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The Hartree-Pock exchange and the statistical free-electron approximation are analyzed
and compared for a number of atoms. The exchange energy is calculated in the two approxi-
mations —in both cases by using accurate Hartree-Pock orbitals —and split up into contributions
from individual electronic shells and also into self-interaction and interelectronic parts. The
results are conveniently expressed by the ratio of the various quantities in the two approxi-
mations. It is found that these parameters vary in a simple and regular way, which can be
interpreted by means of an extended free-electron model. It is, e.g. , found that the param-
eter of the total self-interaction is significantly larger than that of the total interelectronic
exchange. This explains in a simple way the principal variation with the atomic number of the
parameter in the so-called X& method. The analysis is only intended to yieM some insight
into the exchange phenomenon, and no new —local or nonlocal —exchange potential is suggested.

I. INTRODUCTION

Several forms of statistical exchange potentials,
based on Slater's p" approximation' to the Hartree-
Fock (HF) exchange, have been suggested. Such
potentials have been frequently used in atomic and
solid-state calculations, and extensive comparisons
between the different approximations have been per-
formed, especially in the atomic case. It has been
found that most statistical approximations reproduce
the atomic HF orbitals fairly well. Qn the other
hand, the eigenvalues of the one-electron equations
are quite different in the various statistical approx-
imations and generally in poor agreement with the
HF values. However, this can be explained by a
different interpretation of the eigenvalues in the
statistical case.

The most important applications of the statistical
exchange approximation are in solids, where a com-
plete HF calculation is normally prohibited for
computational reasons. Furthermore, a pure HF
calculation is, in general, not expected to yield re-
sults in good agreement with experiments, due to
the importance of correlation (screening) effects.
(One of the reasons why the statistical approach
works so well for solids seems to be that it has
some correlation effects automatically built into it. )
In order to construct a good potential for the solid
state, it is therefore necessary to have a good un-
derstanding of the exchange as well as of the corre-
lation effects.

The purpose of the present paper is primarily to
study the exchange effect, as a first step towards a
better understanding of the statistical model. The
starting point for this analysis will be the so called

"X& method, " in which the original Slater potential
is multiplied by an adjustable constant n. Several
schemes have been developed for determining the
"best" values of n for atoms, and they all lead to
the same general result, namely, that the "opti-
mized" a values decrease with the atomic number
Z, from about 0. 8 for He to values around 3 for
heavy elements. The latter value is obtained in a
straightforward way from the electron-gas theory. '
In the present work we shall try to explain the
variation of n for low Z, using an extended elec-
tron-gas model. Our main approach to this prob-
lem will be to study the exchange energy in the HF
and the statistical approximations. In this analysis
we shall on the one hand study the exchange energy
of the different shells separately and on the other
hand treat the self-interaction energy separately
from the remaining interelectronic exchange ener-
gy. It is our hope that such an analysis could lead
to a better understanding of the exchange effect,
not only for atoms, but also for molecules and
solids.

II. HARTREE-FOCK AND STATISTICAL EXCHANGE ENERGY

In the HF case, we define the exchange energy by

~x'= ~& fp (1)~"(1)«i,
where U,

" is the HF exchange potential

U";r(1)= — Q y&(1) y,*(2) y,.(1) y;(2) d72 .
&i2

(2)
Here (y;) are the HF spin orbitals and p;(1)
=

I y&(1) I . (Since i =j is included in the summation,
this exchange energy contains the self-interaction. )
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(3)

where

and

E(q)= $+ ln
4g 1 —g

The exchange energy is essentially a weighted
average of the exchange potential and is therefore
a useful quantity for the present purpose. One dis-
advantage with this procedure is that possible dif-
ferences in the spatial variation of the exchange
energy density between various approximations may
not be discovered. %e shall compensate for this
shortcoming by splitting up the exchange energy in
several parts. This gives us a few well-defined
numerical quantities to compare, rather than a set
of curves.

In a free-electron gas we know that the exchange
potential is approximately given by'

U, = —2(6/$')'/ E(q) p, '

pression of the virial theorem by use of Xo.' orbit-
als' (n„). In this paper, since we are specifically
interested in the exchange, we shall determine a
by making the exchange energies equal in the HF
and Xu schemes, i. e. ,

E» =E»'= $ f Q, P, (1)U, (1)d»,
and denote the corresponding & value by &x.

