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A fully coupled Hartree-Fock variational method is used to calculate the hyperpolarizability
of the He, Be, Ne, and Ar atoms. In these calculations the hyperpolarizability is inferred
from the electric moment induced in the atoms for various finite values of the external static
electric field. A. formulation of the problem and the justification for the methods used is
given. The nonlinear parameters of all the wave functions used in these calculations are pre-
sented along with a convergence test for the wave function of the helium atom. The nuclear
dipole shielding factor, polarizability, and hyperpolarizability are tabulated for these atoms
and the results are discussed and compared with previous theoretical and experimental re-
sults.

I. INTRODUCTION

1 3
~ F+ y oF + ~ ~ ~ ~ (2)

Here y is the hyperpolarizability tensor' and is
the object of this study.

Four types of laser experiments have been pro-
posed ' for the determination of y. The most ac-
curate involves measurement of the Kerr effect
for which the electrooptical birefringence is pro-
portional to the atomic hyperpolarizability. Less
accurate are measurements of y from the dc elec-
tric-field-induced second-harmonic generation in
a focused laser beam. In addition, y has been

The large electric fields introduced by lasers
have recently provided an excellent experimental
tool for the study of nonlinear distortions in atoms.
Experiments with dilute gases are particularly
interesting because the measured results can
easily be compared with calculations for isolate
atoms interacting with the radiation field. Thus,
with ordinary light sources, the distortion pro-
duced in an atom is adequately characterized by
an induced electric moment p which is proportional
to the field F, that is

p. = (y ~ F (1)

where o. is the polarizability tensor.
On the other hand, for the large fields available

from lasers, for example, 1F ~-10 V/cm, mea-
surable deviations from the linear relation of Eq.
(1) exist. For systems with inversion symmetry,
the induced moment p expression can contain only
odd powers in the external electric field; thus Eq.
(1), when modified to include nonlinear corrections,
becomes

II. FORMULATION OF METHOD

The polarizabilities and hyperpolarizabilities are
calculated from a fully coupled Hartree-Fock
method. Since the systems treated are all spher-
ically symmetric atoms the tensors n and y are
isotropic so that Eg. (2) can be rewritten as

p=nI'+~yE + ~ ~ ~ (2')

Thus, the coefficients n and y which characterize
these tensors will hereafter be referred to as the
polarizability and hyperpolarizability, respectively.

Then proceeding in the usual way the total wave
function g is expressed as a single Slater deter-
minant consisting of orthonormal spin orbitals

measured from the third-harmonic power generated
in a laser beam. Finally, for sufficiently intense
light sources the refractive index changes by a
term proportional to y. '7

In this paper the coupled Hartree-Fock calcula-
tions of y for the He, Be, Ne, and Ar atoms in a
static field are presented. Then, following Cohen
and Roothaan, the electric field terms are in-
cluded in the Hamiltonian and the polarizability
and hyperpolarizability are inferred from the in-
duced moment without direct recourse to pertur-
bation theory. Although measurements made thus
far have customarily-been made for optical fre-
quencies, one can nevertheless expect that in-
cluding frequency dependence would only change the

y results by a few percent. 2'4

In Sec. II the formulation of the problem and a
justification of the method is presented. Section
III contains the numerical results. Finally, Sec.
IV presents a short summary and discussion of the
results.
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Zo is the atomic number and &~ and z& are the
position of the ith electron and its component along
the field, respectively.

