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The equations of the coupled-pair many-electron theory (CPMET) are extended to incorpor-
ate the effect of both unlinked and linked triexcited clusters. The minimal basis correlation
energy of the BHS molecule in the ground state is calculated using the ordinary as well as ex-
tended CPMET in various degrees of approximation, and the relative importance of linked and

unlinked triexcited clusters is studied. The results afford an unambiguous conclusion for
closed-shell systems that, in contrast to the situation with tetraexcited states, unlinked triex-
cited clusters are negligible relative to the linked ones. It is shown that the extended CPMET
reproduces the full configuration-interaction results to a very high degree of accuracy.

I. INTRODUCTION

The treatment of electronic correlation, in order
to account for the inadequacies of the independent-
particle model, has long ago been recognized as a
central problem in atomic and molecular electronic
structure calculations. Consequently this problem
has been studied very extensively during the past
two decades with various degrees of success. A

rather extensive review of the past achievements
may be found in Ref. 1 and in Sinanoglu and Brueck-
ner. The need for a reliable, yet simple and feas-
ible, treatment of the correlation problem is be-
coming even more acute, since calculations closely
approaching the Hartree-Fock limit are becoming
feasible for larger and larger atomic and molecular
systems.

The methods for calculating correlation effects
may be roughly divided into two basic categories,
viz. , variational and nonvariational, even though
in some cases it may be difficult to draw this line
unambiguously.

Perhaps the most commonly used variational
method, which may, in principle, yield the exact
result, is the method of configuration interaction
(CI). The capabilities of this method have recently
been extended considerably by improvements in an-
alytical and computational techniques, such as the
development of effective algorithms for finding
eigenvalues and eigenvectors of large sparse ma-
trices, so that the handling of over 10 configura-
tions is now feasible. Unfortunately it is relatively

difficult to implement various approximations and

plausible physical assumptions in this method.
Nevertheless, owing to its conceptual simplicity,
and to the fact that in the limit it tends to the exact
result, the CI method represents a basic "common
denominator" for the comparison of other orbital
theories.

Furthermore, for small or model systems, where
full CI calculations are feasible, it enables one to
obtain the exact result within the subspace of the N-

electronic Fock space, spanned by a given set of

basis functions. Such results are very useful from
the methodical point of view, since they can serve
as a convenient reference point for the testing of

various approximate methods within the same sub-

space, and thus make it possible, at least in the

first stage, to avoid very extensive and time-con-
suming computations. This is also one of the rea-
sons why we have chosen the BH3 molecule for our

study, since the full CI treatment within the mini-
mal Slater basis set has been carried out for this
molecule by Pipano and Shavitt. '

The best-known nonvariational methods are varj. —

ous forms of perturbation theory. The most suc-
cessful and systematic in this respect is the work
of Kelly.

Finally, there is a group of methods, which are
neither variational nor perturbational, even though

they may possess some features of both. These
methods, introduced by Sinanoglu "' and others,
proved to be very promising; they are based on the
cluster expansion of the exact wave function ~4),

50



CORRE LATION PROBLE MS IN ATOMIC AND ~ ~ ~ IV

which may be conveniently expressed as

and

ca&= &ab l~ lcd & &~. l~. & «3I~.&, (8b)

Here I C'0) represents the ground-state independent-
particle model wave function, and a closed-shell
N = 2n electronic system is implicitly assumed. The
opera, tor T has the form

(2)

where the i-particle excitation operator T; repre-
sents all possible linked i-fold excitations, and may
be conveniently written in the second quantized form

Assuming now that
l
@& represents a pure singlet

ground state of this closed-shell system, we find
that the operator T in the expansion (1) is also spin
independent, i. e. , that

(» A 3
' ' ' A

~ I
t IA»3 ' ' ' A )

= (a,"a3 ~ ~ a," lt; lafa3 a,') g (3l,". l3l~), (9)

where

~ ~ 3 A)'
IAI'&= la~")l~f) and IAI)= laI&l«& (10)

~ ~, A&)

x Q (X'„„X„.), (8)
j-1

The relationship of the cluster expansion (1) to
the CI expansion is very straightforward. Let us
write the CI expansion of the exact wave function

l
+) in the form

"t
where X& and X& are the creation and annihilation
operators defined on the complete set of spin or-
bitals IA). The spin orbitals occupied in I 4'0& are
designated by singly primed capitals while unoccu-
pied spin orbitals are labeled by doubly primed cap-
itals. Notice that the operators T, are nonlocal
and have nonvanishing matrix elements between un-

occupied and occupied states only. Considering a
closed-shell system with a spin-independent Ham-
iltonian H,

l~&= IC', &+ 7 c,. l~, ),

where C; is an i-fold excitation operator, such that
C; ICO) represents an appropriate linear combina-
tion of all possible i-fold excited configurations lit';),

~, l~, &=z...„l~,&. (12)

Then we immediately find that

H=k8(+ K v(g where

a general spin orbital (x IA ) may be written as a
simple product of the orbita. l (3 la ) and a pure spin
function (s Iq, ), i. e. , Q4 Tf T3+ —,

' T,' T,——+. (1/4 I) T,'+ —,
' T', , etc.

(14)

lA&= la&l~. &

or

(x lA ) = (r la)(s l3l, ),
where

x-=(~, s) and l~. &= l3& or (8)

+ —, g (ab lv lcd) )~ Xt„X3„X~,X,„, (7)
g3b 3C3d

since

and

(8a)

Thus, the Hamiltonian may be expressed in the
second quantized. form as

H = 2 (a ls
l
b) Q X.'„X,„

a, b

Thus, the i-fold excited contribution (12), ob-
tained by acting with C; on the independent-particle
single-determinantal wave function 140), consists
generally of two components. The first component,
associated with T&, is usually referred to as a linked
part (or, more appropriately, connected part), while
the second component, given by Q;, is called an un-
linked (disconnected) part.

The practical usefulness of the cluster expansion
(1) in the theory of atomic and molecular electronic
structure stems from the fact that the most impor-
tant role in this expansion is played by the terms
involving linked biexcited clusters T2. Indeed, if we
use maximum overlap or "Brueckner orbitals" as
the basis for the cluster expansion, we find that the
monoexcited clusters f', automatically vanish and,
therefore, all unlinked clusters containing 1, also
vanish. Even in the Hartree-Fock approximation
we can expect the monoexcited clusters 1'& to be
negligible not only in view of the Brillouin theorem
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(which in general is not sufficient) but also from the
T, to all orders as discussed and calculated for
some simple systems earlier.

Thus, neglecting T&, we find that the first non-
negligible unlinked terms appear in the tetraexcited
states, for which we get

A l A
P

C4 ——T4+ p T2 .

Sinanoglu showed that the linked tetraexcited part
(T4) is negligible in comparison with the unlinked

part ( 2T', ), at least for systems having a nonmetal-
lic character. Using the cluster expansion analysis
of the full CI wave function for ~-electronic model
systems, we have shown' that this is also true for
delocalized systems, unless they are so large that
collective phenomena play an important role.

Thus, neglecting T4 as well as the linked terms
T3, T5, . . . , T~, we obtain the wave function solely
in terms of T~,

~e&=e'2~e, & . (16)

This is the wave function which was used by Sina-
noglu. Applying the variational principle to this
wave function he obtained a system of equations for
the T& matrix elements. In the derivation of this
system of equations he neglected all terms which
couple Tz matrix elements corresponding to differ-
ent hole pairs; owing to this approximation the
method is no longer variational. In this way a set
of systems of equations is obtained (one system for
each hole pair), which is very convenient for nu-

merical calculations and which may be referred to
as Sinanoglu's decoupled-pair many-electron theory
(DPMET).