The three values &„t, &», and ax, determined by

using the corresponding self- consistent Xn orbitals,
are found to be very similar, but somewhat differ-
ent from & „. If we neglect the difference in the

orbitals between X& and HF, the three former val-

ues would be identical. In order to eliminate effects
of differences in the orbitals, we shall use HF or-
bitals throughout this analysis. Then Ex becomes
linear in &, and &x can be expressed by

nx ——$Ex /ExHF xs

where
q= k/k~ . Ex'= $ f ~&, p.(1)Us '(1)d», (9)

U»s ( UFE )
$ (6/~)1/$1/$ (4)

In the Xn scheme one introduces an adjustable
parameter & and defines

Ux& $ n Uxs $ n(6/&)1/$ P1/$ (5)

so that U, agrees with U, for = 3. The variation-
al principle then leads to the exchange potential

axe 2 Uxoi ~ Uxs
S ~ S S (6)

to be used in the one-electron SchrMinger equa-

tion. Originally, & was introduced as a parameter
in this last equation, which explains the factor 2 in

the definition of U, in Eq. (5). We shall use the

same parameter in our analysis, although a new

parameter P= $ o. , would be more logical.

III. CHOICE OF a VALUES

Several methods for optimizing o have been sug-

gested and used to calculate the "best" single o.'

values for a number of atoms. The first method to

be used was to minimize the expectation value of

the HF Hamiltonian using X& or equivalent orbit@la

(leading to an n value here denoted by n, „). Al-

ternatively, one can equalize the statistical Xo. en-

ergy and the HF energy$ (n„») or satisfy the HF ex-

p, is here the density of electrons of a certain spin
orientation and other symbols have their usual
meanings. (In the non-spin-polarized case, p, is
equal to $p, where p is the total electron density. )
Replacing E(p) in this expression by its average over
the occupied Fermi sphere (at zero temperature),
(F(q))= ~, leads to the original Slater exchange po-
tential'

and U, is given by Eq. (4). This is the quantity we

will use in the following treatment. (The effect of

spin polarization mill be neglected in all our numer-

ical applications. ) The numerical difference be-
tween the &x values determined in this way and the

e» and &„values, previously determined by one

of the authors using self-consistent Xn orbitals,
is of the order of a few parts in 10000 and there-
fore negligible from a practical point of view.

IV. EXCHANGE ENERGY FOR DIFFERENT SHELLS

The parameter &„Fas a function of atomic num-

ber Z is illustrated in Fig. 1 (taken from Ref. 9).
These values reproduce the shell structure of the

atoms very nicely and, for a given shell, & varies
almost linearly with Z and is always decreasing.
It is desirable to find an explanation for this kind

of variation of n with Z. Since the shell structure
seems to be rather important, we have separated
the exchange energy into contributions from the dif-
ferent shells in the following way:

Ex = $Z) cx (i), e» (i)= f P;(1)U,
" (1) d»,

(1o)
and correspondingly for .Vo'. %'e can now define an

n parameter for each shell by requiring that e»x (i)
= e„(i). This leads to

2m»v(i) 2 fp;(1) Up (1)d»
3e» (i) 3 I p, (1)U, (1)d»

in analogy with Eq. (I).
Individual o. values for each shell have been cal-

culated for a number of atoms, and the results are
illustrated in Fig. 2. The values for atoms with

closed subshells are given in Table I. It is found
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quantum number l have the same general shape,
e. g. , 2s-3s, 2P-Sp. The s curves are essentially
increasing and the P curves essentially decreasing,
when the corresponding s, P shells are being filled.
For the M shell it is interesting to notice that &(3P)
increases, while o(3s) is essentially constant, when
the 3d shell is being filled. It seems to be a general
tendency that the & value for one subshell increases
when the subshell with the next higher l value, with-
in the same main shell, is being filled, and stays
essentially constant thereafter (see Table I, e. g. ,
2s Be-Ne, 3s Mg-Ar, 3p Ca-Cu'). For complete-
ly filled main shells, the n(i) values are almost in-
dependent of the main quantum number n and depend
essentially only on the l quantum number [o(i)
=0. 75-0. 77 for s electrons, =0.67-0. 70 for P
electrons, = 0. 60-0. 62 for d electrons etc. j This
general behavior can be explained by considering
the self-interaction and the interelectronic exchange
separately, as will be shown in Sec. V.

0 I 0 20 30 40
z

FIG. 1. Parameter in the X& method vs atomic num-
ber, determined by equalizing the Hartree-Fock and
statistical total energies.

