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The theory of the homogeneous interacting electron gas is used to derive a functional of the
density for the form factor for incoherent scattering of x rays by a statistical atom. The re-
sults show a dramatic improvement over an early calculation of Heisenberg who used the
Thomas-Fermi model. Detailed calculations of form factors are carried out for several ele-
ments {A, Cu, Ce, Na) and compared with the results of Hartree-Fock-Slater {HFS) self-con-
sistent wave-function calculations. Whereas the Thomas-Fermi model gives incoherent cross
sections which differ at low energies by orders of magnitude from those given by the HFS mod-
el, the theory of the homogeneous electron gas yields results which compare within 15% of
the HFS results.

I. INTRODUCTION

In this paper we study the incoherent scattering
of x rays by a statistical atom. We use the theory
of the homogeneous interacting electron gas, which
is density dependent. This dependence is averaged
over the density distribution of the particular atom
in question. The incoherent form factors resulting
from our theory show a dramatic improvement over
the calculation of Heisenberg, ' who used the Thomas-
Fermi statistical model. Our standard of compari-
son is the results of self-consistent-field calcula-
tions.

The purpose of these calculations is to extend the
accuracy of the statistical model of the atom, not
to provide an alternative to self-consistent-field
methods.

In Sec. II, we briefly review the general theory of
x-ray scattering. Following this, in Sec. III, we
specialize the theory to the case of scattering by
a statistical atom. Finally, in Sec. IV, the calcu-
lated results and a general discussion are presented.

II. THEORY

The formal basis for the scattering of x rays by
bound electrons has been established by Wailer and
Hartree; they derive the general equation for the
intensity of the scattering of x rays by atoms in a
monatomic gas. In Born approximation and for x-
ray energies high compared to R-shell binding en-
ergies but small compared to mc, the differential
cross section corresponding to a transfer of mo-
mentum h z from the photon to an N electron atom
is given by

Q ( teiT ~ (r~ —ry) )

where &x, =o, (~) is the Thomson cross section for
scattering by an unbound electron,

is the wave function of the ground state of the atom,
the x& ——(r&, o&) are the electronic space and spin
coordinates, and d x is the product of the d xf.

The scattered radiation described by this for-
mula consists of the coherent (elastic) and the in-
coherent (inelastic) scattered radiation. The co-
herent cross section is given by

and the incoherent cross section by

=- N &c+~ne (4)

Van Hove has shown that the scattering cross
section for x rays by a system of interacting par-
ticles is expressible in terms of density distribu-
tion functions for the particles of the system. More-
over, the coherent cross section is expressible in
terms of the density distribution for a single par-
ticle of the system and the total cross section (co-
herent plus incoherent) is expressible in terms of
the correlation function which in the classical limit
describes the average density distribution as seen
from one particle of the system.

Following Van Hove we introduce the density of
the system
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n(r) =Z, (6(r —r, )),
I

and the correlation function

(5)

G(r) =(27») 'N 'Q(6(r +r,. —r,))
ij

F rom the expression

v(»») =(2)»'»Nv, f e'"'G(r)dr, (6)

and the elastic scattering is related to the density
by

v,.„(F)= v, sp'"' 'n(r) dr '

= v,Je' ' 'n(r —r) n(r ) dr dr (9)

from Eqs. (3) and (5).
For systems with large numbers of particles,

G(r) has an especially simple asymptotic expres-
sion for large values of r. For such systems, the
particles in regions widely separated in space are
statistically independent, so for sufficiently large
l~

g(6 (r + r; —r') 6(r ' —r&))

= g(6(r+ r; —r' )) (6(r'- r,.))

=n(r —r) n(r ). (10}

Thus the coherent scattering is determined by the
asymptotic part of the correlation function G(r).
The incoherent scattering follows from

v„,(»») =v, f dr' f dr e' ' 'Q[(6(r+r» —r') 6(r' —r,.)&

—(6 (r+ r, —r» )) (5 (r —r»))]. (11)

G(«) (2 )"6~-lg f d«& -iif ' r( -i 0 '(r» —
r»&) (y}

ij

which follows simply from the first of Eq. (6), the
total scattering is related to G(r) by

P(»», r )=-, dre' ''Q(6(r+r; —r ) 6(r —r»)),n(r ')

(12)
where now the expectation value is taken with re-
spect to the ground state of a uniform electron gas
whose density is equal to that in the atom at the
point r . The incoherent scattering cross section
becomes, from Eq. (11),

v„, (»») =v, f dr'n (r') P(»», r'). (13)

Our first example will be the noninteracting Fermi
gas, which leads to the Thomas-Fermi (TF} and
Thomas-Fermi-Dirae (TFD) models of the atom.
The deficiencies of the models for evaluating the
incoherent form factor will then be removed by
introducing the correlations brought about by the
electrostatic interaction between electrons. In Sec.
IIIC, we deal with the interacting Fermi gas by
making use of the connection between the pair dis-
tribution function [Eq. (16)] and the dielectric con-
stant of the uniform gas as described, for example,
by Glick.

