
FINE STBUC TUB E AND DIAMAGNETIC ~ ~ ~ II ~ ~ ~

Parameters

Qg(4p)
&~')4,
@I,(5p)
(~2 )

~In units of

Observed

—389+ 61
205+ 33 A

—950+ 60
501+ 33 A

10"2 esu cm .

Hydrogenic

—322a
168 A2

—805
420 A

Ratio

l.22+ 0. 20

1.19 + 0.08

orbital about an effective nuclear charge of unity.
We see that for the 4p and 5p states there is an
approximately constant ratio of 1.2 between the
observed and hydrogenic values. This result is
in agreement with the measurements in I, but now
a reduced (statistical) experimental error makes
this discrepancy significant. We do not under-
stand why this ratio should be greater than unity
because core penetration by the 4p and 5p electrons
should make the effective nuclear charge slightly

TABLE IV. Comparison of derived values of quadrupole
moment and mean-square radius of the 4p ~P and 5p 3P
states of He with those predicted from hydrogenic wave
functions.

greater than one, which would decrease the cal-
culated values of (r~) even more. A possible
source of error might lie in the existence of an
electric field, either static or microwave, in the
interaction zone. Preliminary cat,culations of the
resulting Stark shift from such a field, however,
indicate that inclusion of this effect does not lessen
the discrepancy ln (t ). We plan to pursue this
matter further, and hope that measurements in

higher rydberg states will help clarify this ano-
maly. Until such experiments are carried out,
we believe that the error limits quoted for y„, Q~,
and (r ) should be considered significant in only a
statistical sense and that the parameters may re-
flect an, as yet, unknown systematic error. How-

ever, the fine-strucutre intervals are relatively
insensitive to these effects and are presumably
free of systematic error.
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Fresnel Drag in a Ring Laser: Measurement of the Dispersive Term
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The Fresnel drag has been measured in a triangular ring laser at a wavelength of 0.6328 p.
The drag coefficient in fused silica is e =0.541 +0.003, while the theory, including the disper-
sion term, gives G.'th~~=1 —(1/n ) —p(X/n) dn/dA. =0.5423 with p=1. The coefficient p is thus
determined as p =0.87 +0.22, which includes the classical value p=1. Thus the.magnitude of
the drag in a ring laser is within the errors equal to that given in an inertial frame of refer-
ence (linear drag).

I. INTRODUCTION

The ring laser is an extremely sensitive instru-
ment for measuring nonreciprocal phenomena in
light propagation. ' As an example, a rotation of the
ring produces a beat frequency which is large

enough that the rotation of the earth can be detected
in simple Sagnac-type arrangements. The drag
phenomenon of light in moving matter also intro-
duces a nonreciprocity into the ring laser, and
therefore produces a frequency difference between
the two contracirculating beams. (Born noted~' that
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"It is very difficult to test Fresnel's formula by
means of experiments on the earth, because it re-
quires that transparent substances be moved with
extreme rapidity. ") This has been demonstrated by
Macek et al.3 with moving air, carbon tetrachloride,
and fused silica, and recently by Moss et aE. in
a moving electron gas in InAs.

In this paper a precision measurement of the ef-
fect of drag in a ring laser has been attempted.
The motivation for this experiment arises from
the following facts: (i) The ring laser is a promis-
ing instrument for far more accurate drag mea-
surements than could previously be achieved;
(ii) if the linear drag is well understood, the trans-
versal Fresnel drag can be attacked; (iii) the drag
in a rotational arrangement need not be identical
to that in a linear configuration as in the classic
interferometer arrangements'; (iv) drag may pro-
vide a precision bias source in rotation-rate sen-
sors; (v) kinematic effects in the field of general
relativity may be investigated.