V. SELF-INTERACTION AND INTERELECTRONIC
. EXCHANGE

&sx (i)= —f [p, (2)/~12 ] d7 g (12)

In the HF scheme we can separate the potential
(2) into a self-interaction (SI) part

and an interelectronic exchange (IE) part

that n(i) varies smoothly with Z and is affected es-
sentially when the main shell (&, L, M, . . . ) con-
taining the subshell i is built up. The fact that these
n values are almost independent of the occupation
number of outer shells shows clearly how dominant
the exchange vitamin the main shells is over ex-
change between such shells. It is also observed
that the curves for shells with the same orbital

V,"E (i)= — ) f y)(1) 9)*(2) yq(1) y;(2) d 2
pi(l) +12

(13)
The corresponding quantities E s, and E,"E are
defined in analogy with Eq. (1).

As a first step in this analysis we shall investi-
gate the correlation between the +~ values, defined
in Sec. IV [Eq. (8)], and the relative magnitude of
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FIG. 2. Total exchange
parameters for individual shells
vs atomic number.
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TABLE I. o' values for total exchange.

2 He
4 Be

10 Ne
12 Mg
18 Ar
20 Ca
29 CU

30 Zn
36 Kr

0. 7735
0. 7688
0. 7316
0. 7297
0. 7222
0.7202
0. 7079
0. 7072
0. 7060

0. 7735
0. 7760
0.7709
0. 7708
0. 7714
0. 7717
0. 7724
0. 7726
0. 7730

2s

0. 7271
0. 7660
0. 7693
0. 7664
0. 7658
0. 7587
0. 7587
0, 7583

0. 6683
0.6719
0. 6778
0. 6791
0. 6837
0. 6844
0. 6890

3s

0. 6874
0.7418
0. 7439
0. 7504
0. 7533
0. 7584

0. 6484
0. 6436
0.6970
0. 6986
0. 7059

0. 6079
0.6104
0. 6204

0. 6602

0. 6257
0. 7089 0. 6356

the SI and IE parts of the exchange energy. Figure
3 shows the ratio of the IE and the total exchange
energies vs Z for some atoms. The variation of
this quantity shows a remarkable resemblance with
that of the optimized single n values in Fig. 1. If
we plot these n values vs the relative magnitude of
the IE exchange, as shown in Fig. 4, we find a
nearly linear relationship. This fact indicates very
strongly that the explanation to the Z dependence
of the optimized & values is to be found in the inter-
play between the self-interaction and the interelec-
tronic exchange in the atoms.

In order to make an analysis analogous to that in
Sec. IV, we have to split also the statistical ex-
change expression [Eg. (4) j into SI and IE parts.
This is less straightforward than in the HF case.
For that purpose we have to look closer at the uni-
form electron-gas model. For electrons with uni-
form distribution within a sphere and zero density
outside, one easily finds by means of elementary

electrostatics that the average SI potential is
PFE

(g )
6 (4v)1/3 pl/3 (14)

For electrons with less uniform distribution, like
atomic electrons, one finds that the SI potential is
still well described by an expression of the same
type, but with a numerically slightly larger coeffi-
cient. As will be illustrated below, this coefficient
is quite insensitive to changes in the distribution.

A more detailed analysis" shows that the IE po-
tential in the free-electron model is given by

Ui'z'(&) = —2 (6/&)"' [+(n «)o'" —'p ~"') (15)

& is here a constant close to unity for p, &= p& and

approaching F(q;) when p, - p, , since IE vanishes
in this limit. [It should be observed that the ex-
pression above is not obtained from the convention-
al expression (3) by subtracting some kind of self-
interaction, but is obtained from the free-electron
model by studying the interelectronic exchange di-

'/o40—
Kr

50—

IE

20—

FIG. 3. Magnitude of the
interelectronic exchange ener-
gy (relative to the total ex-
change energy) vs atomic num-
ber.

0 I

0
Z



I. LINDGREN AND K. SCHWAR Z

.80 ——

.75

.70 '——

FIG. 4. Parameter for the total
exchange (= the parameter in the X&
method) vs the relative magnitude of
the self-interaction and interelec-
tronic exchange energies.
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rectiy. ] The coefficients of the p', terms in Eqs.
(14) and (15) are numerically not very different,
which means that Eq. (3) is a reasonably good ap-
yroximation of the total exchange —including self-
interaction —also when p, is not very much larger
than p&, i. e. , when the self-interaction is not neg-
ligible, However, the coefficients are not exactly
equal, which causes a significant difference be-
tween the conventional expression Eq. (3) and the
sum of the more accurate expressions Eqs. (14)
and (15), when p, and p, are comparable, i.e. , when
the K forms a substantial part of the total exchange.
In this case we have approximately a =F (q;), which
gives