The usual Hartree-Fock procedure of minimiz-
ing the energy leads to the perturbed one-elec-
tron Fock equations

[h(1)+Ez,]x&(1)=~& Xr(1)

where

(5)

with

N

+~ &xg(2)l (I —&gz)IX)(3)),2

(8)
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Once Eqs. (5) are solved, o. andy can be deter-
mined from the induced moment p. Thus, we have

X&, i=1, 2, ~ ~ ~, N, where N is the number of elec-
trons. We will consider only spherically symmetric
systems and we choose the electric field F to be
in the z direction. Then the total energy is

(3)

where H is given in atomic units by

sr= —z ( —vp+ ~
)

[I '(1) —z';] X&(1)= 0, (13a)

[ho(1) —eo, ]X~(1)+ [z,+ v~(1) —z~ ] Xo(1) = 0, (13b)

minimize the energy and N~ is a normalizing factor.
Further s is an n or P spin function and the re-
quired spherical harmonics I",„(8,P) are discussed
in what follows.

In initial calculations using this method, Cohen
obtained quite reasonable results for z but his
numerical estimates for y do not agree very well
with approximate perturbation calcula, tions" or
with the experimental Kerr effect measurements
of Buckinham and Dunmur or with the results ob-
tained herein.

This method is clearly equivalent to fully coupled
Hartree-Fock perturbation theory. Thus, it is
of interest in light of the Cohen results to care-
fully consider the problems of the radial flexibility
[cf. Eq. (10)] and the angular symmetries one
should introduce into the spin orbitals X& if one
wishes to obtain accurate values of the hyper-
polarizabilities.

To this end we assume that the field-dependent
spin-orbitals must contain terms with those
angular symmetries as required in the Hartree-
Fock perturbation theory. Then, proceeding as
has been previously outlined, the spin orbitals
X& and the orbital eigenvalues E& are expanded as
functions of the field F according to

X&
—X&+FX&+F X&+.0 1 2 2

&~=6)+Fcg+F ggy ~ ~ ~ .0 1 2 2

On substituting these expansions into Eqs. (5) we
have the following hierarchy of one-electron per-
turbation equations:

~=-«I ~ z, l~& =-~ &x,(1)l"Ix,(1)&,
5=1 1=1

(7) and, for n~2,

[&'(I)—e
~ ] Xl(1)+ [zi+ &'(1)—z'; ] Xl '(1)

F+~~e F'+~120 &F'+' ' (8)

(9)

where

The numerical results of p obtained from Eq. (7)
for different values of the field are used to deter-
mine n and!y from Eq. (8).

In this work Eqs. (5) are solved using the ana-
lytical expansion technique of Roothaan. Speci-
fically, the Fock orbitals && have the general form

X, = sZ,R„(r)I,„(0,y),

+ 2 [u (1)—z, ]X", »(1) = 0, (13c)
p=2

where h is the usual one-electron Fock operator

&'(I) = -—&)'-~+~ & x)(3) I
(1-&iz)

I
xg(2)&

2

(14)

R «(r) =Z»C»&Ã»r "» —e (10)
&'(l)=~ ~ &xg(2)l (1-&gz)lxf '(2)& .

s~o j~i +12

The C~& are variational coefficients which when
varied in the expression for the total energy lead
to an algebraic eigenvalue problem, and they are
determined from its solution. Here n»(~ l) and $»
are also variational parameters chosen so as to

(15)
We now consider the angular symmetries re-

quired in the spin orbitals X& given in Eq. (9). A
consideration of Eqs. (13) shows that the angular
symmetries of the Pth orbital are obtained by the
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operation of g on the (P —1)th orbital. " Thus, if
g& contains the spherical harmonic F, , then
successive operations [F~o= (8/4v)(z/x)] of F~o on
F,„will give the symmetries of g'. lf we use the
coupling rule for spherical harmonics'2 we can de-
duce the symmetries of the pth orbital. The
coupling rule is

(2l, + 1)(2l2+ 1)
)imi &2m 2— 4m(2l + 1) j

l=lli l2i

x C(l l l; m m ) C(l l l; 00) I',„, , (16)

where C(l,l, l; m, m~) is the Clebsch-Gordan coeffi-
cient which vanishes unless l, +E2+l is even. From
the above we see that the maximum azimuthal quan-
tum number occurring in g' is l+P.