A. Thomas-Fermi Atom

For a noninteracting Fermi gas, '

correlations between electrons in different boxes,
and in each box take the expectation value in the
first term of (11}to be the one expressing the den-
sity fluctuation correlations between two points a
distance ~ apart in a uniform gas. This will be a
good approximation as long as the dimensions of
a, box are large compared with the range of density
fluctuation correlations and as long as the potential
varies only slightly over this correlation range.

In the spirit of this approximation, the second
integrand of Eq. (11) is a constant so that term con-
tributes only in the forward direction (»» = 0); we
shall henceforth ignore it. The integral over r is
then evaluated as for a uniform gas at the density
of electrons at the point r in the atom.

We can now introduce the local correlation func-
tion

To summarize, we observe that Eq. (9) contains
the asymptotic behavior of G(r) and leads to a de-
scription of the coherent scattering in terms of the
electron density distribution. The integrand in Eq.
(ll) describes the correlation in density fluctuations
and determines the incoherent scattering.

III. INCOHERENT SCATTERING BY STATISTICAL ATOM

where

(-) 1 for k&&»;

0 for k &k~

In the statistical model of the atom it is assumed
that the potential energy V(r) of an electron varies
slowly with r and that at each point the system can
be treated as a uniform gas of electrons. In order
to evaluate the incoherent form factor, we divide
the atom into boxes, neglect the density fluctuation for I(: &2k+ .

u, =u,(r') =[2~'n(r'}] '" .
Equation (14) can be evaluated explicitly to give

—,' (»»/k~) ——,', (»»/a„)' for»» & 2k»,
P(»», r') =

~ ~

1

(15)

(16)
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By substituting Eq. (16) into Eq. (13), and using
Eq. (15) and the definition of the incoherent form
factor [Eq. (4)] we have

o„,(K) 1
inc

C

477 N p

where the definition of Rp

n(R ) =K /241c (18)

follows from Eq. (15) and the condition that P(K, r )
41 only for ~&2k'.

For the Thomas-Fermi density function, a par-
ticularly simple scaling law results for F,„,. In-
troducing the Thomas-Fermi variables x = w /2
=(r/ap)Z' '2' (31c) / and /=1"V/Ze, where ap

is the Bohr radius, gives

84&2 Z'y'"
n=

977 a()

seen in Figs. 2 and 3, the TFD form factor agrees
more closely with the I',„,of detailed calculations
than does the result of the TF model.

Exchange effects, neglected in TF approxima-
tion, but partly accounted for in the TFD model,
are known to improve the electron distribution,
especially in the outer regions of the atom. This
may well explain the discrepancy between the TF
and TFD curves which is large at small ~' but
diminishes and gradually disappears at large v'.
At small &', the scattered radiation samples mainly
the outer regions of the atom, which is quite un-
realistically described by the exchangeless TF
model. At large e', on the other hand, the interior
of the atom is being probed, and the effective dif-
ference between the TF and TFD models is negli-
gible.

C. Interacting Fermi Gas Model

The quantity P(K) (for brevity we omit the argu-
ment r ) given in Eq. (12) can be described in terms
of the dielectric constant e(K, c0):

Setting N equal to the atomic number Z, we have
for the neutral atom

wo
2-1/2 y3/2 202 dc0

0

g1/2 (~ ) wp

M'0 o

hK e, (K, c0)
(K)=

4 2„,2 ) ~, (- „)~2
0

where

e(ic, c0) =61(ic, -c0)+i e2(ic, 0/) .
The imaginary part is given by

(21)

(22)

where zoo is defined by

) 1/3...-4~2 —''~
3n'/I utp

(2O)

2

0

&&( e'"'n*(ic) e '"'n(ic) ), (23)

Thus, in the Thomas-Fermi model the incoherent
form factor is a universal function of ~Z . Equa-
tion (19) was first obtained by Heisenberg. '

By expanding Eq. (4) in powers of K we note that

+inc should be proportional to w for small ~. This
dependence is lost and becomes linear in the Fermi-
Thomas model because in Eq. (18), f„.(k) has a
sharp cutoff at k~. The proper v dependence, as
we shall see, is recovered when one takes account
of electrostatic interactions in the uniform-gas mod-
el.