V,~ (i)= —2(6/m)" F(q&)(p," —p; )

with the average

(I ())=— (8/ ) ( — ' ). (17)

&~"(f))= ~S~I(f)+ (~YE (f)) = ~. '+ o. 15 ~8~1(f),

(18)

where the Slater potential U, is given by Eq. (4).
Therefore, in this limit only about 85% of the SI is
included in the conventional Slater expression.
These very simple arguments explain why the op-
timized o' values are larger than 3 for light atoms

This is the interelectronic potential used in the re-
cently suggested "Hartree- Slater" method. "

If we add the Sl potential (14) (with a coefficient
corresponding to typical atomic orbitals) to the
IE potential (17), we find that the total exchange
potential in the limit of large SI becomes approxi-
mately

Se If - exchange

7—

X—X
X~

X~
X X-X- X~-X~-X- X~X~X~X X

Average
X

FIG. 5. Parameters for self-
interaction and interelectronic ex-
change vs atomic number. The
"average" values are the same as
in Figs. 1 and 4.



.80—
547

Is 2p

+ + +-+- + + + + + + +~ +~+~—+~—+g +~

.75—
2s

—
~X

X~X~~X~a-c
FIG. 6. 6. Self-interaction

parameters for individual
shells vs atomic number.

.70—

He Ne Ar

I I I I I I I I I I

5 IO I5
I I I l I I I I I I I l I I I I l I I

20 25 30

ZrI Kr

z

(by roughly 15%%uo) and approach the latter v
Z' dSIb
expression (18)

ecomes less im ort
also explains ualitati

of the self-'
n e een z and thee relative magnitude

e se -interaction in the re 'onregion where the latter
s, as i ustrated in Fig. 4.

For a more quantitative anal sis we
ns o e SI and IE artsp of the statistical

pression 17
ange . For that purpose we adopt th

( ) as the definition of IE in this case

and consequently get the rema'maxnzng part

(20)

as the SI part of the statistical
that th' diffe

is ica potential. [Note,
xs x ers from the expression 14 .

ow lit the t ti t'

SI

F
2

pon xng HF expression
and (13)]. We can express he r sul s

o separate n factors for SI and I
in.ustrated in Fig. 5. Thehere one immediately ob-UiE (i)= (U,E (i)) (19)

l

I

.8 —I

I

I

I

(I)
I

I

I

I
.6—

I

I

I

I

I

I

I

I

I

I

t

I

I

I

I

—0-O-CI

I

I

I

l

I

5p~~
I

I

I

I

I

I

I

Bd I

I

I

I I

I I

I I

FIG. 7. 7. Interelectronic
exchange parameters for
individual shells vs atomic
number.

I

5s

NALYSIS OF THE E LEE CTRONIC EXCHANGE IN ATOMS



548 I. I INDGREN AND K. SCHWARZ

TABLE II. e values for interelectronic exchange.

4 Be
10 Ne
12 Mg
18 Ar
20 Ca
29 Cu'
30 Zn
36 Kr

Average

0, 5804
0. 5857
0. 5905
0. 6040
0. 6058
0.6052
0. 6055
0.6136

0. 8011
0. 6588
0. 6764
0. 7082
0. 7157
0. 7295
0. 7309
0. 7377

2s

0.4550
0. 7856
0. 7983
0. 7985
0. 7982
0. 7838
0. 7838
0. 7831

0. 5031
0.5107
0. 5306
0. 5358
0.5548
0. 5575
0.5726

0.3822
0. 7373
0. 7486
0. 7614
0. 7669
0. 7784

3p

0.5235
0. 5259
0.6585
0. 6625
0. 6803

0.4779
0. 4828
0. 5005

0. 3626

0.3532
0. 6737 0.5181

serves that this leads to two quite different e fac-
tors, both essentially independent of Z. This re-
sult is, of course, not very surprising in view of
the qualitative analysis made above. The two &

factors obtained from Fig. 5 are

with l. This can be explained if we look upon the
expression for IE in the FE model [Eq. (16)j be-
fore the averaging of F(ii) is being made. If we
compare this expression with Eq. (17), which is
our reference, we get the ratio

QSI = 0. 77 and nIE U, ~ (i)/(Uis (i)) = s +(&i) . (21)

which is reasonably close to what one expects from
the simple model, discussed above [Eq. (18)],
namely,