A systematic method for the calculation of the
components of the cluster expansion of the exact
wave function has recently been formulated in Pa-
pers I and II of the present series. ' This method,
which, too, is nonvariational, may be conveniently
formulated using the second quantization formalism,
Wick's theorem, and Feynman-like diagrams. The
general method, which in principle allows a deter-
mination of the exact wave function, has been spe-
cialized for practical purposes for the case (16),
when the operator T is approximated by T2. This
yields the generalization 'of Sinanoglu's DPMET in
which the coupling of pairs is fully taken into ac-
count. Indeed, one can derive the same theory,
which is referred to as the coupled-pair many-elec-
tron theory (CPMET), by decoupling the chain of
CI equations by neglecting linked tetraexcited clus-
ters, as shown in Paper III. This method of deri-
vation clearly shows the great advantage of the dia-
grammatical technique in this case. It is felt that
this approach is more practical for proceeding be-
yond the DPMET than another generalization, the
hierarchy of many-particle equations, referred to
by Nesbet' as "Bethe-Goldstone equations. "

As the name already suggests, the CPMET is
useful whenever the interaction between pairs is of
significant importance. The additional advantage
of the CPMET is that it is invariant with respect to
a unitary transformation of the occupied orbitals
and, separately, of the unoccupied orbitals. More-
over, the CPMET represents a convenient basis for
a comparison of various existing theories of corre-
lation effects. *' These advantages are obtained,
however, at the cost of the more complicated struc-
ture of this theory.

As already mentioned, the importance of the un-
linked tetraexcited clusters and the negligibility of
the linked ones seem to be reasonably well estab-
lished. Also, the highly excited clusters I';, i —5,
may safely be disregarded since they appear only in

states having very high excitation energies. Qn the
other hand, the negligibility of the linked triexcited
terms has never been justified, and represents, so
far, a purely heuristic assumption. This problem
is particularly important in view of recent extensive
CI studies for a number of molecules, ' which show
that in certain cases the triexcited states may play
quite an important role, even though a smaller role
than the tetraexcited states.

Therefore, in this paper, we examine the role of
the triexeited clusters in the correlation energy cal-
culations. For the sake of completeness we also
consider monoexcited clusters and the role of un-
linked clusters containing Tj, particularly the un-
linked triexcited clusters T, T,. This may be done
straightforwardly within the framework of the
CPMET, adding the appropriate terms and equa-
tions to include the monoexcited clusters. Next,
we study the effect af linked triexeited clusters by
extending the CPMET to include the most important
contributions of this type. This method is referred
to as the extended CPMET (i. e. , ECPMET). After
formulating the appropriate systems of equations we

apply them to the minimum Slater basis set model
of the BH3 molecule. This molecule seems to be
very appropriate for this kind of study since the tri-
excited states play a, relatively important role in
this ease as compared with other molecules studied
by extensive CI calculations. 4'3

On the basis of the study of the relative importance
of linked and unlinked triexcited states, a practical
version of ECPMET, which includes only terms ex-
pected to give significant contribution to the cor-
relation energy, is outlined, and it is shown that
this method reproduces the fuH. CI results to a high
degree of accuracy while being significantly less
challenging eomputataonally.

COUPLED-PAIR MANY-ELECI'RON THEOR')t'

We first recall the simplest (and most important)
form of CPMET for closed-shell systems, which
results wheQ all but doubly excited linked clusters
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are neglected, so that

(1'7)

and which we shall term the A aPPxoximation. The
pertinent nonlinear system of equations for the ma-
trix elements of the operator T2 may be schemati-
cally written as follows:

v]+ ~";=0,
where

(18)

M2
C2(2) t(2)+ P

' d2(2~2)t(2)t(2)ij j + ~ ijA j
jr%=1
(j~a)

(19)

Here we designate the unknown t 2 matrix elements
(a,"a," It~ la,'a„') and the corresponding (known) v ma-
trix elements (a„"a," Iv I a~a„) simply by t&

' and v;,
i = 1, . . . , M2, respectively, a„,a, being arbitrary
virtual orbitals and a,', a„' arbitrary occupied orbit-
Bls of the chosen independent-particle model used
as a starting approximation. The number M2 of t,' '

matrix elements is the same as the number of dis-
tinct biexcited singlet configurations in the CI prob-
lem. In fact, there exists a simple relationship
between the t 2 matrix elements and the correspond-
ing biexcited state coefficients in the CI expansion
of the exact wave function. The superscripts P and

(p) of the linear coefficients c~,'" specify that these
terms arise from the interaction of P- and q-fold
excited linked clusters (i and j, respectively) and,
similarly, the coefficients d; j&'"' of the nonlinear
terms originate in the interaction of mutually un-
linked q- and &-fold excited linked clusters j and k

[i.e. , (q+x)-fold excited unlinked clusters in T, T„]
with the P-fold excited linked cluster i in T~.

In the simple case of the A approximation, only
biexcited linked clusters appear, so that P = q = x = 2
throughout.

The simplest way to obtain the analytical expres-
sions for the coefficients is to draw appropriate R
diagrams, ' and to assign to them the corresponding
algebraic expressions in accordance with the rules
formulated in Paper I. The explicit form of Eq.
(18) was given in previous papers of this series. ' '"
The explicit expressions for the linear and nonlinear
coefficients c and d, respectively, which appear in
the general form of Eqs. (18) and (19) are summar-
ized briefly in Appendix A.

Let us now determine how the system of equa-
tions (18) is modified when we explicitly consider
the monoexcited clusters Tq (and the corresponding
unlinked terms in which they appear) in addition to
the linked biexcited clusters T2. In particular, we
are interested in including the unlinked triexcited
clusters, which always contain T& terms, as seen
from Eq. (14).

First we observe that, assuming at most two-
particle interactions, the linked clusters T~ will

couple with linked clusters T&,I„k= —1, 0, 1, 2,
yielding the linear terms of the theory. For non-
linear terms, we observe that the unlinked clusters
T~T, will couple with the linked clusters T»„»,
k = 0, 1, 2. Conversely, the equations for the linked
clusters T~ will generally contain unlinked clusters
of the types T, T(~,+», 0=0, 1, 2 and q=1, 2, . . .
Here, from the outset, we neglect unlinked terms
which would lead to higher than quadratic nonlinear
terms in the unknown t-matrix elements.

Thus we find that T, matrix elements, t& ', will
generally be coupled with &f& and T& T3 clusters,
while T2 matrix elements, t;'', will couple with
Ty T2 Ty T„and & T& clusters in addition to the &T,
clusters already considered in the A approximation
above. Finally, we shall be neglecting the cubic
terms (1/3! ) T&, which indeed may be safely disre-
garded as will be apparent from our results.

In principle, it is not difficult to consider all the
unlinked terms just listed. However, their impor-
tance will vary significantly. In order to get a very
rough idea, at least, of the importance of these in-
dividual nonlinear terms relative to the linear ones,
we can examine the lowest order of perturbation the-
ory (based on the independent-particle wave function
as the zero-order function) in which these terms may
appear. This is shown schematically in Table I,
which indicates that the inost important unlinked
terms after (1/2!)T ~ should be the T,Tz triexcited
terms.