On substitution of E&I. (11) into the expression for
the induced moment E&I. (7) one finds that )u is
given by a power series in the field F:

We are now in a position to determine the angular
symmetries necessary to calculate the dipole mo-
ment p(E) accurately to the nth power in the field.
Cutting off the series in E&l. (17) at the nth term
we have

(18)
The actual number of spherical harmonics re-

quired in X& is much fewer than one would suppose
from inspection of E&l. (18). This is because many
angular factors in E&I. (18) integrate to zero' due
to the selection rules for the angular integration;
that is

unless

TABLE I. Convergence of helium calculations as size of SCF basis is increased. ~'

6-term basis
np l

9-term basis
na

12-term basis
nI, l

15-term basis
ng, l

20-term basis
ng l

24-term basis
ng, l

0 0 1 450
1 0 2 640
1 0 1 723
1 1 0 971
3 1 1 100
2 2 1 100

0 1.450
0 2.640
0 1.723

0.971
1 1.100
2 1.100
0 2.640
1 1.100
2 1.100

0 0
1 0
1 0
1 1
3 1
2 2
2 0
'2 1
3 2
1 0
2 1
2 2

l.450
2. 640
1.723
0.971
1.100
l.100
2. 640
1.100
1.100
5.000
2. 500
2.500

0 0
1 0
1 0
1 1
3 1
2 2
2 0
2 1
2 2
1 0
2 2
2 2
0 0
3 1
2 1

1.450
2. 640
1.723
0.971
1.100
l.100
2.640
1.100
l. 500
1.100
0.900
3..000
1.100
0.900
0.900

0
1
1
1
3
2
2
2

3
1
2

0
3
2

1
1
2
2

0 1.4511
0 2.6314
0 1.7230
1 0.9710
1 l.1000
2 l.1000
0 2.6400
1 1.4890
2 1.1000
0 1.1000
2 0.9710
2 2.3940
0 1.1000
1 0.9000
1 0.9000
0 1.1000
1 0.4740
1 1.1560
1 2.8060
2 0.7930

0 1.4511
0 2. 6314
0 1.7230
1 0.9710
1 1.1000
2 1.1000
0 2.6400
1 1.4890
2 1.1000
0 l. 1000
2 0.9710
2 2.3940
0 1.1000
1 0.9000
1 0.9000
1 1.1000
1 0.4740
1 1.1560
1 1.8060
2 0.7930
3 0.7930
3 0.9710
3 1.1000
3 l.1000

&=1.32 a.u.
6 y=4. 0 a.u.
P =1.029

& =1.3218 a.u.
6 y= 4.4 a.u.1

i3 =1.011

e =1.322 a.u.
=5.941 a.u.i

p„=o.998

n =1.3222 a.u.
~6y= 5.945 a.u.
P„=0.9935

n =1.32224 a. u.
&p=6. 003 a.u.
P =2, 00054

G. = 1.322 24 a.u.
16y=6. 003 a.u.
P =1.00054

@Form of orbital is given by Kq. (7).
"The $& are the values actually used in the calculations. This is not to imply that these parameters are optimized to

that number of significant figures listed. Further, the n& and $ values are not to be considered a unique set but are
merely a set which by trial and error, using various combinations, has been indicated to give about the lowest total en-
ergy.

Here m, 6y, and p„are given to the number of significant figures considered to be numerically reliable.
This 6-term basis was used by Cohen (Ref. 16).
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TABLE II. Spin-orbital functions &" for He, Be, Ne, and, Ar in external electric field. "
Helium
m=0