+sr 0. 8 and nyz -0.67

We can also separate the SI and IE energies into
contributions from the different shells, in the same
manner as before, and define corresponding & val-
ues. The result of this analysis is illustrated on
Figs. 6 and 7 and in Table II. This shows again
that the SI parameters are almost independent of Z
and, furthermore, essentially the same for all
shells. Almost all values for Z —36 are confined
to the region 0. 74 —n —0. 78. This demonstrates
clearly how insensitive the self-interaction is to
the shape of the electron distribution, as was brief-
ly mentioned above. It is interesting to compare
these values with that obtained for a uniformelectron
distribution. From Eq. (14) one finds that this cor-
responds to an n value of

~~~ =0 693 ~

Thus, the SI parameters for atomic orbitals are
some 10% larger than this FE value. One also finds
from Fig. 6 that orbitals with a single maximum

(ls, 2p, Sd, . . . ) have larger n&z values than have

orbitals with several maxima or minima
(2s, Ss, 3P, . . . ). This is consistent with the fact
that the latter electrons are less localized and

hence should be closer to the FE limit.
The corresponding interelectronic parameters

n, E (i) (Fig. 7 and Table II) show the same tendency
as the n(i) parameters discussed above (Fig. 2 and

Table I), namely that they vary markedly when the
main shell containing the subshell i is being filled,
and remain essentially constant when outer shells
are built up. One also notices that the &«values
for each main shell span approximately the same
range, =0. 5—0. 8, with the & values decreasing

According to our notations, this corresponds to an
n value of

n iz (i)=~ s F(rl, ), (22)

which lies in the region 0. 44 to 0. 89. The o factors
calculated from HF are consequently in good general
agreement with this simple picture. The variation
with l within this range can be understood, if we
consider that the electron interaction is strongest
within the main shells, where the overlaps are
largest. Within one main shell, the electrons with
the smaller l value have the lower energy and hence
would correspond to a smaller k value in the free-
electron model, i.e. , to a larger F(ii) factor in Eq.
(8).

We are now in position to explain the main varia-
tion of the n(i) parameters, shown in Fig. 2 and

Table I. The fact that the interaction is strongest
within the main shells explains why the e values of
one main shell change most when that shell is being
built up, but are essentially unaffected by the filling
of outer main shells. Since the parameter for SI is
larger than that for IE, we can also understand why

the n(i) parameter for one subshell decreases, when

that particular subshell is being filled, and conse-
quently, SI plays a relatively smaller and smaller
role. The FE model also explains why the n values
for a certain subshell increases when subshells with
higher angular momenta within the same main shell
are being filled. This is due to the l dependence of
the IE exchange, discussed above (see Fig. 7 and

Table II).
It is interesting to look at the absolute magnitude

of the various parts of the exchange energy. The
different contributions are tabulated in Table III for
a few atomic systems. This demonstrates how dom-
inant the exchange energy of the inner shells is—par-
ticularly the self-interaction —also for relatively
heavy atoms. Theref ore, the & factor given above
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TABLE III. Absolute exchange energies.

2 HeSI
IE

10 Ne SI
IE

18 Ar SI
IE

29 CU SI
IE

36 KT SI
IE

Total

1.026

9.90
2, 21

22. 71
7.48

44. 41
21.27

60. 77
33.08

1.026

5. 97
0. 25

10, 92
0. 83

17.77
l. 71

22, 13
2. 32

2s

1, 02
0. 70

2, 20
1.70

3.81
3.19

4. 83
4, 28

2. 90
1.26

7. 32
3.47

13.20
7. 01

16.91
9.68

0. 64
0.51

1.24
1.57

l. 67
2. 32

1.64
0, 97

3.58
3.95

4. 99
6. 05

4. 81
3. 84

8.30
6.97

4s

0. 55
0. 50

l. 39
0. 95

for the total exchange, which is essentially the pa-
rameter used in the X& method, depends almost en-
tirely on the exchange of inner shells and reflects
only to a very small extent the behavior of the outer
electrons. At this stage we shall not draw any fur-
ther conclusions from this fact, but we believe that
this point is worth considering, when potentials for
molecules or crystals are constructed.

VI. SUMMARY AND CONCLUSIONS

In this work we have tried to analyze the Hartree-
Fock exchange interaction for atoms in terms of the
statistical approximation. The general tool has
been to divide up the HF exchange energy into parts
corresponding to individual shells, as well as into
self-interaction and interelectronic parts, and com-
pare the various parts with the corresponding quan-
tities in an extended free-electron model. It is
found in this way that the HF exchange for atoms ex-
hibits a remarkably simple and clear picture, which
can be easily interpreted —to some extent also
quantitatively —by the FE model employed. It is felt
that this kind of analysis gives a better understand-
ing of the exchange problem than do analyses in
terms of one or two more or less arbitrary param-
eters. Vfe have chosen to make our analysis by
means of a number of parameters, defined in anal-
ogy with the + value in the frequently used X& meth-

od. However, it should be emphasized that this is
only a formal way of describing the results. Our
treatment is by no means intended to be an exten-
sion of the X& method, and we do not suggest any
multiparameter potential. The analysis is merely
to be considered as a step towards a better under-
standing of the exchange effect along somewhat dif-
ferent lines than are normally followed in related
works. It is our hope that this might be of value
when accurate calculations on molecules and solids
are planned. Needless to say, in such cases one
has to consider also the important effect of electron
correlation, which has not been the concern of us
in this work.
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A magnetic-resonance technique has been used to make an accurate measurement of the gJ
values of the 5d[—]4, 5d[2]3, and 5d[2]2 states in xenon and of the hyperfine structure of the
5d[2]4 state in ~t Xe. The 5d states are excited and aligned by unidirectional electron impact
in a hot-cathode discharge tube containing Xe at a pressure of about 5 x 10 Torr. Induced
transitions between magnetic sublevels of the aligned 5d state are detected by monitoring the
intensity of linearly polarized light emitted during the second step in the cascade 5d 6p- 6s.
The g& values were measured by determining the Zeeman transition frequency of a particular
5d state in a magnetic field of about 20 G which had been locked to the Zeeman resonance in the
6s[2]2 metastable state. The results are gJ =1.2506(3) for 5d[p]4, g~=1.0749(4) for 5d[ ]3,
and gz =1.3750(3) for 5d[2]2. The hyperfine structure was measured by placing the tube in a
TElp2 microwave cavity and observing direct (~=1) hyperfine transitions in a magnetic field
of a few gauss. The result for ~Xe in the 5d[2]4 state is a= —583.571(2) MHz. The error
for both the gz values and the hyperfine structure arises from the magnetic field measurement
and corresponds to about one-tenth of the linewidth. Our results are improvements of previous
optical measurements.

I. INTRODUCTION

Many of the states with Jt 1 arising from the
5p' 5d configuration in xenon have relatively long
radiative lifetimes (~ 10 sec). This is due to the
nearness (= 2000 cm ') of the 5p'6p states to which
they decay. Their long lifetimes allow the build-
up of large population inversions, which account
for the strong infrared laser lines connecting the
5d and Gp states. In this experiment we have taken
advantage of these long lifetimes to make precision
magnetic-resonance studies of three 5d states:
5d[+s] J=4, 5dP&] J=3, and 5d[—,']J= 2. The tech-
nique used is that of magnetic resonance fol-
lowing electron-impact excitation and alignment.
This method was first demonstrated by Dehmelt'
using Hg and was extensively applied to the study
of He by Lamb and co-workers. Since these
pioneering investigations, the technqiue has been
used to study the excited states of many atoms as
well as a few ions and molecules; much of this
work has been summarized by Pebay-Peyroula. '
The 7p[-', ] and 7p[-', ]3 states of xenon have been
studied by Chenevier' using this technique.

In particular, we have measured the Lande

g factors for the three 5d states listed above and

also the hyperfine structure (hfs) of the 5d[2]4
state in ' Xe (I = 1/2). Our results represent
improvements of previous optical measurements
of the hfs by Liberman, ' and of the g~ values by
Schlossberg and Javan.

II. METHOD

The Xe energy levels relevant to this experiment
are shown in Fig. 1. It is seen that the 5p' 5d
states can be produced by electron bombardment
with a threshold of about 10 eV. For illustrating
the technique, we can limit discussion to the
5d[+s]4 state. The decay path for this state is the
two-photon cascade 5d[s]4- 6p[-', ]s- 6s[—,']s with

X&=55 750A and ~&=8819 A. As is known,
unidirectional electron bombardment near threshold
produces an aligned excited state, i. e. , Zeeman
sublevels with different

~

mz ~, have different prob-
abilities of excitation and consequently different
populations. Following excitation, this alignment
manifests itself in the polarization and anisotropy
of the decay radiation. Since alignment is trans-
ferred to the intermediate state by the first step
in the cascade, radiation emitted in the second
step wi'l also exhibit polarization and anisotropy.
Therefore, changes in the populations of the 5d