Thus, the first approximation beyond the A. ap-
proximation T = T2 is obtained by considering the
T, clusters in linear terms only (B approximation),
i. e. , all terms which appear for the first time in
the first two orders of the perturbation theory. In
other words, the B approximation corresponds to a
consideration of the T& terms in addition to the T2
and (1/8!) T~ terms of the A approximation, and of
the direct coupling between all these types of clus-
ters. (We must not forget, however, that in the
iterative solution of the corresponding nonlinear
system of equations all other unlinked types of clus-
ters containing Tj and T2 are generated in higher
orders of perturbation theory, even though they are
not treated properly. )

ln the next approximation (C approximation), we
consider explicitly the unlinked triexcited clusters
of the type Tj T» which lead to nonlinear terms in-
volving t;'" and t,' ' matrix elements, so that mono-
excited clusters still appear only linearly in these
terms. ' As Table I indicates, in this approximation
all terms which appear for the first time in the first
three orders of perturbation theory are properly
accounted for.

Designating the pertinent spinless T~ matrix ele-
ments [cf. Eq. (9)] (a~ It& la', ) simply as t~ ',
i = 1, 2, . . . , M„ the corresponding system of
(M, +M&) equations for approximations B and C may
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Linked
clusters

T2

LOPT

Unlinked clusters
(coupled quadratically
with the linked ones)

A A

TiT2
-T i

-T2
A A

TfT2
2Tf

(&iT))

TABLE E. Lowest order of perturbation theory (LOPT)
in which various linked and unlinked clusters first appear
(cf. also Ref. 6). Among the linked clusters only Ti and
T2 are considered, and all unlinked clusters which are
coupled with these through quadratic terms of the perti-
nent system of equations are given in the right-hand side
of the table.

considered in the B approximation, while all terms
must be considered in the C approximation. The
two sets of equations fori =1, . . . , Mi andi =1, . . . ,
M2 are mutually coupled in both the B and C approx-
imations.

The explicit expressions for the coefficients c~~&"

and d~&j(k""' in terms of the matrix elements of the
one- and two-particle parts of the Hamiltonian (4)
or (7), are obtained most easily by drawing the ap-
propriate R diagrams, as shown in Appendix A.

Considering the monoexcited clusters in addition to
the linked biexcited ones, the correlation energy
4& will be given not only by the diagrams corre-
sponding to the skeletons of Figs. 1(a) and 1(b), as
in the A approximation, but also by the diagrams
corresponding to the skeletons of Figs. 1(c}and

1(d). We can, therefore, write

be written schematically as follows:

f;+ )(";+ )(, + )(, = 0, i = 1, . . . , M,

v)+ &] + ~;+ ~; = 0, i = 1, . . . , M2A B C

where )(; = 0, )(,". is given by (19) and, further,

(20)

he= he"+ he

where

II II I
tZ 1 Cg Qi, (ZP

(24)

(a1 a21() la) a2 )A (a1 a2
I
t2 1a1 a2)

(25)

Mi Ng

B Q cl(1& t(1) Q c1(2) t(2&K ~ = 'Cj j +
j=l j=l

M2

C )~ g d1()y2) t(1) t(2)
zjk j k

j=i k=1

Mi

) B 5 2(1& t(1)
zj j t

j=l

Ni
C ~ + d2(1, 2& t(1) t(2)

k
j=l k=1

The symbol f; designates the matrix element
(a," 1f la)') of the f operator, which is defined as

(21)

1a2a1 (I)a) a2 )&
1' P' 1'

(26)

Obviously, monoexcited clusters will contribute to
the correlation energy not only through the second
term ~e but also through 4t'" owing to their inter-
action with the biexcited clusters. In fact, we shall
see later on that the direct contribution of the mono-
excited clusters ~e is negligible in comparison to
their contribution through 4e", resulting from their
effect on the t~ matrix elements by their interaction
with the biexcited clusters T2 ~

where

lf l»=&a IB I»+)- &ac'l~ lbc')„,
C

(22)

l

I

2

cd)„=2(ab I() I«)- &ab I() I«), (»)
and which corresponds to the matrix element t,"'
=-(a", It, la', ). Again, there is the same number of
t ', i = 1, . . . , Mi matrix elements as there are
singlet monoexcited configurations in the CI expan-
sion, and a simple relationship exists between the
CI monoexcited coefficients and the corresponding
t ' matrix elements. When the Hartree-Pock basis
is used, all the f; terMs in the first equation (20)
vanish in view of the Brillouin theorem.

As the notation of individual terms in Eqs. (20)
suggests, the terms with superscripts A and B are

(b)

1

I

2

(c)
FIG. 1. R skeletons corresponding to the correlation

energy of the ground state described by the wave function.
in the cluster expansion form (1).
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Finally, we should mention that the spatial sym-
metry of the system (atom or molecule) may be eas-
ily exploited to reduce the system of equations (18)
or (20) to the same extent as in the corresponding
CI method. This is simply achieved by observing
that the operator T of (1) is invariant with respect
to any symmetry operation which leaves the Ham-
iltonian invariant. Thus the numbers M& and M~
of unknown t;"' and t,' ' matrix elements in the M&

+iIfe equations (18) or (20) is the same as the num-
ber of symmetry adapted singlet monoexcited and
biexcited configurations, respectively, in the CI
method.

III. EXTENDED CPMET

It was shown in Sec. II how monoexcited and un-
linked triexcited clusters can be incorporated into
the CPMET. In fact, neither the complexity nor the
order of the problem is significantly increased by
these extensions, since the number of monoexcited
states is generally much smaller than the number
of biexcited states, particularly for larger systems.

On the other hand, the treatment of the linked
part of the triexcited states is much more involved,
since it requires additional equations for the deter-
mination of the t3 matrix elements
(a,"a&'aI Ite laIa„'a„'), in addition to the t, and tz ma-
trix elements previously considered. Obviously,
the number M3 of these matrix elements, which we
shall generally designate t& ', i = 1, 2, . . . , M3, is
considerably larger than the number of t2 matrix
elements M ~.

In view of the negligibility of the linked tetra-
excited clusters contribution in comparison with
that of the unlinked tetraexcited terms, which seems
to be well established (excepting the case of large
systems in which collective phenomena play an im-
portant role ), one might ask whether a similar
situation would not apply for the triexcited clusters
as well, making an extension of the CPMET to in-
clude linked triexcited clusters unnecessary. More-
over, since the triexcited states are generally less
important than the tetraexcited ones in the correla-
tion energy calculations, "' the assumption that
linked triexcited clusters are quite negligible might
seem rather plausible.

However, even a very crude estimate of the role
of linked versus unlinked clusters, based on the
lowest order of perturbation theory in which the
pertinent contribution appears for the first time,
shows that this role is reversed in triexcited as
compared to tetraexcited clusters. While for the
tetraexcited states the linked contribution first oc-
curs in the third order of perturbation and the un-
linked terms begin contributing in the second order,
we find that the reverse is true for the triexcited
clusters, where unlinked states first contribute in
the third order and linked terms already contribute

in the second order. The typical diagrams illus-
trating this fact are shown in Fig. 2(a)-2(d).

In any case, only actual calculations can verify
the relative importance or unimportance of the
linked triexcited clusters. In such calculations,
consideration of all the terms which are coupled
with the linked triexcited states, while not difficult
in principle, would present serious problems from
the computational point of view, particularly for
large systems. We must not forget, however, that
all the triexcited clusters (both linked and unlinked)
represent only a rather small correction to the cor-
relation energy (at most a few percent) and the
pertinent nonlinear terms, which represent rather
highly excited states, may be safely neglected.