B. Thomas-Fermi-Dirac Atom

The next stage of sophistication in the statistical
treatment of atoms is represented by the TFD
model. Abrahamson has calculated the density
distributions for argon and copper in the TFD ap-
proximation. When these densities are substituted
into Eq. (1V), the results shown in Figs. 2 and 3
are obtained. Here and inother figuresthe abscissa
is the variable K = sin( —,'8)/XZ ', where 8 is the
angle of scattering and X is in angstroms. The
asymptotic behavior remains linear in &, but, as

61(K, cp) = 1+ —P I 2 dcp
2 ( c0e2(K, cd )
77 0

—(d
(24)

where P denotes the principal part.
In lowest order, i.e. , the simplest bubble dia-

gram, the dielectric constant can be evaluated ex-
plicitly:

1
38 kFapz

4uz for 0&u&1 —z

t
1 —(u —z) for lu —z I

& 1 & (u+ z)
0 for lu —zl &1

(25)
and, from Eq. (24),

1 u —z —1e, =1+—
3 [1—(u —z) ] ln

8 kFapz u —@+1

where H is the complete Hamiltonian, the expecta-
tion value is taken with respect to the ground state,
and the subscript 1 indicates that only "singlebub-
ble" terms are to be taken in the expansion. The
quantity n(ic) is the Fourier transform of the density,
Eq. (5). The real part of thedielectricconstant e,
is related to e2by the Kramers-Kronig relation



D. E. PARKS AND M. ROTENBERG

~ (( —( +n)'] In +4n) . (2(()u+z —1

I.O

In Eqs. (25) and (26), z=k/2k+, u= h&/(2E~z), Ez
= If kz/2m, ao is the Bohr radius, and again k~
= kz(y ), i.e. , the Fermi momentum takes the
values of Eq. (15) corresponding to the density at
the point r in the atom.

In a uniform gas, for small values of the wave
number ll, the contributions to P(ic) are of two
kinds: the particle-hole pair excitations and the
collective excitations. ' The pair contribution comes
from the frequency region in which ez(T(', &) is dif-
ferent from zero. The collective contribution
comes from frequencies where both e, = 0 and 6p
=0

As for the case of a free-electron gas calculated
in Hartree-Pock approximation, the pair excita-
tions for the interacting gas possesses a continuous
energy spectrum, but the strength of the excitation
is reduced by the factor 1/le((l, &) I . If we set this
factor equal to one and calculate &z in the HF approx-
imation, we recover Eq. (16). Actually at small
z, I/~e ~~ is reduced by a factor of the order (I(:/k~);
this reduction is due to the screening clouds around
each individual electron. We shall see that in-
cluding only the pair excitations in the calculation
of the incoherent atomic form factor leads to a
value that is strongly depressed relative to that
obtained from self-consistent atomic wave func-
tions.
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FIG. 2 Incoherent form factor E~~~ vs K' for argon.
Notation is the same as in Fig, 1. In addition, we show
the results calculated from the noninteracting gas mod-
el [Eq. {17)tusing Thomas Fermi (TF)p and Thomas-
Fermi-Dirac (TFD)p (Ref. 6) densities.

In the region of small z the collective contribu-
tion to P(~) is, to an accuracy ~ /kTv,

(2V)

where &„ is the frequency of the collective mode
with wave number z and k» is the Thomas-Fermi
screening wave number, kT2r = (4/ll)(k~/ao). ' Ac-
counting for the collective contribution within the
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FIG. 1 Incoherent form factor E~~ vs the reduced mo-
mentum transfer J(."= sin(20)/AZ for sodium. P&„, is
taken from Cromer and Mann (Ref. 9). I'&„, is calculated
using the statistical model and the density calculated
from the wave function of Herman and Skillman (Ref. 10).
Pair and collective contributions to+~„, are shown.
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FIG. 3 Incoherent form factor E~„~ vs K' for copper.
The notation is the same as in Fig. 2.
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lated by Abrahamson and the HFS density computed
from the Herman-Skillman' wave functions. In
both cases E,„, is computed from Eqs. (21) and
(»).