ng l

Beryllium
m=0

n„ nI, l &a

Neon
m=+1

n

m=o
n,

Argon
m =+1

np l

0 0
0 0
1 0
1 0
1 0
2 0
2 0
1 1
1 1
1 1

1.4511
1.1000
2. 6314
1.7230
1.1000
2.6400
1.1000
1.1560
0.9710
0.4740

0 5.748
0 2.945
0 5.748
0 2. 945
0 1.290
0 0.845
0 5.748
0 3.630
0 2.945
0 1.290

0 0
0 0
1 0
1 0
1 0
2 0
2 0
2 0
3 0
3 0

14.0940
9.0670
9.7570
3.3830
2.3500
9.0670
3.8310
2. 3500
2. 3500
1.4700

1 1
1 1
1 1
1 1
2 1
2 1
2 1
2 2
2 2
2 2

9.4550
4.4545
2.3717
1.4700
4.4545
2.3717
1.4700
9.4550
4.4545
2.3717

0 20. 1000
0 15.6644
0 15.6838
0 10.3041
0 7.2867
0 6.8971
0 3.7052
0 2. 5450
0 1.5878
0 0.9649

1 14.7820
1 9.4975
1 5.7870
1 4, 2264
1 2. 6757
1 1.9232

0.9649
9.4975

1 5.7870
1 2. 6757

2 1
2 1
2 1
3 1
3 1
2 2
2 2
2 2
3 2
3 2

0.9000
1.4890
2.8060
0.9000
1.1000
0.7930
0.9710
1.1000
1.1000
2.3940

1 3.360
1 2.945
1 2. 216
1 0.991
1 0.620
1 3.630
1 2. 216
1 1.500
1 0.991
2 2. 216

1 1
1 1
1 1
1 1
1 1
2 1
3 1
2 2
2 2
2 2

14.0940
9.4550
4.4545
2 ~ 3717
1.4700

14.0940
9.7570
9.4550
4.4545
2. 3717

2 2
3 2
3 3
3 3
3 3
3 3

1.4700
2.3717
9.4550
4.4545
2.3717
1.4700

1 14.7820
1 9.4975
1 5.787
1 4. 2264
1 2. 6757
1 1.9232
1 0.9649
1 9.4975
1 5.7870
1 2.6757

2 2
2 2
2 2
2 2
3 2
3 2
3 3
3 3
3 3
3 3

9.4975
5.7870
2. 6757
0.9649
2. 6757
0.9649
9.4975
5.7870
2.6757
0.9649

2 1.500
2 1.300
2 1.100
2 0.900
2 0.620

2 2
3 3
3 3
3 3
3 3

1.4700
9.4550
4.4545
2.3717
1.4700

2 2
2 2

2 2
2 2
3 2

3 2
3 3
3 3
3 3
3 3

9.4975
5.7870
2. 6757
0.9649
2. 6757
0.9649
9.4975
5.7870
2. 6757
0.9649

Total wave function is the closed-shell single Slater determinant corresponding to orbital parameters listed in this
table.

"Form of orbitals is given by Eq. (10).
The linear SCF coefficients C„& [see Eq. (10)] for various values of the external field are given by Richard E. Sitter,

Jr. , Ph. D. dissertation (State University of New York at Buffalo, 1969) (unpublished).
The wave functions were constructed using the zero-field functions of E. Clementi, IBM J. Res. Develop. 9 2

(1965).

m=m', l=l'+1. (2o)

p+l =n -p+l+1.
This puts the maximum value of P at

p = ,'(n+1) (n—isodd) .

(21)

(22)

Thus we conclude that if our orbitals Eq. (9) are to
contain all spherical harmonics which would be re-
quired for p. to be accurate to the nth order, then
they must contain the spherical harmonics that
appear in all the perturbation functions up to