Thus it may be concluded that only linear terms
need be considered in the equations for the linked
triexcited clusters, such terms accounting for the
direct coupling of these clusters to the biexcited
and monoexcited states. The pertinent system of
equations (D approximation) will have the following
general form:

f; + K";+ K, + (tc; )+ K, = 0, i=1, . . . , Mg

v,. + k",. + k', + (k,'. )+ kn = 0, i = 1, . . . , Me (27)

(~A 8+ ~c)+ ~D 0 i=1, . . . , M3

n

' ~Iiinked )
(a)

n
4 unlink ed

(b)

k d

(c)
unlink d

(d)

PIG. 2. Illustration of the typical diagrams of the Gold-
stone perturbation theory, corresponding to the linked and
unlinked triexcited and tetraexcited clusters of the exact
wave function of the closed-shell ground state. The dia-
grams with the lowest possible order of perturbation
theory are shown.
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where

and

say

(~1 +2 +3 li, a,'.,a,'~a', 3), (29)

M~

g &1(&) i Is)

j=l

M3
2(3) t(3)C]j

j=l
(28)

M3 M2

P. ~ = & C j tj + P~ CD P 3(3) (3) . 3(2) (2)

j=1 j=1

all other terms having been defined in (19) and (21}.
The terms (a; ) and (X& ) were inserted in parentheses
in order to indicate that they may be omitted if we
do not wish to consider the unlinked triexcited clus-
ters (p,; vanishes in any case). Thus by neglecting
the C terms we would consider the effect of linked
triexcited clusters only (D' approximation). Fur-
ther, it may be expected that the coupling of the
monoexcited and triexcited clusters, described by
the term K;, would be of secondary importance.
(Notice that there is no coupling of triexcited to
monoexcited states in the term p, ;.} We shall, thus,
also consider the approximation in which the I(.

~

term is neglected, and will refer to it as the D" ap-
proximation. Finally, considering only the linked
biexcited and triexcited clusters in the system of
equations (27), neglecting all terms containing f;"'
matrix elements, we obtain the D"' approximation.

In all these cases the incorporation of linked tri-
excited clusters goes beyond the pair description in
terms of linked clusters, and consequently we term
all the D-type approximations extended CPMET
(i. e. , ECPMET}.

The explicit form of the D terms (28) in the sys-
tem of equations (27) is given in Appendix B. In
contrast to previous approximations involving only

t2 and t1 matrix elements, the appropriate treat-
ment of t3 matrix elements (characterizing the
ECPMET) requires a slightly more sophisticated
approach. In the case of monoexcited and biexcited
clusters the number of different spin-free t matrix
elements corresponding to a given orbital config-
uration exactly equals the number of independent
spin-adapted singlet configurations. On the other
hand we find that in the triexcited case we generally
have one additional t3 matrix element for each or-
bital configuration, as compared with the number
of independent singlets. Thus, in the most general
case, in whi. ch all occupied a,', a2, a3 and all unoc-
cupied a,",a2, a3' orbitals in a given triexcited con-
figuration are different, we have five linearly in-
dependent singlets in the CI procedure, while in
view of the fact that the T operator is spin indepen-
dent, we have six different t3 matrix elements,

where i„ i„ i3 may be any of the 3 t = 6 permuta-
tions of the integers 1, 2, and 3.

Similarly, when two of the orbitals (either occu-
pied or unoccupied) are identical, there are tzvo'

CI singlets, while in the cluster expansion we must
consider three t3 matrix elements. For example,
when a1 = a2 = a" we have to consider only the identi-
cal and two cyclic permutations in (29), i. e. , i „ i2,
i3=1, 2, 3;2, 3, 1 and 3, 1, 2. Finally, when both two
occupied and two unoccupied orbitals are identical,
we have only one singlet but tuo t& matrix elements,
say (a "a"5"It~ la'a'5') and (a "a"0"It~ la'0'a').
Thus, in this last case, there are twice as many t3
matrix elements as there are singlet configurations
in the CI method, while in the most favorable case
there are six t3 matrix elements for each five CI
singlets. Obviously, for large molecular systems
having no symmetry, the ratio of the number of t3
and CI matrix elements will approach the value —,

(from above), while for small and highly symmetric
molecules this ratio approaches the factor of 2

(from below).
Qf course, the t3 matrix elements corresponding

to a given orbital configuration do not all have to be
considered as independent variables. Indeed, we
can always eliminate one of the t3 matrix elements
and thus reduce the system of nonlinear equations
(2&) (and the corresponding number of the unknown
&q matrix elements) so that its order equals the or-
der of the corresponding CI problem with linearly
independent, symmetry adapted configurations.

The detailed procedure for reducing the system
of equations (27) to the size of the corresponding CI
problem is described in Appendix C, and only a
brief discussion mill be given here. Vfe note that
all t3 matrix elements may be considered on an

equal footing, and that in the original system (27)
we have as many equations as matrix elements. As
shown in Appendix C, we may ignore the linear-de-
pendence relationship between different matrix ele-
ments and solve the original system (27) as it is,
which does indeed yield the correct relationships
between the linearly-dependent elements automati-
cally. On the other hand, the reduction described
in Appendix C can be carried out very easily and
lowers the order of the problem significantly, par-
ticularly for small highly symmetric molecules
like BH3.

IV. APPLICATION TO BH3 MOLECULE

The different CPMET and ECPMET procedures
described in this paper have been applied to a mini-
mal basis calculation for the ground state o5 the BH3
molecule. Configuration- interaction calculations
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TABLE II. CI results for the correlation energy E,~
of the BH3 molecule using the minimal Slater basis set
of Pipano and Shavitt (Hefs. 5 and 16). (These results are
for D3& symmetry vrith a bond length of Bz,H

= 2. 3 bohr. )

Excitations included

0+2
0+1+2
0+2+4
0+1+2+4
0+2+3+4
0+1+2+3+4
full CI

Problem order

22
25
88
.91

128
131
196

-E„,(a.u. )

0.047 150
0.047 180
0.048 050
0.048 081
0.048 442
0.048 481
0.048 491

for this case, including full CI (196 configurations),
had been carried out by Pipano and Shavitt, ' but for
the present study these were repeated using more
accurate integral values '; the same integrals and
the same self-consistent-field (SCF) starting
approximation were then used in the (E)~CPMET cal-
culations. The CI results, showing correlation en-
ergies E„,relative to the SCF energy for different
selections of excitation levels [appropriate for com-
parison with different (E)CPMET approximations],
are presented in Table II. The problem order (i. e. ,
number of configurations) for each calculation is
also given.

Though the total contribution of triexcited states
in this example is only 0. 8% of the full CI correla-
tion energy, this is probably a higher relative con-
tribution than in bigger molecules, and thus BH3
should be an appropriate system for the study of the
relative importance of linked versus unlinked tri-
excited clusters.

The C PMET and ECPMET results are shown in
Table III. In addition to the A, 8, and C approxi-
mations of CPMET, three versions of ECPMET (the
D approximation) are shown. The D' approximation
neglects the unlinked triexcited clusters [the C

terms, enclosed in parentheses in (27)], since these
have already been shown to be negligible in the C

approximation calculations. In the B" approxima-
tion the terms coupling triexcited with monoexcited
states [v; in (27)] are also neglected, while in D"'

the monoexcited states are left out altogether, thus
also eliminating any unlinked triexcited contribu-
tion, leaving only linked biexcited and triexcited
clusters and unlinked tetraexcited contributions.
The computed correlation energy E„,and the order
of the system of equations are given in Table III for
each of these cases.

The Newton-Raphson method was used to solve
the nonlinear system of equations of both CPMET
and ECPMET, and was found to converge very rap-
idly (results accurate to eight decimal places were
generally obtained in 2-3 iterations). It should be
noted that the nonlinearity appears in the biexcited

A comparison of the (E)CPMET results with
those of CI leads to a number of useful conclusions:

First, the assumption that linked tetraexcited
clusters are of negligible importance is easily re-
confirmed. Thus the A approximation, in which
only the unlinked part of the tetraexcited clusters
is accounted for, gives a correlation energy almost
identical to that obtained by the 0+ 2+ 4 excitation
CI, in which linked and unlinked contributions are
lumped together.