II. THEORY OF DRAG IN INERTIAL FRAME

A medium with an index of refraction n(&) is
moved with a velocity v in an inertial frame of
reference. A light beam passing through this
medium with a, velocity u (with a magnitude c/n
relative to the medium) possesses then a velocity
u, in the inertial frame, where u, is given by

u+ yv+ (y —l)(u v/v v)v
y[I+(u v/c')]

y=(1 —v. v/c') '~~=1 if
~

v~ «c .
If the medium has a velocity component + v paral-
lel to the beam, then the magnitude v, of the beam
velocity in its original direction u becomes in a
first-order approximation (Fig. 1)

v, =
~
u,

~

= [c/n(Z')]+ v [1 —I/n'(X')]+ O(v'/c) ..
(1')

If there is a transversal component v, of the medi-
um, it will have an effect on v, in the second-or-
der term v'/c'.

The wavelength A' will be different from X (medi-
um at rest), because of the Doppler effect. If the
index of refraction shows dispersion, then n(& )

=n 1+——v (3)

Applying Eq. (3) to Eq. (1'), we have as a first-
order approximation,

A. dn
v)= + 1-~— vm +Avm qn n nd&. n

(4)

where ~ is the drag coefficient.
For a vacuum, n=1, dn/d&=0, there is no drag

For n» 1, v, = (c/n) + v; i.e. , superposition of the
velocities holds, because in this case both veloci-
ties c/n and v„are nonrelativistic.

The problem is thus to measure a small addi-
tional velocity + nv, usually of the order of meters
per second, in the presence of a very large veloci-
ty c/n, of the order of 108 m/sec. The ring laser
presents itself as a proper instrument for this
problem, since by virture of its operation it acts
as a differential sensor [Eq. (11)], where the ef-
fect of c/n is exactly canceled by the two contra-
circulating beams, and the effect of ~v is doubled,
since the drag is a nonreciprocal phenomenon, and
the resulting beat frequency between the two beams
due to the drag is therefore doubled.

Recently, Post pointed out that in a rotational
arrangement as given by a ring laser, the drag
need not necessarily be identical with the one ob-
served in an "open-end" experiment. ' In addition
to that, the situation in a ring laser is complicated
by the presence of the earth's rotation, which in-
troduces an additional frequency difference through
the Sagnac effect.

Table I gives a summary of the history of the
drag coefficient. The experiments in Table I were
all done with interferometric techniques. They
are very delicate, since, for example, in water
flowing at a velocity of 10 m/sec, the relative
change of the velocity of light is nv„/(c/n)
= 2&10 . This problem can be circumvented by
the application of the ring laser, as the Sec. III
will show.

o n(X). In a first-order approximation, the Doppler
effect is given by

nx/x =v„/(c/n),

and we may expand n(X'),

dn dn Xv nn(~') =n(~)+—n~ =n+ ———
dX dA.

cin III. RING I.ASER AS A SENSOR FOR NONRECIPROCAL
PHENOMENA

A. Ring-Laser Operation

FIG. 1. Drag experiment in a medium with an index
of refraction g and parallel velocities of light and me-
dium,

At this time, many of the aspects of ring lasers
are well understood. Thus, only a very brief ac-
count of the basic theory of operation is given. For
more extensive coverage of the theory we refer to
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papers such as Ref. 8.
To gain a basic understanding of the ring laser,

it is sufficient to use two equations:

(oscillation condition: N = integral number, I,
= optical path length for a round trip = jnds) and

If we keep the laser oscillating in a given axial
mode (N = const), but vary L, we get through dif-
ferentiation of Eqs. (5) and (8)

(b,X/A. ) = DL/L = —Df/f, N = const .
If we keep 1.= const, but switch to a neighboring
axial mode, b,N= 1, we have

(bA/X) = —bN//N = —X/L = —hf~/f or bf~ = c/L

for L = const. (8)

Equation (8)has been used to determine the effective
length L (see Sec. IV on experimental setup).
Equation (7) is the basis for calculating the drag.

B. Drag in a Ring Laser

First, we determine the change of the effective
length of the ring for one of the two contracirculat-
ing beams due to drag. The effective optical path
length in the silica disk is ln (Fig. 8). Using Eq.
(4), the change in the effective index of refraction
can be expressed as a change in the velocity or

s(ln)/ln = [v~(v„& 0) —v, (v„=0)] [v&(v„=0)] '

= [(c/n) + nn —(c/n)] (c/n) '=t nov„/c,
(8)

and the relative change of the total optical path is
then

nL 1 6(ln)
f

+ n2o. lv„hf
L L ln Lc f

Equation (10) is derived under the assumption that
the only change of effective length is due to the
drag in /, and that Eq. (i) holds.