Hence to calculate p, (F~) we need the spher

Then if p; corresponds to azimuthal quantum num-
ber l and since g &

contains spherical harmonics
with a maximum azimuthal quantum number l+P,
then for the last terms in Ecl. (18), Eqs. (20) gives

ical harmonics which appear in X;, p,', and g,
To illustrate this result, if X,- is an 8 function,

one m .st include S, P, and D terms in y; to obtain
the electric moment to the third power in F. Simi-
larly, if X; is a P function, one must include S, P,
D, and F terms in g;. It is of interest to note that
this result concerning the required spherical har-
monics in X& is equivalent to the results previously
obtained for the energies in Hartree-Fock pertur-
bation theory. "' That is, if the perturbation func-
tions p; are known up to the nth order, the energy
can be determined up to the 2n+1 order. The cor-
responding result obtained here, i.e. , 2m —1, is
only apparently different, as here our result in-
volved the moment and hence the coefficients to
the even powers in F are zero. It is also well to
note that the flexibility of the radial function [see
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TABLE III. Calculated polarizabili ties, hyperpolarizabili-
ties, and shielding factors for He, Be, Ne, and Ar.

Atom

He
Be
Ne
Ar

e (a.u. )~

1.322
45. 62

2.374
10.774

y (a.u. )~

3.6 x10'
3.68 x104
4. 2 x10'
1.01 x103

1.000 544
1.004 2
1.004 6
1.0111

Determined from polynomial fit of induced moment:

p=eF+y yF +'''
gee Eq. (8)].

Co.mputed from

where g is the total wave function for ato.m in the external
field and N is the number of electrons.

Hartree-Fock limit for shielding factor is unity (see
Ref. i5).

In this work it is essential to carry out arithmetic
to high precision as well as use adequate radial
functions. The first consideration is not very im-
portant here, except if one should use nearly re-
dundant basis functions, as the CDC-6400 computer
used for this problem does arithmetic to more than
14 significant decimal digits. On the other hand,
there seems to be no adequate test as to whether
the radial functions are suffieient1. y flexible. Thus,
studies of three types are made for helium. First,
the convergence of a and y as additional radial
terms are included, is studied. In order to test
the numerical consistency four "E-type" terms, in
addition to the required 8, I', and D terms, are
added to the helium oribital. In principle, these
terms should lower the total energy and change the
induced moment but should not effect either e or y.
Thus, this is to serve as a test of the accuracy of
the fit of p to powers inI" and as a test of the ac-
curacy of the solution to the eigenvalue problem.

Eg. (10)]must be greater as one goes to higher
powers in I'. Thus, for example, if g; corresponds
to an 8 orbital, one should note that in order to ob-
tain y the radial function must have sufficient flexi-
bility than the Fo 0 term can contribute to both g&

and p;. Similarly, for a I' orbital the radial func-
tion corresponding to Y, o must describe those
terms in X; and X&.

In order to determine if the radial functions in

g; are chosen sufficiently flexible one must show
that both the polarizability n and the hyperpolariz-
ability y are stable with the respect to addition of
more terms in the radial functions. This facet of
the problem is considered in more detail in the
Sec. III in which we present our numerical results.

III. RESULTS

Finally, to test the accuracy of the wave functions
near the nucleus, calculations of the dipole shielding
factors P„are made.

In Table I n, y, and P„are given for helium as
additional radial terms are included in y&. Also in
this table are presented calculations for e, y, and
P„when four "F-type" terms have been included in

It seems clear for helium at least that our
best y value should equal the Hartree-Fock limit to
better than 0. 5/~. This is because o. and y have
both converged and P„ is quite near its theoretical
Hartree-Fock limit of 1.0."

Further, one has confidence in these results, as
the inclusion of "F-type" terms has no significant
effect on o., y, or P„despite the fact the coefficient
to the fifth power in the field was markedly altered.

Table II summarizes the He, Be, Ne, and Ar
wave functions that were used. In Table III our
computed values for n, y, and P„ for these atoms
are given. Finally, in Table IV the present results
are presented with previous calculations and with
the experimental values.

