stated differently: The term "variational perturba-
tion method" is as suited to describe the HKS pro-
cedure as is the term "perturbational variation
method, " provided one starts from (35).

This relationship, which is more or less obvious
from the HSK equations„has been realized by some
workers in this field. ' iVfidtdal has even given a
rather elaborate proof, but has never discussed
this aspect, which he calls a formal identity.

We will now draw a few conclusions from this
interpretation of the variational perturbation method.

(a) If Ho+y V(y&0) is bounded from below by
—C,(y) [see Eq. (9)], then, by virtue of the varia-
tional principle, we have also Ho+y V& —C,(y),
where Ho and V denote the finite-dimensional ma-
trices with matrix elements defined in (38), I et us
assume that the unperturbed operator Ilo and the
unperturbed matrix Ho have the eigenvalues Eo Eo
and Eo in common. Under this condition the lower
bound rq [Eq. (11)] to the exact convergence radius
of the BSPE is also a lower bound to the convergence
radius of the expansions (37), since C,(y) and Eo,
Eo, Eo are the only quantities entering in the for-
mula for r&.

The same argument is of course applicable for a
HKS treatment of the screened expansion discussed
in II C. The relationship between the screened and

unscreened expansion (see IID) does not hold in a
variation perturbation treatmerit. The reason is as
follows. In order to prove relationship (28) we had

to perform a scaling transformation where the scal-
ing para. meter was a function of the perturbation
parameter itself. Subjecting the basis functions X,
to a scaling transformation is now quite a different
matter, depending on whether the X, form a com-
plete or an incomplete basis set. In the first case
one has just a transformation to another complete
basis and is dealing with different matrix represen-
tations of the very same operators Ho and t/". This
is of course not the case if only a finite-dimensional
basis is scaled and relations (28) and (31) do not
hold.

In order to apply the theory explained in Sec.
D, we simply have to derive a lower bound C ( y)
for Ho —yV [see Eqs. (9) and (12)] and to evaluate

(11) to obtain r, . According to (34b) the conver-
gence of the I/Z expansion is then assured for

Z & Z, = (1/2r, ) + &x .

For the 'S states the derivation of a lower bound

C (y) will be based solely on the relationship

—~Ah —v/i 1 +si & —v /2p. , v &0, p&0 (39)

where s can be any vector. To verify (39) we note

that the lowest eigenvalue of the Hamiltonian oper-
ator of the hydrogen atom h= ——,'b, —I/(Ir+sI)
(nucleus at —s) is ——,', hence h is bounded from be-
low with the bound —-';(k& ——', ). Performing an ap-
propriate scaling transformation one easily de-
rives (39).

For the treatment of the states of symmetry 3S,

~I'„, 3I'„, and 3P~ we will also use

[- ~+4 —v/r] & —v /8p, (40)

where the superscript u denotes the ungerade part
of the operator, i.e. , the operator acting only in

the space of odd functions. Relationship (40) is

(b) All eigenvalues of (36) are branches of one
algebraic function (Sec. II 1 of Ref. 13). The exact
convergence radius of the expansion (37) of E~ is
consequently determined by the branch point near-
est to ~=0 in which the E~ under consideration i.s
involved. The position of such a branch point de-
pends strongly, in general, on the basis set y, and

the number m of basis functions used in the calcula-
tion. Midtdals has stated "that the perturbational con-
vergence of the series expansions furnished by a
HKS treatment is an inherent property of the atomic
state, independent of the type of trial functions
used. " This statement is clearly correct as far as
the convergence of the exact expansions is con-
cerned. The perturbational convergence of the
series expansions involving the E&„& and g&„& does,
however, depend on the basis set. The very fact
that E~ has only algebraic singularities determines
more or less the behavior of the E&„, for large v.

This consequently depends strongly on the basis set
X, , and especially on the number of basis functions
used.

An investigation of the E &„& can at best provide
information about the singularity of I'.~. Two such
investigations of the E&„& obtained by Midtdal for
the ground state of the helium series have been re-
ported20'2', both indicate that E„has a singularity
on the real axis close to A. = 1.1. This result is in

contradiction with the well-known fact that E)„, a.s
an eigenvalue of H„has no singularities on the

real axis.

III. RESULTS
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proven in analogy to (39), since the 2P state with
eigenvalue ——,

' is the lowest-lying state of h = ——,'~
—I/r with ungerade symmetry.

A. 1 ~S and 2 S States of Hehum Series

The singlet states of a two-electron system are
associated with symmetric solutions P~(r„r2)
=$~(r2, r, ) of the eigenvalue equation (3). In this
case, however, the symmetry behavior is of no
importance for the following treatment. Introduc-
ing the variables

where the optimal y is yo= l. Comparing (46) with

(17) we obtain the optimal screening constant o in
a.ccordance with (25) as

a = —,'~s.
By virtue of (34b) we have thus proven the conver-
gence of the 1/Z expansion of the ground state of
the isoelectronic series of the helium atom for

H=-, jr, +rzj, r»=r, -rz,
we obtain in an obvious notation

(41)
Z= Z, =-.'(3.4~3). -'. ~3=3.5

2 'S State

(46)

I 1
1 ~ Z +» '1 +R

Ho —yV can then be juggled to give

Ht, —yV= —Z (~+—
~

——1t y

i z 2 &~) &tz

= —r((l —a)~+
)

t' &a rl,b ~z 8 x, )

where o. and y are real numbers satisfying

0& a&1, 0&y&1.

Inserting

(42)

(43)

(44)

In this case one has Eo = ——,, Eo = —1, Eo = ——,'z,
which yields

(27)'~' 2(131)'"+24 46 7

for

(131)'
"

~o=24 6

B. Refined Treatment of 1 S State of Helium Series

(49)

(50)

We now go beyond the rather crude estimate (22)
and use a calculation by Bazley" to obtain a better
lower bound to Ho+ yV. Using again C (y) as given
in (46) and the Bazley bound C,(y) as described in
the Appendix, the formula [Eq. (24)] for r, was
then evaluated numerically. The largest value for
y~ was obtained for the o and y values close to

(1 —r)' y'
Ho —yV&—

1 —n 4a n
(45)

in the last term on the right-hand side of (43) and
applying (39) straightforwardly, one finds that

a =0. 34, y=1. 75 .
Inserting these values yields

P, =o. 608 .

(51)

(52)

In order to make the right-hand side of (45) as
large as possible we optimize a and y under re-
strictions (44) and obtain

C y = (1+-,' vsy) if 0&y&4v 3
4+-,'y' if y&4v 3

Since Zo 0= —1, C (y) is of the form (20), provided

y & 4 v 3, which will always be the case in the follow-
ing. Estimate (46) is slightly better than the result
of Kato, ' who obtained C (y) = (1+-,' y) . From the
treatment of Stillinger" it follows that C (y) as
given in (46) approaches the exact lowest eigen-
value of Ho —yV for large y up to a term propor-
tional to y z.

1 S State

Inserting Eo = —1, Eo = —~, Eo = —
8 together with

(46) into (11) yields, after optimization with re-
spect to y,

By virtue of (33) and (34) this assures the conver-
gence of the 1/Z expansion for

Z& Zo= 1.98 .

C. Convergence of BWPE for 1 ~S State

(53)

Starting from relationship (7), the convergence
of the B%'PE can be proven if

y 'Ixl II [c(y)+H,]s,(E,) II'I (54)

holds for some y. Here So(E~) denotes the reduced
resolvent of Ho with respect to the unperturbed
eigenvalue E~ of Ho [see Eqs. (14), (47a), and (46) «
Ref. 24, to which the reader is referred for all
details]. The parameters a and b in Ref. 24 are
in the present treatment given by C(y)(1/y) = a
and 1/y= b (see Sec. II B). We further note that
E~ in (54) can be repla, ced by an upper bound to
E~ if the ground state is considered. ' Using
Kato's lower bound
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Ho —yV& —(1+—,
'

y) (55) 2P',

we prove the convergence of the 1/Z BWPE for24

Z & 5. 9.
Replacing (55) by the slightly better expression

(46), one obtains in just the same way the conver-
gence for

Z&5. 4. (56)

From numerical evidence, e it has been concluded
that the BWPE converges for Z =3, hence (56) is
not too far off.

Concerning the 1/(Z —o) expansion [see Eqs.
(13)-(15)], the convergence of the BWPE can be
proven for Z= 2 (see below), but not for Z= 1. In
the case Z=2, i.e. , the helium atom, a trivial
numerical investigation shows that the left-hand
side of (54) assumes a, minimum close to the a

and y values given in (51). Inserting these numbers
together with p = (2 —cr)

' and E' & —p, 2.. 90372
yields

y VII [C'(, y) + H ]5 (8 ) I I
& 0. 584 . (57)

[According to (7) and (31) the upper bound
—2. 903 72 (Ref. 26) for the 1 'S state of helium has
to be "screened" by p~. ] The result [Eq. (57)] can
more or less be interpreted in the following way:
The BWPE for the energy and wave function are,
in the case under consideration, majorized by a
geometric series with q=0. 584, indicating quite
comfortable convergence properties.

For the BWPE there seems to be no relationship
between the screened and unscreened expansion as
was discussed in Sec. IID for the RSPE.

D. Lowest-Lying States of Symmetries S, P„, P,
and 3P of Helium Series

g

In this subsection the RSPE is discussed for some
interesting low-lying excited states which are, how-
ever, ground states of the corresponding parts of
the total Hamiltonian (see the discussion in Sec.
II A).

Let us first note that we could of course use the
bound C (y) given in (46) in order to calculate x,
and Zo values for any state of any symmetry, since
we did not use symmetry properties at all to derive
(46). Proceeding this way we would obtain exactly
the same z, and Zp values as reported for the 2'S
state [see Eqs. (49) and (50)] for the states 13S,
1 'P„, and 1 P„. In order to improve these results,
one has to exploit symmetry properties, which is
a trivial matter for two-electron systems.

The lowest-lying states of Hp of the corresponding
symmetries arise from the following configurations:

Thus, in analogy to (39) we have

1 I 21—2p &q2 —vy/~2& —v /8p ~ (59)

Starting again from expression (43) we thus obtain,
using (58) and (59),

t 5 (I-~P y' 4P
8 1 —~ 4~ n

5 (1 —y)' y' 4y'
IIo- yV S and P„8 1 —n 16m n

1 (1 —y) y 4y
4 1 —u 16a o.

(60)

Optimizing these lower bounds with respect to n
and y under restrictions (44) yields the following
C (y):

!(1+-'.(-')'"yP, 0& y&»(3)"'
C (y)= 4+~ a &12(3)~&2 for 'P„,

+47 y&

(61a)

(61b)
—,'[1+ —,'(15)' y], 0 & y & 8(15)' for P
4+~ y y& 8(15)'

(61c)
The evaluation of (11) is straightforward and the

results are summarized in Table I, where we have
included the treatment of the 1'S and 2'S states (see
Sec. IIIA) for completeness.

E. S Ground State of Lithium Series

The doublet states of a system of three spin--,'
particles are associated with the only two-dimen-
sional irreducible representation of 83. We choose
the two spin functions spanning this representation
as

e, = (I/W2) (nPo. —Po. o.),
82= (I/v 6) (2o.nP —nPo. —Pun) .