Finally, the beat frequency between the two con-
tracirculating beams, AD, is twice the frequency
difference given by Eq. (10), and we have there-
fore

+D=2(+/f)f = 2n alfv /Lc= 2n~o, lv„/XL . (11)

Equation (ll) was first given by Macek et al. lt
is a special case of the result for a general geom-
etry of ring laser and dragging medium as de-
rived by Post'

AD=� (2f/c) (f n nv ~ dr) (fndr) ',
where & is a line element along the beam path.

Typical values in our experiments are n= 1.46
(fused silica), o,'=0. 54, l=. 2 cm, v =1 m/sec,
X=3 m, and &=0.63 p, , so we expect a beat fre-
quency of hfs = 24 kHz, which is well above the
lock-in frequency. '

In the actual experiments, the silica disk is tilted
at the Brewster angle with respect to the beam to
avoid reflection losses. In this case we have
(Appendix A)

v~l = v, ~ 1= (udxo/n, (12}

where ~ =2'„ is the angular velocity of the silica
disk, v, is the tangential velocity at the beam loca-
tion, l is the beam vector, d is the thickness of the
disk, xo is the horizontal displacment of the laser
beam from the axis of rotation.

Under these conditions, the beat frequency due
to drag in a rotating disk is

TABLE I. History of the drag coefficient.

1818

1886

1895

1907

1914

1914—1925

Inves tigator

Fr esnel

Fizeau

Mi chelson
Morley

Lorentz

Laue

Einstein

Z eeman

Contribution

~~ =1 —0/n')

e/e&= 0.993 +0.05
(o./~& =-0. 964 +O. 05)

Derivation of n+ by
relativistic addition theorem

Explanation of dispersion
term by Doppler effect

o.'/eI = 0.998 +0.006

Theo r.

Expt.

Expt.

Theor.

Theo r.

Theo r.

Expt.

Comment

Correct result (without
dispersion term), but wrong
theory

In water; error probably
larger than +0.14

In water

Inclusion of dispersion term

In water and fused silica at
different wavelengths; con-
firms dispersion term



H. R. BILGE R AND A. T. ZAVODNY

assuming that no cross-coupling effects occur. In
a plot of nf~ vs &u, hf~ will then produce a constant
offset. The magnitude of this offset is used as a
convenient means to check our equipment. The
least-squares fits provide a weighted average of
nfR, », =33+11 Hz, which proves that the equip-
ment is accurate enough for drag experiments.

B. Evaluation of the Brag Coefficient

If the ring laser and rotating silica disk are
properly adjusted, Eqs. (13) and (15) suggest a
fit of

He —Ne PLASMA TUBE

FIG. 2. Schematic of triangular ring laser with He-Ne
plasma tube T (bottom arm), dragdisk D, compensator
flat C (right arm), and an open gl.ass tube G in the left
arm to reduce unwanted Fresnel drag by moving air. The
beam mixer M is behind the mirror M3. The drive Dr
for the drag disk is mounted off the granite support and
coupled to the disk by a cotton thread "belt. "

to the data, v here m and b are the parameters to
be evaluated. n and hf~ are then related to m

and b by

o = XL(4mndxo) ' m, hfg = b .
The fit also provides the internal rms errors Am

and hb from the statistics of the measurements
f„and hf~. n,m and Ab determine the quality ot
a given set of data and they enter into the final
error analysis.

IV. EXPERIMENTAL SETUP

Af~ = 2nn&udxo/L& .

C. Rotation of Ring

Since the ring laser is fixed with the rotating
earth, we have to account for the resulting Sagnac-
type effect. This is given by Post as

40 ~ A Qr ' 61. c . Qx
1 —-— =--= = — if —«1

X L, e

(i4)
where Qr is the tangential velocity of ring perim-
eter, IQI =Qosin8, Q0=2m/day, 8 is the degree
of latitude, IAI is the area enclosed by the beam
path.