Second, as may be expected, the effect of includ-
ing monoexcited states is very small. Moreover,
in both CI and (E)CPMET this effect is approximate-
ly additive, independently of which other excita-
tions (in addition to the biexcited states) are in-
cluded, and accounts for 3—4x10 ' a. u. , or less
than 0. 1% of the total computed correlation energy.
A detailed analysis shows that the contribution of
monoexcited states is entirely due to their interac-
tion with the linked biexcited clusters, so that the
correlation energy is given entirely by the dia-
grams in Figs. 1(a) and 1(b), while the direct mo-
noexcited contribution, represented by the diagrams
in Figs. 1(c) and 1(d), is extremely small (5&& 10
a. u. , three orders of magnitude less than the in-
direct effect through biexcited states).

Finally, the prediction on the relative importance
of linked and unlinked triexcited clusters, based on
the lowest order of perturbation in which each type

TABLE III. The (E)CPMET results for the correlation
energy E~ of the BH3 molecule using a minimum Slater
basis set.

Approximation Clusters included Problem order —E~ (a.u. )

A

8

D Ill

D Il

DI

21 +4v
lf, + 2~+ 4v
1r, +2z, +3v+4v
21. -'3s '4v

(1L ) -' 2~ + 3~ + 4v
1L, + 2I. + ~1. + 4v

21
24
24
61
64
64

0.048 048
0.048 081
0.048 079
0.048 450
0.048 489
0.048 490

part of the problem (in the &"; term) only, while the
triexcited equations, though coupled to the biexcited
part, are strictly linear. In fact, the additional
computational effort involved in extending CPMET
to include linked triexcited clusters is about the
same as that required for dealing with the unlinked
tetraexcited contribution. In a few cases, both ihe
reduced and unreduced systems of the ECPMET
equations were solved, yielding identical results.
This can be taken as a useful test of the correct-
ness of the computational procedures and programs.

Details of the numerical and computational as-
pects of the (E)CPMET equations will be described
elsewhere.

V. DISCUSSION
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of term appears, is easily confirmed. The C and
D' approximations of (E)CPMET account for un-
linked and linked triexcited states, respectively,
and a comparison of the C result with that of the B
approximation shows that the effect of the unlinked
terms is negligible. On the other hand, the D' re-
sult agrees quite well with the 0+ 1+ 2+ 3+ 4 excita-
tion CI calculation (or with full CI, for that matter),
in which both linked and unlinked contributions are
lumped together. (Since the contribution of un-

linked triexcited clusters is so small it is probably
safe to assume that the total triexcited contribution,
if desired, can be obtained by adding together the

energy increments of approximations C and D',
relative to B, instead of having to perform the more
laborious D approximation calculation. ) Thus we

conclude that, at least as far as the calculation of
the correlation energy is concerned, the relative
importance of linked and unlinked terms is com-
pletely reversed for triexcited clusters compared
with tetraexcited ones: The sole of the unlinked
txiexcited clusters is negligible in comPaxison
zenith the linked txiexcited terms.

In comparing the CI and (E)CPMET results it
should not be forgotten that the nonlinear terms
[which are always included in (E)CPMET j account
not only for the unlinked tetraexcited clusters in
the wave function, but, once the nonlinear system
has been solved, also include the effect of the un-

linked hexaexcited, octaexcited, etc. , clusters. Thus
it is more appropriate to compare the results of the
D' approximation, in which all important clusters
are considered, with the full CI result, rather than
with the result of the 0+ 1+ 2+ 3+4 CI calculation,
even though the appropriate energy differences
here are very small indeed.

Before concluding this discussion, let us briefly
consider the advantages and disadvantages of
the (E) CPMET and CI procedures. The main ad-
vantage of the CI method lies in its variational
nature, thus ensuring that the energy obtained
represents an upper bound. This property is
clearly lost in (E) CPMET, but is seems reason-
able to assume that this property is not so impor-
tant when the method used is accurate enough to
reproduce the variational (CI) correlation energy
within a few percent (or even a fraction of I%%uq).

In both CI and (E)CPMET we have to solve a non-
linear problem in order to obtain the correlation
energy: In the former method this is the well-
known eigenvalue problem, while in the latter case
this is an algebraic system of nonlinear equations.
As already mentioned, the nonlinearity of this sys-
tem is not strong, and the first-order Newton-
Raphson iteration procedure yields very rapid con-
vergence. Furthermore, the order of the
(E)CPMET problem is generally significantly low-
er than the order of the corresponding CI problem,

as a comparison of Tables II and III shows. In any
case, in both the CI and (E)CPMET procedures the
critical step, as far as computing effort is con-
cerned, is not the solution of the nonlinear prob-
lem but rather the calculation of all the coefficients
in the system of equations. In this respect
(E)CPMET is clearly more advantageous, unless
a perturbational approach to the CI problem is
undertaken, but in such an approach the variational
character of CI is also lost. Further, in this ap-
proach it is rather difficult to apply the physically
reasonable and systematic simplifieations used in
CPMET.

VI. CONCLUSIONS

In summary we can conclude that the extension
of CPMET to incorporate the linked part of the tri-
excited clusters yields a very good approximation
for the calculation of the ground-state correlation
energy of closed-shell systems. This is due to the
fact that in contrast to the case of tetraexcited
states, where unlinked clusters play the dominant
role, the reverse is true for the triexcited clusters.
The actual calculations of the correlation energy
of the BH3 molecule within the minimal Slater-type
orbital basis set indicate that the ECPMET repro-
duces the full CI result to very nigh accuracy (an
error of 0. 0025%%uo). It is most likely that this sur-
prisingly high accuracy is fortuitous, and in other
cases, particularly for larger atomic and molecular
systems and extensive enough basis sets which yield
a true Hartree-Fock limit, a much larger error
may result; but the accuracy of the proposed meth-
od will still be most satisfactory even if the error
in the correlation energy is larger by two or three
orders of magnitude than in the present case.
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2

I

(o) (b) (b)

2

(c) (d)

(c) (d)
FIG. 4. R skeletons yielding c ' coefficients.

FIG. 3. R skeletons yielding c ' coefficients.

where we use the notational convention in which
i" =-d," andi'=d, ', so that

(A2)

and the set I contains A for the A approximation, A
and B for the 8 approximation and, finally, allA,
B, and C for the C approximation. Further, d&' and
d& in the first Eq. (Al) correspond to all possible'
singlet monoexcited states

d"
1

and in the second Eq. (Al), d,', d,", d,', and d,'

correspond to all possible' singlet biexcited states

(dfdz'It2ld&d~& and (d&'dz' It21dzd&&. Here we dis-
tinguish the occupied and the unoccupied orbitals
by singly and doubly primed letters, respectively.
For Hartree-Fock orbitals we obviously have
(1"I f I 1')= 0.

To obtain the explicit expressions for X in terms
of the f, v, t„and t2 matrix elements, it is simply
necessary to draw the appropriate R skeletons and
assign to them the appropriate algebraic expres-
sions. ' The pertinent skeletons for the A approxi-
mation have been given earlier, while those for
the B and C approximations are shown in Figs. 3-7.
The explicit expressions for the coefficients a and
&» of (A1) are listed for individual approximations
in the following.