(62)

Any doublet function g(r, s) (r and s denote the
space and spin variables, respectively) can then be
written as

" 2 r, —. ——,'(v'/p) for 'P, .
(58)

Next, we note that triplet states are associated with
antisymmetric wave functions t)I(r„r2) = —$(ra, r, )

or equivalently g(R, r») = —g(R, —r»). Consequent-
ly, (59) holds [see (40)] for triplet states:

1 S, 1s 2s, 5E = ——' g(r, s ) = (I/W~) [g ~(r ) 8&+ g2(r ) 82] . (63)

1 P„, 1 P„, 1s2P, Ep= The spatial functions g& and p2 again span the two-
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dimensional irreducible representation of S3, which
follows immediately from the antisymmetry of
((r, s ). According to the discussion in Sec. II A

it is now sufficient to consider only the part H~ '

of the total Hamiltonian H„, which acts in the space
of functions behaving like g2 with respect to per-
mutations of the coordinates r&, r&, r3. We es-
pecially note the following property of &f&z

pa(ri, r~, ra) = —ea(r~, ri, rs), (64)

which follows immediately from the antisymmetry
of g.

The lowest eigenvalue of Ho ' arises from the
configuration 1s 2s, Eo= —8, and has multiplicity
one. The first excited state is due to 1s 3s, ED
= —IB . In order to derive a lower bound C (y) for
Ho '+y V ' ' we introduce the variables

r ~= r ~ —r)q g&g

R= 3( rg+ r2+ rg) .
(65)

If &;& (i & j) and hR denote the Laplacians with re-
spect to r,.&

and R, the following equality holds:

2 L2 &;= —3 2 &g; —7|~R ~

i&j
In analogy with Eg. (48) we obtain

(g) l — ~&' 1 (2)
(If, -yi) = — Z .—-y Zi-i 3

(66)

9 (1 —y) 0. 75y 12 y
8 1 —n n n

(67)

[I+—(11) y], Oa y & 4(11)
C(y) =

8 (»+-.'y'), y 4(»)"' (68)

where the & sign holds only in the subspace of func-
tions behaving like P, .

To derive the right-hand side of (67) we have tak-
en advantage of (64) which requires

—2 4 &&a —~/&&2~ t' /8p

[see also (40), (59)]. We have further inserted

—2u &R —~/~g& —t /2P .1

Optimizing the right-hand side of (67) with respect
to o. (0& o. & 1) and y (0& y& 1) we finally obtain

6
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The evaluation of (11) for r& is straightforward and
yields b
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5 1 1
27 (2. 5) 3(11) 62. 1 '

where the optimal value for y is

(69)

991

From the considerations concerning the relation-
ship between the screening approach and the usual
1/Z expansion, we conclude that the 1/Z expansion
converges for

Z & Zo = (1/2 rq) + o 0 = 31.4 .
The value for oo is in accordance with (17), (25),
and (68) calculated as

oo= —,
' (ll) i =0.41 .

The above considerations are also valid for the 1/Z
expansion of the lowest lying P state which arises
from the configuration ls 2p.

Midtdal and co-workers. 3'4

It is easily seen that both the variational and the
perturbational convergence deteriorates in the order

1 P, 1 $, 1 P„, 1 P„, 2 $, which is exactly
the order of the Zo values collected in Table I.
This relationship clearly shows the physical signifi-
cance of the lower bounds x& to the exact-conver-
gence radii obtained with Kato's method.

Having this in min1 one should consider the large
Zo values obtained for the 2'8 state of the helium
series and the ground state of the lithium series as
an indication of rather poor convergence properties
of the 1/Z expansion for these states. This result
is of course not unexpected. Switching on the in-
terelectronic interaction reduces (in the case of
the lithium atom) the effective nuclear charge ex-
perienced by the outer electron from 3 to about 1,
which is a rather large effect.
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IV. CONCLUSIONS

The investigations reported in this paper show
the usefulness of Kato's procedure to calculate
lower bounds to the exact convergence radius of the
1/Z expansion for low-lying states of the helium
series. The results collected in Table I, which
were obtained with little effort, establish the con-
vergence of the 1/Z expansion for rather small
values of Z for the ground states of symmetry '$,
S, P„, and P„. Investing somewhat more labor

we proved the convergence of the I/Z RSPE (see
Sec. III 8) and the 1/(Z —o) BWPE (see Sec. III C)
for the most interesting case of the ground state
of the helium atom, i. e., for Z=2. This result
indicates that the use of better lower bounds than
the rather crude C,(y) [see (22)] will cut the Zo
values in Table I by roughly a factor of 2.