While the particle and collective contributions
seem to conspire in such a way as to give a smooth
total result in Figs. 1-4, we point out that the
smoothness is a consequence of the density-weighted
integration over the volume of the atom. In Fig. 6,
we show the form factors for a uniform gas at dif-
ferent densities; these curves exhibit gaps not
characteristic of the atomic case.

V. DISCUSSION
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FIG. 4 Incoherent form factor E&~ vs f(' for cesium.
Notation is the same as in Fig. 1.

We have carried out detailed calculations of
P(z) [Eq. (21)j, and averaged the result, as re-
quired by Eq. (13), for the atoms Na, A, Cu, and
Cs. The results are shown in Figs. 1-4, respec-
tively. The atomic densities used were those ob-
tained from the Hartree-Fock- Slater (HFS) calcu-
lation of Herman and Skillman. ' Comparisons are
made with the results of Cromer and Mann. We
note the close (at worst -15%%uo) agreement, espe-
cially when contrasted with the results of the non-
interacting TF and TFD models in Figs. 2 and 3.
The particle contribution and the collective con-
tribution which have been averaged over the density
are shown separately in each graph, as well as
the sum. "

Our calculations indicate that the functional of
the density obtained by substituting Eqs. (21) and

(13) can give reasonably accurate results (-15%%uo)

for incoherent form factors. They are, however,
quite sensitive to the density profile in the atom,
at least in the region v -0.05. The sensitivity is
apparent from Fig. 5 where we compare E,„,for
Cu and Ar obtained from the TFD density calcu-

framework of the statistical model adopted here,
allows us to recover the z~ dependence of the in-
coherent form factor at small v. To determine
the accuracy with which the statistical model gives
E,„,(g) at all g and, in particular, the coefficient
of the term proportional to v~ which dominates at
small ~, we must perform the detailed integrations
required by Eqs. (13) and (21) and compare the
results with those obtained from detailed wave-
function calculation.".'

IV. RESULTS
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FIG. 5 Comparison of statistically derived incoherent
fo&m factors for different density distributions. TFD re-
fers to the Thomas-Fermi-Dirac density (Ref. 6). HFS
refers to the density derived from Hartree-Fock-Slater
wave functions (Ref. 10).

In order to obtain the correct behavior of the
incoherent form factor at small momentum trans-
fers we were required to include two kinds of ex-
citation in the interacting uniform gas: the shielded
pair excitations and the collective excitations. '
The shielding of the pair excitations damps the
incorrect behavior of E,„, at low momentum trans-
fer for the noninteracting gas (see Figs. 2 and 3).
We recover the correct asymptotic behavior by in-
cluding the collective effects which contribute pro-
portionally to K for smaLL v.

Our statistical treatment of the incoherent form
factor shares with other statistically derived quan-
tities of the atom, the feature that it works better
than we should expect. " In this respect, we recall
that our basic approximation consisted in dividing
the atom into boxes and neglecting the density fluc-
tuation correlations between different boxes. This
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FIG. 6 Incoherent form factor for a
uniform electron gas. Parameter n is the
electron density in atomic units. Abscissa
is ~=sin(2~)/&, with & in angstrom. s.
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requires that the correlation range kF~ or ~

whichever is smaller, be less than the dimensions
of the box. Since the density should not significantly
vary over the dimensions of the box, our approxi-
mations should apply if

min(~-, kF~) '-

This condition, which may be too strong, is not
satisfied (except for very large v) anywhere in the
atom. For I(. '(k~'~ the condition is satisfied, how-

ever, if, instead of the radial density gradient, we
use the atomic radius as the characteristic length.
This implies that for w -Ro, the atomic radius,
the effects of unshielded pair excitations will dom-
inate the form factor. Referring to Figs. 1-4 we
see that the unshielded pair excitations dominate
for z -0.07 (corresponding to y '( 0. 15 A) which

satisfies the last inequality well.
As for the small-~ behavior, we note only that

the size of the physical atom (as defined, for ex-
ample, as thatradius Ro which contains half the
electrons in the TF atom of the same Z) is of the
same order as k~'~ evaluated at Ro. Moreover, the
two quantities scale as Z ' . The relative success
of the statistical model for several values of g sug-
gests therefore that the correct explanation of this
success is connected with the near coincidence of
the finite size and the corresponding fluctuation cor-
relation length.
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