Note that nL/X represents the Sagnac effect as
measured by the fringe shift. If multipled by the
frequency nf~ = c/L [Eq. (8)], we obtain Lfs. The
frequency difference between neighboring modes,
c/L, is in our experiments about 10 Hz. This
accounts for the easy detectability of the Sagnac
effect in a ring laser. The expected beat frequency
due to the earth's rotation in the system present'
is

Thus, Af~ is generally large compared to Af„. As
a first approximation, we expect a total beat fre-
quency +fs,

&fs = ~fD(&)+ 4z(Q),

A short description of the arrangement is given.
For more detailed information consult Ref. 10.

A. Ring Laser

The ring laser is built as a nearly equilateral
triangle with sides ot about 1 m. (see Fig. 2).
%e used two different sets of three dielectric
coated concave mirrors in the experiments to
realize the three requirements of ease of adjust-
ment, large mode volume in the plasma tube,
and small beam waist at the drag site."

The focal lengths were 3, 6, 6 m and 1, 1,
2 m with a specified peak reflectance of 99. 9'~/~

for normal incidence at 0. 63 IL(, . Calculations of
the reflectance at an incident angle of 30 show

a small increase of 0. 03~/0 for the TE wave used. '
The 3-6-6 m set has a larger mode volume in the
plasma tube, but the 1-1-2 m set has a smaller
waist at the drag site. Both sets are aligned with
the same effort and resulting power. A rf-excited
He-Ne plasma tube of. 1-m length and 4-mm bore
served to excite a laser beam with the polariza-
tion normal to the plane of the ring. An iris is
used in the side containing the plasma tube to
eliminate nonaxial modes. Up to five axial modes
were observed. By suitable reduction of plasma-
tube gain and ir is d1RIDetex, Single-axial-mode
operation is achieved, which is employed in the
drag experiments. The two output beams at one
corner mirror (the 3-m mirror or the 1-m mirror,
respectively) are mixed in a simple beam mixer
and detected in a photomultiplier. The block dia-
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FIG. 3. Block diagraxn of ring laser
and associated electronics.
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gram, Fig. 3, shows the monitoring and counting
of the beat frequency.

The ring laser and beam mixer is mounted on a
550-lb gran. ite bloc which is vibrationally isolated
by adjustable shock absorbers. The detecting,
monitoring, and recording equipment was located
on a different bench.

B. Optical Length of Ring

The length L was determined by observing the
beat frequencies between four axial modes, while
the ring was loaded with the drag disk and a com-
pensator flat. The frequency separation between
neighboring axial modes is determined as sf~,
= 92. 0209+ 0.0006 MHz. We obtained also ,'nf~2-
= 92. 0192+ 0.000V MHz and 3 hf~ s = 92. 0199+ 0.0009
MHz out of altogether 140 measurements. Mode

pulling appeared to be sufficiently small. Thus the
three data were averaged to give an optical length
of the loaded ring laser [Eq. (8) with c= 2. 9979
&& 10 m/sec] of I.= 3.2589 m with a relative error
smaller than 0.01/0.

C. Dragin Gas

For initial adjustment of the system, a 90-cm
flow tube with 5-mm bore and Brewster end win-
dows is used. Some semiquantitative measurements
with moderate flows of nitrogen gas were made,
whereby beat frequencies above 10 kHz could easily
be reached, but the unknown flow profiles and dif-
ficulties to measure total gas flows to better than

1/p, prevented us from attaining the required ac-
curacies. '3

TABLE II. Data of the drag disk.

Quantity Symbol Unit + absolute error

The axis of rotation is normal to the disc surface.
The beam enters the disc under the Brewster angle
(Fig. 2) at a distance xo from the rotation center.
The rotation center is in the plane of the ring. Under
these conditions, Eq. (12)holds, and a knowledge of
the quantities in Eq. (1'7) allows one to calculate n

Rota.'ing disk. We used a Homosil X/20 disk
of 2-in. diam, a specified index of refraction
n = 1.4571+ 0.0001, and a thickness d = 1.2772
+0.0001 cm. The normal or rotation axis was set
to minimize reflection. The adjustment error of
the two angles of the beam, namely the Brewster
angle 8~ with respect to the normal ot the disk and
the angle O„with respect to a plane normal to the
ring plane, is + 0. 1 . The disk is mounted in a
bearing-mounted holder which can. be displaced on

a platform parallel to itself by an x-y vernier with

an accuracy of 0. 01 cm. The platform is adjust-
able to be able to set 0~ and 8„.