These promising results should encourage further
work along this line to give a rigorous justifica-
tion of the use of high-order perturbation theory in
the treatment. of physically interesting problems.

It is quite interesting to look for a relationship
between the Zo values (Table I) and the convergence
properties displayed by the numerical results of
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his stay in Chicago.

APPENDIX BAZLEY BOUND FOR Ho+~ V

Bazley23 has proposed a method to obtain lower
bounds to eigenvalues of operators of the form Ho
+yV, provided V& 0 and y& 0. The method was
applied by Bazley to calculate a lower bound to the
ground-state energy of the helium atom, i. e., the
y= 0. 5 case. Since the author listed all necessary
matrix elements, it is a trivial matter to repeat
his calculation for different y values (see Table
II).

A lower bound —C.(y) for Ho+y V can then be ob-
tained for general y(y & 0) by linear interpolation.
This is a strictly justified procedure since the low-
er bound to the lowest eigenvalue furnished by the
Bazley procedure (as well as the true ground-state
energy) always has a negative second derivative.

If the lower bound —C.(y) obtained this way ex-
ceeds -~~~' (the 3rd excited state of Ho of S sym-
metry) it has to be replaced by this value (see the
discussion in Ref. 23).
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The Hylleraas-Scherr-Knight variation-perturbation method is applied to the calculation of
oscillator strengths for the dominant transitions from the metastable 2p3p P and 2p3d ~ 3D

states of helium and the heliumlike ions. The results explain the absence of the ls2p 3P 2p3p 3P
transition of He 1 from recent beam-foil excitation spectra.

I. INTRODUCTION

Many atoms possess rydberg series of doubly
excited states which, although imbedded in the
autoionizing continuum, are prevented from auto-
ionizing by angular momentum and parity selec-
tion rules. Such states may be termed "metastable"
since their lifetimes are determined by the rela. —

tively slow process of spontaneous emission of
radiation, rather than autoionization. The 2p
metastable state of helium is the most extensively
studied. ' ' A recent remeasurement of its energy4
has corrected an earlier error and brought the
theoretical and experimental energies into good
agreement. Progress in the theoretical study of
multiply excited states has been reviewed by

Holden. '
In previous papers, ~'6 we have applied the Hyl-

leraas-Scherr-Knight l/Z expansion perturbation
technique to the calculation of the energies of the
metastable 2P P, 2P 3p'P, 2p3P P, 2P3d'D, and

2P3d 'D states of the helium isoelectronic sequence.
Direct variational bounds have also been obtained
for the neutral helium eigenvalues as a check on
the accuracy of the perturbation expansions. In
this paper, we evaluate the oscillator strengths
for those transitions from the 2P3P P, 2P3d D,
and 2P3d'D states which are expected to be dom-
inant. Results for the corresponding transitions

from the 2p P and 2P3P'P states have been re-
ported previously. Transitions involving the above
states have been observed in beam-foil excitation
spectra' and are of interest in the study of solar
flares and the solar corona. "

The computational method is briefly summarized
in Sec. II and the results presented in Sec. III.

II. COMPUTATIONAL METHOD

The Hylleraas-Scherr-Knight variation-pertur-
bation method used in the present work has been
described previously ' and is only briefly sum-
marized here. In units of g a, .u. , the Hamilto-
nian for a two-electron atom may be written in the
form H= Ho+ Z 'V, where Ho is a sum of hydrogen-
atom Hamiltonians and V= 1/r, s. The above parti-
tion of H leads to the following perturbation ex-
pansions for the eigenfunctions and eigenvalues:

e =4, ++4„Z-",
n=1

E=EO+Q E„Z ".
n=1

The perturbed functions 4"„are expressed in terms
of a truncated set of X orthonormal functions p, ,
which are constructed from linear combinations of
N correlated functions of the form