IV. SUMMARY AND DISCUSSION

The polarizabilities and hyperpolarizabilities of
the present work are obtained from solving the
Hartree-Fock equations in the field directly with-
out recourse to perturbation theory. This pro-
cedure requires more computer time than the
previous Hartree-Fock perturbation methods. "
The primary gain over the perturbation methods is
a saving in programming effort. Further, one
might expect to obtain more relaible results here
than from the perturbation method because the
linear parameters of the zero-order orbitals are
solved to greater accuracy. This greater accuracy
in the linear parameters of g& of course propagates
itself, resulting in greater numerical accuracy in
the first- and second-order type terms in the
orbitals.

It is amply demonstrated by this work that cou-
pling the Hartree-Fock equations has a rather pro-
found effect on the results for y. An inspection of
Table IV shows that coupling the equations has re-
duced the size of y over the corresponding" un-
coupled Hartree-Fock results by a factor of two
or more. The polarizability results are in good
agreement with the previous coupled Hartree-Fock
calculations.

It is of interest to consider the present hyper-
polarizability results for the beryllium atom.
Here y is rather large and positive in sign. This
same qualitative result was obtained from the un-
coupled theory except there y is much larger. On

the other hand, Cohen' states that his y is negative,
but is unable to give its magnitude. Inasmuch as
it is well known that the usual Hartree-Fock single
Slater determinant function does not give a good
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TABLE IV. Comparison of present with previous and experimental results (a.u. ).

Atom Pr esent

Polarizability &

Other
calc. Expt. c Present CHF UHF

Hyperpolarizability y
Other
calc. Expt.

1.332 1.32 1.48 1.384' 1.384 36.O 24 51.6

42. 8'
42. 6~

43 lh

31.2'
28. 5~

52. 8 +4"

Be

Ne

Ar

45. 62

2. 374

10.774

45.55

2.366

64. 4

2. 82 4881 2.68

11.0

3.68 xl04 ~ &0

50

1.01 x 103

7.71 xlo 1.71 xlo

124

2.31 x103 ~ ~ ~

1O1~S'
118~3o

95 + 16~

1171y 79k

1339+430

1344 + 213~

Coupled Hartree-Fock. Reference 10.
Uncoupled Hartree-Fock. P. W. Langhoff and R. P.

Hurst, Phys. Rev. 139A, 1415 (1965).
Refractive index data. A. Dalgarno and A. E. Kingston,

Proc. Roy. Soc. (London) A259, 424 (1960).
"Uncoupled Hartree- Fock. Reference 11.
'Ritz variation. method. Kwong T. Chung and R. P.

Hurst, Phys. Rev. 152, 35 (1966).
~Ritz variation method. M. N. Grasso, Kwong T.

Chung, and R. P. Hurst, Phys. Rev. 167, 1 (1968).
~Accurate perturbation calculation. Sitz and Yaris, J.

Chem. Phys. 49, 3546 (1968).
"Accurate perturbation calculation. A. D. Buckingham

and P. G. Hibbard, in Proceedings of the Faraday Sy.mpo-
sium, London, 1968 (unpublished).

Perturbation calculation. L. L. Hoyle, A. D. Bucking-
ham, R. L. Disch, and D. A. Dunmur, J. Chem. Phys.

45, 1318 (1966).
~Z-expansion method. G. W. F. Drake and M. Cohen,

J. Chem. Phys. 48, 1168 (1968).
"Reference 2 actually gave 53.6 +4 a.u. for a wavelength

of 632. 8 mm, but they estimate this corresponds to a
static y=52. 8 a.u.

'Perturbation calculation. H. P. Kelley, Phys. Rev.
136, B896 (1964).

Configuration interaction calculation. W. E. Donath,
J. Chem. Phys. 39, 2685 (1963).

Kerr-effect measurement. See Ref. i.
Third-harmonic generation. J. F. Ward and G. H. C.

New, Phys. Rev. 185, 57 (1969). Their results renormal-
ized to 42. 7 a.u. for helium.