The disk is rotated through a cotton thread belt
from a 1.4-oz. in. speed-regulated motor at rates
of 100 to 2500 rpm. The rotation angle is mea-
sured by counting the pulses in an optical detector
which resulted from the chopping of light through
60 holes along the rim of the disk mount. The err-
or of the rotation angle is thus less than 0. Ol/o

after 200 full revolutions. Note that a nonuniform
rotation rate does not introduce errors as long as

D. Drag in Fused Silica

Setup. For precise measurements an arrange-
ment used by Macek et al. is applied. A rotating
disc is traversed by the beam such that beam and
axis of rotation are not coplanar (Appendix A).

Thickness
Index of refraction
Wavelength
Brews ter angle
Normal angle
Rotation rate
Beat frequency range
Displacement

n

Ofl

On

fm
4"a
Xp

1.2772 cm
1.4571
0.632815 p,

Adjusted deg
Adjus ted d eg
100-2500 rpm
1—50 kHz
0.5-2. 0 cm

1 x10""
1x10 4

&1 x].0-4

0. 1
0. 1
0. 1
0.01
0.01
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———20.0 mm

10.0 mm
20"

fe
(kHz)

As an example, 27 runs with the parameters xo
=2. 00 cm and f„=1000rpm result in g )„
= (1.00233 + 0.00002) && 10 rpm, a.nd (Q~ )„
= (2. 02857+0. 00013)&&10 Hz, with an rms devia-
tion of 5f„=+ 0. 12 rpm and 5 mfa = s 6. 8 Hz for one
10-sec run. The data were Gaussian distributed
and showed no drift.

The data are arranged in two groups: (i) beat
frequency &f~ vs rotation rate f„for a constant
displacement xo, (ii) beat frequency af~ vs displace-
ment xo for a constant rotation rate f„.

B. Beat Frequency vs Rotation Rate

20--

FIG. 4. Plot of beat frequency Af vs rotation rate f~ for
two displacements go=1.00 and 2. 00 cm.

the gating period for the counting of the rotation
angle and the counting of the beat frequency is
synchronized, since the beat frequency is propor-
tional to the freuquency of rotation [Eq. (13)].

Table II gives a summary of the parameters and
typical errors.

V. MEASUREMENTS

A, Statistics of a Run

In a given run with a nominal frequency of rota-
tion and a displacement xo on the disk, the two fre-
quencies were counted for a 10-sec period. Typi-
cally, 10 to 50 of such runs with identical param-
eters averaged to produce one data point (f„, nf~).

TABLE III. Beat frequency vs rotation rate with displace-
ments xo= 1.00 and 2. 00 cm.

Figure 4 and Table III present data for f be-
tween 100 and 1000 rpm with xo = 1.00 and 2. 00 cm.
Negative values of f„correspond to an arbitrarily
defined counterclockwise rotation. A least-squares
fit of a straight line to the data' gives Eq. (16)

at x~=1.00 cm: m=613. 4+1.2, b=20&26 Hz;

at x0=2. 00 cm: m=1216.0+2.8, b=50+49 Hz

The third column in Table III lists the deviations of
the measured points from the straight lines. They
are more or less randomly distributed, indicating
that there are no systematic trends within a set
of runs, as would be the case if mode pulling were
apparent. Also note that the results of m do not
overlap (divide the second result by 2), which in-
dicates that the statistical errors of a given fit are
somewhat too small to account for fluctuations
from one set of data to another.

C. Beat Frequency vs Displacement

Figure 5 presents beat frequency vs displacement
for five different values of f„. This plot is used

60

g, =1.00 cm

fm
(rpm)

—998
—500
—198
—101
+ 102
+ 200
+ 499
+ 998

—10 176
—5062
—1 972
—1 217
+ 1149
+ 2079
+ 5136

+ 10 254

&fa +fB f$tted
(Hz)

22
37
34

—204
83
10

5
13

50

40

e
(kHz)

30

2500
rpm

2000
rpm

1500
rpm

@0=2.00 cm —1002
—499
—399
—300
—201
—100
+ 100
+ 200
+ 400
+ 499

+ 1000

—20 286
—10 107

—8063
—6031
—4029
—1 941
+ 2045
+4113
+ 8166

+ 10 187
+ 20 321

1
—27
—12

11

43
—30

9
3

15
—17

20 1000
rpm

IO 500
rpm

0 0.5 10 1, 5
xo (cm)

2.0 2.5

FIG. 5. Plot of beat frequency ~f vs displacement xo
for five different rotation rates between 500 and 2500 rpm.
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60 TABLE IV. Results of the least-squares fits of runs.
6fz vs f~ with xp = parameter.

50 Xp

(cd) .m
b Ab

6m (Hz) (Hz)
(e ]—0.)/0.

(%)

1.00 614.4
2.00 1216.0
1.81 1099.8
0.50 307.7
1.00 615.1
1.50 922. 6
2.00 1233.0

All data

1.2 20
2.8 50
0.9 54
1.4 28
0.7 33
2. 2 —14
l.8 —13

26
49
22
41
17
62
51

0.5416
0.5359
0.5356
0.5428
0.5425
0.5422
0.5435

0.5406

—0.13
—1.18
—1.24
+0.09
+0.04
—0.02
+0.02

—0.31

IO

0 150 300

calculated from Eq. (1V) with the parameters from
Table II. The comparison of c/, , with n from Eq.
(4) gives

to check whether there are any systematic devia-
tions from the fit, which would disclose errors
in determining the rotation center or errors in
the vernier. No such deviations are observed.

D. Evaluation of Results and Discussion of Errors

Figure 6 contains all significant measurements
during the investigation. The beat frequency is
plotted against the drag velocity

8m 2wfmx0 COSOB (18)

where cos&e = (n2+ 1) '~~ =0. 5659.
Table IV summarizes the significant measure-

ments Dfe vs f„. The experimental value ot,„„is

&~ (cm/sec)

FIG. 6. Summarizing plot of beat frequency Af vs drag
velocity [ pm ) . All data are plotted into the first quadrant.

(n, , —n)/o. = —0. 008 +0. 005 .

The error includes consistency errors as well as
estimates of residual systematic errors.

Thus, there is no significant deviation of the
drag coefficient from the theoretical coefficient for
linear drag including the dispersion term.

As is apparent in Table II, the largest error is
in xo. This error can be reduced by a considerable
amount, if the beam waist is kept small enough,
which can be accomplished by a judicious selection
of mirror radii, mirror separations, and drag
site. An xy-vernier with 1- p, accuracy would then
measure exact diff erences in beam positions on

the disc, even if the beam waist is much larger
than 1 p, . The results may then be extracted with

the help of Eq. (A5) (Appendix A}.
A maladjustment of p~ introduces also a first-

order error (see Appendix B}. Thus it is advis-

/

/

/
/

/
/

/
/

/
/

Lr

/
/ /

Pp( xp, 'J/p, 0) I /

I I0,0) J(0,0,d)g
/

I /

\
Y

Lr

FIG. 7. Linear drag in a rotating
right cylinder. The beam vector L„
and the ~ axis are not coplanar. The
xy plane of the coordinate system is
in the front plane. L„is the length
of the beam path in the cylinder.
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able to measure the angle 0~, rather than to set
it to achieve minimum reflection. The measure-
ment of 0~ can be done with a considerably better
accuracy than + 0. 1'.

An over-all improvement by an order of magni-
tude in n appears feasible with this technique.

VI. CONCLUSION

The drag coefficient in silica measured in a ring
laser appears to be equal to the drag coefficient
as given by Lorentz [Eq. (4)] for a linear system.
The experimental error is slightly smaller than
that obtained in Ref. 5, but the limit of accuracy
attainable with the ring laser is by far not yet
reached. Expressing the present result in relation
to the dispersive term only, we have

(o.',»q —&) [& —1+ (1/n )] = 0. 13a 0. 22,

which means that the excess of the experimental
drag coefficient over the amount 1 —(1/n ) is within
one-half of the rms error equal to the term (X/n)
x (dn/dX).
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d= L„c os/
(A4)

cos Q+cos $+cos P=l,
we have

v I = rod(xo cos$ —
y&, cosg)(1 —~os2$ —cosa)) '~'

(A5)

Thus, the drag is solely determined by the entrance
point Po(xo, yo, 0) and the directional angles $ and

Q at Po.
Case 1. For the intended operation of the disk

in this paper, we have ( =8~ with tan9~ =n (He

=Brewster angle) and Q = 90' (9„=0). Equation

(A5) gives in this case v I =~dxo/n [Eq. (12)]. Any
displacement yp&0 does not affect the drag, as long
as the condition P = 90' prevails.

Case 2. In this case (coplanar beam and rotation
axis) the drag is zero, as can be seen in the follow-
ing way: The drag at any point is given through
Eq. (A2) and Eq. (A3) as

v I = (~ && r) ~ dL„.

Now we calculate the scalar product v l throughout
the cylinder:

]Ly )= Lg
v l = J v, ~ dL„= &uL„(xocos) —yocosQ) .

IL„t =P

(A3)

Since

APPENDIX A: DRAG IN A ROTATING CYLINDER

vt &d x r = —( yl —xj ) . (A2)

Figure 7 shows a right circular cylinder. A
Cartesian coordinate system is located with the
origin on the front surface at the intersection of the
rotation axis. The rotation axis is identical with the
z axis and normal to the surface. The beam shall
enter at Io(xo, yo, 0) with directional angles Q,
and g relative to the x, y, and z axes. Such a beam
is described by a vector

L„= (xo + l cosQ) i+ ( yo+ I cos)) j + (l cosg)k;
(Al)

i, j, and k are unit vector s in the x, y, z direction
and l is the length of vector from Pp.

The velocity field v, at any point along L„ is given
by the vector product of ~(0, 0, &u) and r(x, y, 0):

Since r is in the plane set up by ~ and L„, the
velocity field v, = »&r is perpendicular to that
plane at any point, and therefore v, ~ dL„=0.

APPENDIX B: ADJUSTMENT ERRORS IN THE ROTATING
CYLINDER

We expand Eq. (A5) to first order in x, y,
g around the "ideal" conditions x= xo, y=0, Q = 90,
5 =&» and get

n(v„l) axo n'+ 1
vl xo n

i. e. , the only first-order errors are in the dis-
placement xp and the Brewster angle 9~. For ex-
ample, an error of 1/o in xo enters as 1(o into the
final result, and an error of n$ =0. 1 deg enters as
0. 4'. The most careful attention has therefore
to be given to the measurement of xp and 0~.

*Present address: Northern Oklahoma College, Ton-
kawa, Okla. 74653.

W. M. Macek, and D. T. M. Davis, Jr. , Appl. Phys.
Letters 2, 67 (1963).

2J. M. Catherin, and B. Dessus, IEEE J. Quantum
Electron. QE-3, 449 (1967). The references therein
refer to earlier work.

M. Born, Einstein's Theory of Relativity (Dover,
New York, 1962), p. 139.

W. M. Macek, J. R. Schneider, and R. M. Salamon,
J. Appl. Phys. 35, 2556 (1964). The errors in the drag
coefficient amounted probably to several percent, since
the fit to the data was.made without the dispersion term,
which is 2.5% in fused silica. See also, G. A. Massey,



FBESNEL DRAG IN A RING LASER: MEASU BEMENT. . .

Hansen Laboratory of Physics Report No. 1812, Stanford
University, 1969 (unpublished); and G. A. Massey and
A. E. Siegman, IEEE J. Quantum Electron. QE-6, 500
(1970).

4T. S. Moss, G. J. Burrell, and A. Hetherington, Proc.
Roy. Soc. {London) A308 125 (1968).

5Most of the historic experiments are cited in the papers
of P. Zeeman, e.g. , P. Zeeman, Proc. Roy. Acad. Sci.
Amsterdam 17, 445 (1914); P. Zeeman, Nature 113, 838
(1924}.

6C. Mgller, Nuovo Cimento Suppl. 6, 381 (1957).
J. L. Anderson, Principles of Relativity Physics

(Academic, New York, 1967), p. 189.
E. J. Post, Rev. Mod. Phys. 39, 475 (1967); E. O.

Schultz-DuBois, IEEE J. Quantum Electron. QE-2, 299
(1966).

~A coordinate system fixed with the nonrotating earth

is, of course, not an inertial system either. Taking the
next step by inclusion of the orbiting earth, we expect a
diurnal peak-to-peak modulation of ~z of 0.13 Hz in the
setup presented.

~OA. T. Zavodny, thesis (Oklahoma State University,
1970) (unpublished).

'W. W. Rigrod, Bell System Tech. J. 44, 907 (1965).
M. Born and E. Wolf, Principles of Optics, 2nd ed. ,

(Pergamon, New York, 1964) Sec. 1.6.5.
It may also be noted that the dispersion term in gases

at 0.63 p, is a very small fraction of the drag coefficient.
For comparison, (A/n) (dnld A) [1—{1/n ) —(A!n) (dn/d~) j
= 0.0006, 0.0013, 0.025, 0.065 in He, N2, SiO2 (silica},
CCl4, respectively.

'4In the fitting process, equal weight is given to all data
points, and the f~ data are treated as exact, since the
errors in +~ are usually large compared to Pf .

PHYSIC AL R EVIEW A VOLUME 5, NUMBER 2 F EBBUARY 1972

Pressure Broadening of the Q2 Microwave Spectrum

T. A. Dillon and J. T. Godfrey*
Nationa/ Bm'eau of Standards, Boulder, Colorado 80302

(Received P, June 1971)

A general expression for the calculation of pressure broadening for vibrational-rotational
lines is derived in the strong-collision model. Classical trajectories and a peaking approxi-
mation are used to calculate a unitary scattering operator avoiding perturbation expansions,
impact-parameter cutoffs, and straight paths. The latter approximations are not expected to
be good when short-range potentials dominate the collision interaction. Use of intermolecular-
potential parameters determined from thermodynamics and a simple theory of dispersion
forces for 02 calculations gave excellent agreement with experimental data on the magnitude,
temperature, and quantum-number dependence of the linewidth parameter.

In an earlier paper, hereafter referred to as I,
a theory for pressure broadening in a, strong-col-
lision model gras developed. General formalisms '

give expressions for the width and shift in terms
of matrix elements of the scattering operator for
binary collisions integrated over the impact param-
eter. The scattering operator, a time-ordered ex-
ponential of a phase integral for the interaction po-
tential, is generally evaluated in a perturbation
expansion. The justification for this procedure is
that the main contribution to the integral over im-
pact parameter occurs when the phase integral is
smaller than unity. The same arguments are
used to justify straight-path trajectories and hard-
sphere impact-parameter cutoffs for evaluation of
the phase integral. However, for collisions be-
tween neutral atoms or molecules it frequently hap-
pens that a large contribution to the integral over
impact parameter occurs when the phase integral
is on the order of„or larger than unity. In such
a case, the integral over impact parameter from
zero to the hard-sphere cutoff (extrapolation for-
mulas are used for S-matrix elements) are com-
parable to or even larger than the integral over

large impact parameters where the perturbation
expansion and straight-path approximation are
valid. In this payer the scattering operator is cal-
culated to all orders and the phase integral is evalu-
ated using curved trajectories determined by a
Lennard-Jones (LJ) potential; avoiding any hard-
syhere cutoffs or arbitrary extrapolation formulas.
This procedure is described for general vibrational-
rotational lines with the microwave spectrum of 03
presented as an example. Oxygen is a. good candi-
date for testing the theory; it is a nonpolar mole-
cule with a very short interaction range; a large
body of experimental line shape data exists; and
the intermolecular potential has been partially de-
termined by thermodynamic measurements. While
many of the approximations used in this calculation
are very well suited to oxygen, all of them are
generally applicable to any pressure broadening
process where strong collisions dominate.

I. LINE SHAPE

The spectral distribution of power emitted or
absorbed by a gas, P(u&) is given as