A Approximation

dII y1 t
1 2

dg d2

We have to consider only the second system of
Eqs. (Al), so that

When d& &d2 and d&' &d2' we have two singlet states
and correspondingly two I;2 matrix elements

«"(1";1') —=0,
while

(AS)

X"(1",1'; 2", 2') =
3' 4N 3I

((1",2";1',2'I ""IS",4", S', 4')(S"4"If, S'4')

5" 6" 5' 6'
(1 2 1 2 ld'"'" IS",4" S' 4': 5" 6";5', 6'&(S"4"lf2 IS'4'&&5'6" lf. l5'6'&& (A4)

The skeletons determining the linear coefficients c ' ' and the nonlinear coefficients d '3' ' are shown in
Figs. 7 and 8, respectively, of Paper I. From these figures we immediately get the expressions for the
above coeff icients:

&1",2";1',2'lc"" IS" 4" S' 4'& = (&1"lflS"&(S' 1'&- (S'lfl1'&&1"IS"&) &2" 14"&&4'12'&

+ ((1"s 1, 11 s "&„&2"14"&- &1"s'1~11'4"&&2"
I

s" &)&4'12'& - &2"s'1~14"1' &&1"
I
s")&4' I'&+ l&1

"2"l~
I

s'4"
&

x &S'
I
l'&«'12'&+ -'&s'4'1~11'2'&&1"

I

s"&&2" 14'& (»)
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and

(1",2"; 1', 2' ld
' ' '

I
3",4";3', 4': 5", 6";5', 6') = (3'5' lv

I
3"5'&„&(4",6";4', 6')

—(3'6' v
I

4"6")„b(3", 5";4', 5') —(3'O' Iv I 3
"4")„8(5", 6"„4', 6')

—(3'4'
I

3"6"&„b (4", 5";6', 5') + (3'O'
I

I4"6"&6(3",5";4', 6')

+ —,'(3'O'I v I6
"4") &(3",5";6', 4') + —(3'O' Iv

I

5"6")6(3",4"; 5', 6'), (A6)

2. &1",2', 1', 2'I ""I3",3')
&(i",j";&' f') = &1" li "&&2"lj" &&i

'
I

l' &«'
I

2') 3 II

x &3" li, I3 &.

and (ij Iv lkf)„is defined in (23).
The system of equations for the A approximation

given earlier'0'" is clearly obtained from (Al), (A5),
and (A6) by carrying out the sumn)ations over the
5 symbols (i I j)=5;~. Thus, in the second term on
the right-hand side of (A4) one has quadruple sum-
mations, while in the first term there are at most
double summations. The form in which the 5 func-
tions have been summed over is more useful for
practical calculations, while the form given here
allows a more compact notation and also shows
clearly the structure of the CPMET system of equa-
tions.

8 Approximation

The pertinent c'"', c" ', and c "' coefficients
may be determined easily from the skeletons shown
in Figs. 3, 4, and a, respectively, yielding

(1 tt . 1 t
I

1(l)
I

2tt

+ (1"2'
lv

I

1'2")„,

(1- 1 I"" I2- 3- 2 3)

In addition to the ~ terms given above, we have
to consider the following B terms, for which we
can write

~'(1"; 1')= Z &1";1'lc""I2";2'&&2"~i, I2'&
2())

I

3tr

l, «»I2", 3-;2, 3 &
glI 3o 2I 3I

x (2 "3"
I
t,

I

2'3')
C Approximation

(A12)

The additional terms (( and X in Eqs. (Al) have
the form

(1";1')= 7
2' 3II 4 tl

2', 3',4'

(1";1'Id"' ' 2" 2' 3" 4" 3' 4')(2" lt) I2')(3"4"It, I3'4'),

~'(1", 1';2",2')= & &1",2";1', 2 Id'"'"13";3':4",5",;4', 5') &3" f) I3'&&4 5 lf214 5 &

3I 4t 5t

The pertinent nonlinear coefficients d ' ' ' and d ' ' ', representing the unlinked triexcited clusters, are
easily determined from the skeletons shown in Figs. 6 and 7, respectively. Thus

&1" 1'Id'"" I2", 3",4";2', 3', 4'& = (2 &2'3'lv I2"3"&.&1'I4'&

—
&
3'4'lv I3"2" &.&1'I 2'&)«"

I

l"
&

—(&2'4'
I

2"3"&.«"
I 1

"&

+ (2'O'
I

v 3"4")„(2"
I

1"))(1'
I
3') (A15)
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and

&1', 2";1', 2'Id"'"13",4", 5";3', 4', 5') = (&1"s' lv
I

4"s").&4'
I
1'&- (4's'

I
v 11'3").&1" 14"&

+ &1"4'
I
v

I
3"4"&&&3'

I

l'
&

&3'4'
I

v
I

1'4 "& &1"ls"&)(2"15"&(5'12'&

+ (&3'4'lv
I

1'5"&&2" 14") - &2
"3'

lvl 5"4')&4'I l'&)&1
I

3"&&5'12'&

—(1"4' Iv
I

3"5"&&4"12"&&3' ll'& &5'12'&+ &3'5'Iv14"2'&&1"
I

3"&&4'll'&&2" 15"&

+ («'5' lv
I
3 "2')&2"15")—&2"4' lv15"3"&&5'12')&&1"14"&&3' ll') . (A16)

APPENDIX B: EXPLICIT FORM OF EXTENDED CPMET

EQUATIONS

The nonlinear system of Eqs. (27) of ECPMET
(implicitly including the approximations A Das-
well as additional approximations D', -O', D" ob-
tained by neglecting certain interactions and clus-
ters as indicated in the main text) may be written
in the following explicit form, using the same con-
ventions as in Appendix A:

(1"If 11')+ Q ~ (1" 1')=0,

(1"2"Iv 11'2')+ Q 5 &"(pf, pg,' ps', ps) = 0, (B1)
XQS P2

(ps&piipsipsipsips)=0 i
XES P3

t

where again the set & contains an appropriate sub-
set of indices A, B, C, or D yielding the desired
approximation, and the last summation in the sec-
ond and third equations extends over all permuta-
tions of the symmetric groups S2 and S3, respective-
ly, so that

(B2)

for both singly and doubly primed indices simulta-
neously.

The A through C terms I( and & have been given
in Appendix A, while

(1",1'; 2", 2'; 3",3') = 0 for X=A, I3, and C.

(Bs)
The D terms, responsible for the linked triexcited
clusters, have the following general form:

(1";1')= Q (1";1' Ic" '12", 3",4";2', 3', 4')(2"3"4"Its12'3'4'),
2st 3' 4'
2t 3I

(B4)

D(1" 1'; 2", 2') = Z
4 st 5&I

3s 4s 5t

(1",2"; 1', 2'
I

c'"'13",4", 5",3', 4', 5' ) (3"4"5"
I
t, 13'4'5'), (B5)

and

(1",1'; 2", 2'; 3", 3')= Z (1",2", 3";1', 2', 3'lc ' 'l4", 5";4', 5') (4"5"ltsl4'5')
4II 5N
4g 5s

+ 1 (1', 2", 3";1', 2', 3' Ic "'14",5",6";4', 5', 6')(4'5"6"
I
ts14'5'6') .

4' s5' s6'
(B6)

The explicit form of the coefficients c" ', c ', c ' ', and c ' ' is again most easily determined by
drawing the appropriate 8 skeletons and the correponding 8 diagrams. Notice, also, that there a.re no
terms of the c ' ' type.

The R skeletons for the coefficients c' 3' are shown in Fig. 8 and yield

&1";1'I""'12",3",4";2', 3', 4'
&

= (&2'3' lv 12"3"&.«"14") —
& 2'3'lv12 "4").&1

I
3"))&4'

I

l') .

Similarly, the skeletons determining the c ' ' terms are shown in Fig. 9, yielding

&1",2";1',2'lc"" Is", 4" 5";3' 4', 5'& = (&1"3'Iv14"3")~«'ll')

(B7)
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—3'4'lv
I

3"1'&.&1" I4 "&)&2"
I

5" &&5'
I

2'
&

+ 3'4' v 1'5" 1 ~3+, ~ -&&1-'3-& &1-4 Iv I3"5"&&3'l l'&)&2" I4" 5 2 (B8)

10 and 11, respectively, g g

" "I
I

'4"&&4'I2'&- &1"4' lv 1'2')&2" I4"))&5' I3'& 3" 5"1, ' ' ' 'I ' 'l4" 5" 4' 5')= (&1"2" iv 1'4&1",2" 3' 1' 2' 3'ic i, , ', ' — " " '4
9 9 9 (BQ)

(&

the skeletons shown in Figs.ms are obtained from e' ' and cs' ' which enter the p, termsThe coeff icients c and c w

ivin

1,2, 3 Ic

II Ii II I I 4 5
ii ii i i i i 5 i 2 i 1 ii 4 N )+ 1"4' » 4

' " " " "
I
v

I

4"5 "&&4'
I
1 '&&2"

I

5"&+ &4' 5
'

I

v
I

1 '2
&&5+ 1' 4' lv 1'4 '&g)&5'

I

2')&2"
I

5") + &1' 2" fv[ 4 5

3" l8" &~(&1" I& I4 "&&4' ll'& - &4' ilIl'&&1" I4")il li II i i i 3(s) 4ii 5li 8ii, 4i 5i 8i) &8i 3i) 3 8&1",2", 3"

—(&2"4' v 5 1
I

" '&&5'I2'&+ &2 "4'lv I2'5"&&5 I»)&+ " ' ' " ' ' 1" 4"&]. (B10)

the K terms there are qua padru leNotice that in e K

tions and,mations, in eth ~ terms triple summations
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i I'~=5; first an us

her of summations as much as possi
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and
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APPENDIX C: REDU CTION OF ECPMET SYSTEM
OF EQUATIONS

In this appendix we show tha yat b choosing the ap-
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CPMET system of equations, comprising a
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1 lbl th oto'rs b semicolons, a

d ~ .-p--and the ingoing external o1 oriente ine,

2—
(a) (b)

(a) (b)

1
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2—

(c)

(c)

coefficients.FIG. 8. sR keletons yielding c

(e)

c '3 coefficients.FIG. 9.. 9 R skeletons yielding c
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o en oriented path. Finally, the

5, extends over afirst summation in 5

ittThe opera efined by
d quantitized form as oin a general secon q

N
Ai=2, P, ,

j=o

where

P'0= 5~ ws(r)Z ds(r, p2 —&e
r G&p P2

(C7)

(C8)

2

2—
3

1

2
2—
3

ation extendsin which the first summa '

over all vacuum connected R s e e
no open orientedt d R skeletons having nothe connec e

'
&0 we can wry e40 w 'tepaths), while for g &0 w

IP —— " A"
l
j.lA,'. A,'. & 11(x„,,Z (A,";, ,'. ,' x,,

(C9)
~ ~ s g~

1

where

~~(r) 2. Q dz(r, p»P2)(A," ~ A" lP) lA ',

(C10)
c ' ' coefficients.FIG. 11. s8 keletons yielding c

n in, C10) extends over all con-
nec e

ation extends over athe second summa yon

for ich

Clearly for j= 0 we me must setfor every j.
&0= o,

the correlation energyy the formula for
in terms of the and t& matrix e e

1 and the corresponnding (orbital)skeletons of Fig. an
24 —26)], while Eqs.

yield the )CPMET system o eqna
matrix elements.

atrix elements (C10), j x0,If we require all the matrix e em

(C15)""A "le~ IAi" Al &= 0,(Af'''
' fied. InE s. C13) are also satisfie . nthen obviously Eqs.

E s. (C15) represen et the sufficient
(C13) f t Er the validity of

( ) nt to Eqs. o
C15 are necessary con i ionsever, Eqs.

hen all the X-electronicvalidity of (C13) only when a e

configurations

wh

(A" A' .AtP1 $1) 11& tPP fpf

(C14)

(C11)

i is some permutation of thei
' d, ) i th 11 2 . . . , j. Finally, &~,

' r
thR d'

h h is related to the
i ned to the x

i
)(

p2), w hie ls
above-men zonea — t' d operator D& x, p as
same R diagram) by

(C12)

t is given by (C6).g"" Ps
We now see that in order o sa

must have

I, le,&=0. (C13)
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coeffic ients.FIG. 10. A s eA keletons yielding c
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s indeed the case orf the mono-

' —2 th 'o s statesexcited states. However,
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(C16) which differ only by the permutation of, say,
occupied orbitals, keeping the unoccupied ones in a
fixed order, are linearly dependent. In fact, all
these states are identical up to the phase factor (+1),
so that the necessary and sufficient condition for
(C13) to be satisfied is that for each distinct orbital
set we have

(- l)~ Qf A; Ip)IA!,, A!, )=0, (ClV)
S'Z S&

the summation extending over all permutations of,
say, the occupied orbital set, and P designating the
parity of the corresponding permutation

(C18)

tor P, Eq. (C5), is also spin independent in the
same sense, so that w can write

(A," Aq' Ip, IA,
' A,')

=(~P n,"Ip;I~l" ~l&II(n,"ln,'&. (C22)

The matrix element (a," a,"Ip~laf a~& is de-
termined by the same 8 diagram as the matrix ele-
ment (A," ~ ~ A," IP; IA,

'
~ A,'): We have only to re-

place the spin orbital indices with the corresponding
orbital indices and to assign a factor of 2 to each
closed loop of oriented lines. Using the relationship
(C22) we can rewrite the expression for P,. given by
(C9) in the form

The expression on the left-hand side of Eq. (C17) is
easily recognized as the antisymmetrized p;-matrix
element,

g II ~ ~ y g gI1
gf ~ ~ ~ g &j

.A! Ip~ IAl A~&~

A '&A &' ' ~ &A"1 2 j
&A'& ~ ~ ~ &A'.1 2

(At Aq'
I pq IA' Ag )„

x II Q~, &~. ) (C20)
i=1

A.

where the summation extends over ordered spin
orbital configurations. In this case all the states
(C16) on the right-hand side of P, IC'0& are linearly
independent, immediately yielding the necessary as
well as sufficient condition (C17), i.e. ,

(A;" A,"lp, lA;" A;.&„=0. (G21)

Now consider the form of (E)CPMET in which the
explicit spin dependence has been eliminated. This
form may be achieved by the use of the facts that

I+& represents the singlet ground state of a closed-
shell electronic system and that H is spin indepen-
dent. We shall see that in this case we face an anal-
ogous, yet slightly more complex, situation as in
the spin orbital case.

Let us first recall that for the spin-independent
Hamiltonian and the singlet closed-shell ground
state, the operator E is spin independent in the
sense of Eq. (9). This means that ther-component
of spin is conserved along each oriented path of our
diagrams. It is not difficult to realize that in the
same spin-independent closed-shell case the opera-

(-1)'(Al' . A~' »IA!! ''A!;&.
SESS'

(C19)

These antisymmetrized matrix elements are in fact
the appropriate elements to use in the spin orbital
case. Indeed, using these elements we can write
the operator P, given by (C9) as

where we have designated

I' (a ";, a,') = 2 &...„, x,!„.
')i

(C24)

f'(a,",a,'. ) Ic' ) (C25)

are linearly independent.
For the monoexcited and biexcited configurations

we indeed find all the pertinent states (C25) to be
linearly independent, so that the corresponding sys-
tem of equations for the tl and t, orbital matrix ele-
ments is simply obtained by equating the P; orbital
matrix elements to zero. However, for the triex-
cited case, the states (C25) are no longer linearly
independent, and we find that for each given set of
orbitals a,", a,'. , i=1, 2, 3, there is one linearly
dependent state. In other words, one constraint
among these states exists, namely,

3

II 1 (~', ~,', ) I c, ) = 0,
PGS3 .i=1

(C26)

where the summation extends over all permutations
of, say, the occupied orbital set. Thus, in view of
this linear dependence, the necessary condition that
Pq I 4'0 & shall vanish is that for each distinct orbital
set a', a,', i = 1, 2, 3, we should have

(0!QgQg» Ip3 IQ!! 0!,Qt &
= n (C2 7)

where Pl, P2, P3 represent an arbitrary permutation
of the integers 1, 2, 3 and & is a completely arbi-
trary constant, which is, of course, the same for
all permutations pl, p2, p3 of each distinct orbital

We now find that, just as in the spinorbital case, a
sufficient condition for the vanishing of P; I CO& is
that all orbital p, matrix elements vanish, while this
is a necessary condition only if all states
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set a', a,', i=1, 2, 3. This yields as many distinct
equations as there are various t3 matrix elements
[i.e. , we have six t3 matrix elements and six
equations (C27) for each orbital configuration Q;",

a,', i = 1, 2, 3, in which all the orbitals are different;
three if two occupied or two unoccupied orbitals are
identical, and only two if both two occupied and two
unoccupied orbitals are identical, as discussed in
the main text].

Since for a given orbital configuration the con-
stants z are identical, we can select one of Eqs.
(C27), say the one corresponding to the permuta-
tion x„xz, r3 of the occupied orbitals, and sub-
tract this equation from the remaining Eqs. (C27)
corresponding to the same orbital configuration,
obtaining, generally, the following system of equa-
tions:

(Q|Q3Q3 iP3 ~gg, QP QP ) —(g|Q3g3 iP3 ig( g( g| ) = 0.

(C28)

This system contains one less equation for each dis-
tinct orbital set than the system (C27), since P&, Pa,

P3 must now diff er from r„rar3 (in this order).
Thus, for each distinct set of orbitals a", , a', , i = 1, 2,
3, we now have one more unknown matrix element
&g", Q3'Q3' It3 I g,',g,'3Q,'3) than the number of correspond-
ing Eqs. (C28).

Observe now, however, that applying the same
reasoning, based on the linear dependency (C26),
to the expression T3 I Co ) rather than to the P3 I @3 ),
we find that the expression T3 !43) is invariant with

respect to the following substitution

(Qgg3Q3 ~t3
~

g g Q ) (gygag3 ~t3 ~QP QP QP )+ P

(C29)
where P is an arbitrary constant, which is the same
for all permutations P&, P2, P3 of the given orbital
seta,", a,', i=1, 2, 3.

In view of this arbitrariness of P, two alternative

courses of action are now open to us.
(i) For each distinct orbital set we can choose P

in such a way that the constants n in (C27) will van-
ish. This will lead to the larger system of the
ECPMET equations mentioned earlier. This set is
clearly linearly independent, since owing to (C29)
we can choose one of the t3 matrix elements, corre-
sponding to a given orbital set, arbitrarily and we
have chosen it in such a way that o.' in (C27) vanish-
es, in which case we have to consider all distinct
t3 matrix elements in these equations on an equal

footing.
(ii) For each distinct orbital set we can choose

P in (C29) to be equal and opposite in sign to the t3

matrix element corresponding to the same permuta-
tion ~&, &2, r3 which had been selected to obtain the
system of Eqs. (C28). This, of course, is equiva-
lent to setting

P,

&g&'Q3"Q3'
~
t,

~

g ',Q,',g,', ) = 0 (C30)

in the system of Eqs. (C28), thus obtaining the same
number of unknowns as there are equations; this
number is the same as the number of CI linearly
independent singlet triexcited configurations. Thus,
(C28) together with (C30) represent the desired re-
duced system of the ECPMET.

In conclusion it should be noted that this reduc-
tion procedure for the linked triexcited clusters
may easily be generalized to an arbitrary case.
Indeed, in the case of tetraexcited and higher-ex-
cited states there will be a number of relationships
of the type (C26) expressing the linear dependency
among the states (C26), j —3. Obviously, the num-
ber of equations and of unknowns may be reduced
in a similar, even though formally somewhat more
complicated, way as above, by the number of avail-
able independent relationships of the type (C26) cor-
responding to each distinct orbital set.
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f4We have also performed calculations which include the
unlinked part of the biexcited clusters yT f. These calcu-
lations prove the complete negligibility of these terms,
since their inclusion does not change the results obtained
with the C approximation (up to eight decimal places, at
least). Clearly, the cubic terms (1/3!)Tf will give an
even smaller effect and may be safely disregarded. This
result is also indicated by considering the lowest order
of perturbation theory in which these terms will appear.

'5The number of linearly independent singlets, and of
corresponding t& matrix elements, .may be smaller than
this maximum in some cases because of spatial symmetry
requirements. In any event it can be shown that there
always is one more t3 matrix element than the correspond-
ing number of linearly independent CI singlets.

' The atomic orbital integrals were recomputed (to an

accuracy of better than 10 a.u. ) using R. M. Stevens'
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f9When exploiting the space symmetry, the number of
tf and t2 matrix elements and, correspondingly, of Kqs. (A1)
is reduced by the same number as the order of CI includ-
ing monoexcited and biexcited states.
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Electron Binding Energies, X-Ray Spectra, and I -Shell Fluorescence Yields
in Curium (Z =96)
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The Cm X x-ray spectrum from the decay of 4 Cf and the Cm L x-ray, internal conversion,
and p-ray spectra associated with the 42. 9-keV E2 transition in the o.' decay of 5oCf were
measured at high resolution. From these data accurate values for the binding energies of X,
L f L2 L3 Mf M2 M3 M4 M5 Nf N2 N3 N4 N5 Og 03 04 and P3 electrons in Cm
were obtained. Values were derived also for the L-subshell fluorescence yields in Cm:
=0, 28+0. 06, co2=0. 55+ 0. 02, and u)3=0. 63+0.02,

INTRODUCTION

The experimental determination of accurate val-
ues for the energies of atomic electron levels pro-
vides information with which theoretical calcula-
tions of atomic structure may be compared, and,
as a practical matter, these values make available
energy reference standards for P- and y-ray spec-
troscopy. Further, the x-ray spectra of trans-fermi-
um elements could provide a means for their identi-
fication, and Carlson, Nestor, Malik, and Tv.cker
were thus prompted to calculate electron binding
energies for Z values from 96 to 120. They used
relativistic Hartree- Fock-Slater finite-nuclear-
size wave functions and made small corrections
to these results by extrapolating experiment-cal-
culation energy differences known at lower Z val-
ues. It is of interest to compare these binding en-
ergies as far as possible with measured values.
For Z & 95 experimental electron-binding-energy

information i.s limited; K through M„N, , and

0, measurements have been made in berkelium
(Z =97); and recently measurements for K through
1lf3 y Ãf p N» N, , and O~ 3 have been published for
californium (Z = 98). Experimental information
on binding-energy differences is available for ele-
ments of 96 &Z & 100 from very accurate measure-
ments of K x-ray spectra. There are presented
in this paper measurements made on radiations of

Cm and "Cm from which electron binding en-
ergies and I -subshell fluorescence yields in curi-
um (Z =96) have been derived.

EXPERIMENTAL METHODS

About 17% of the u decay of 13-yr ' Cf produces
the 42. 9-keV first-excited state of ' Cm, which
decays by a highly converted pure F2 transition. '
Measurements of the energies of the internal-con-
version-electron lines and the unconverted y ray