~Second-harmonic generation. Reference 3.
Their results renormalized to 42. 7 a. u. for helium.

representation for the field-free wave function of
beryllium, ' one must suspect that even the coupled
Hartree-Fock results for the atom could be very
much in error. Nevertheless, since the present
method is a true variational method, one should
expect that it could underestimate y, so that if our
beryllium results err they most probably err by
being too small. Then, the most reasonable

assumption is that the y for beryllium which is
negative in sign is quite incorrect.
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L2 L3X-Coster-Kronig Transition Probability at Z = 82
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The probability for Coster-Kronig transfer of vacancies from the L2 to the L& subshell of Pb
is measured by observing the K x-ray spectrum in coincidence with Le x rays in the electron-
capture decay of Bi '. The intensity of the K n2 component of the coincident spectrum is amea-
sure of the L&-L3X Coster-Kronig transition probability. A value of 0.156+0.010 is obtained
«r f23

I. INTRODUCTION

Most of the recent experimental measurements'
of the Ls LPCoste-r-K'ronig transition probability
fss at high Z were based on the method of Rao and
Crasemann, ~ who observed Ta and Hg L2-subshell
characteristic x rays emitted in coincidence with
K n2 x rays that signal the formation of L2-subshell
vacancies. Chen et al . ,

' and McGuire have cal-
culated the radiative, Auger, and Coster-Kronig
partial widths of atomic states characterized by a
vacancy in the Ls subshell (i.e. , by a 2P, is hole)
and obtained values of fss for various atomic num-
bers from the relation

Coster-Kronig partial width
total width

r, (L,L,)
I'„(L s) + I' ( Ls) + I"

q ( LsL,)

where res. (LsLs) is the partial width corresponding
to Ls LsK Coster-Kro-nig transitions, I'„(Is) is
the radiative partial width corresponding to the
emission of L2-subshell characteristic x rays, and
I'„(L,) is the radiationless partial width correspond-
ing to L2-Auger-electron emission. The Coster-
Kronig partial width can be written as a sum of
radiative and nonradiative parts:

r, (L,L,)=r„(L,L,)+r„(L,L,) .

Similarly, fss can be expressed as the sum of radi-
ative and nonradiative Coster-Kronig yields:

fss=ass+~ss

The theoretical estimates" of fss deviate signifi-
cantly from the experimental values; the reason

for this discrepancy is not obvious. The calcula-
tions of fss are based on the assumption that the
radiative part ~ss [cf. Eq. (3)] is negligible. That
the contribution to fss from this radiative magnetic-
dipole transition is indeed negligible has been shown
both by experimental and theoretical checks. '
McGeorge et al ."have corrected the experimental
values of f» at Z(80 for the presence of unresolved
Lq (Ls-Mi) x rays in the Ln (Ls-M4, ) photopeak,
but the correction does not remove the discrepancy.

II. EXPERIMENT

CEe (Le)2
Cz

fss ~

CEe (La) Cg
1 1

Here, C» /C„ is the ratio of singles Ko.s and
K~& x-ray counting rates. The rate C~ «) mustE'ai L a)

A new coincidence experiment to measure fss is
reported here. In principle, this measurement is
based upon the following considerations: A source
is chosen in which K and L vacancies are formed
during radioactive decay. The radiative filling of
Ls-subshell vacancies results in the emission L3-
subshell characteristic x rays (mostly Ln x rays).
The K x-ray spectrum coincident with these Ln
x rays shouldcontain (a) Kn, x rays, because some
of the L, vacancies are formed originally as a re-
sult of Ko.

& x-ray emission, and also (b) Kcss x rays,
because some of the L, vacancies are the result
of Coster-Kronig transfers from the L2 subshell of
vacancies originally formed during K@2 x-ray emis-
sion. The ratio of the coincidence counting rates
of Kns and Kn, x rays (Cz ~z, &

and Cs,&z, &) is
related to the L2-L,X Coster-Kronig transition
probability as follows:


