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b (T) = (k T/b) e

bz(T) = ((kT/2&) —4(u* k T/& )] e

where B is the binding energy of the substrate.
The adsorption isotherms are given by

(5a)

(5b)

(6a)

moves in a tunneling band whose density of states
yields a finite (nonzero) value of u*. (ii) Hard-core
repulsions between adsorbed atoms exclude multi-
ple occupation of the same binding site. Our meth-
ods are very closely analogous to those of Callaway
and Edwards. ' The final result is

e""=~'P/kT,
where

X = (2vk /M k T) i

(6b)

bp/bg ——(~ b —4u*)/k T,

b, = (k T/&) e ~, k T«& .

(9a)

(»)

is the thermal wavelength. The low-pressure data

8(T, P) =bg(T) (A. P/kT)+2ba(T) (X P/kT) + ~ ~ ~

(6)
would be sufficient for measuring B, ~, and the
critically important inhomogeneity parameter u*,
e. g. , via
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The energy dependence at threshold for the escape of two electrons with total angular mo-
mentum L =1 is shown to be the same as that found for L =0 by Rau, and classically by Wannier,
for processes that leave the same residual ion. It is suggested that this threshold law will also
hold for L & 1,
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Threshold Law for Double Photoionization and Related Processes with L = 1 Final States

In a recent paper by Rau, ' the quantum-mechan-
ical energy dependence at threshold of the cross
section for ionization by electron impact was estab-
lished to be the same as that obtained classically
by Wannier. Both Rau and Wannier restrict them-
selves to final states of zero orbital angular mo-
mentum (L = 0) both because of mathematical simplic-
ity and because as Wannier says "the probability
of reaction intoanS state has a threshold at least as
favorable as the probability of reacting into higher
angular momentum states, " if a final S state can be
reached with conservation of angular momentum.

Wigner' has shown that for two-particle reactions
the threshold law does not depend on detailed de-
scription of the reaction mechanism. Wannier justi-
fies this assumption for three particles. Hence
the threshold law for a given L applies equally well
to double photoionization, to double ionization by
fast electron impact, or, generally, to any process
in which two very slow electrons escape to infinity
leaving behind an ion with charge g. In particular,
double photoionization of atoms with closed shells
gives a final state with L = 1. In this paper we ex-

amine the two-electron Schrodinger equation for
L = 1 and find it to be equivalent to that for L = 0 for
threshold purposes. A numerical approach to the
same problem by a classical model has been made
by Peterkop and Tsukerman; the results pointed
to the conclusions presented in this paper.

The Schrodinger equation takes three different
forms for different types of L =1 states. One is
for even-parity states, one is for singlet odd-parity
states, symmetric under interchange of electron
coordinates, and one is for triplet odd-parity states,
antisymmetric under interchange of electron co-
ordinates. The equations are given (explicity) by
Morse and Feshbach. '

The angular parts have been separated out using
a set of Euler angles first suggested by Breit in
which 0 is the angle between r, and g, 4 is the an-
gle between r& and the xz plane, and 4 is the angle
between r2 and the r&z plane.

The wave functions are described as functions of
the Euler angles (o, 4, 4) and of a function f(y„rz,
6~&) of lrq l, I r2l and of the angle between r& and r2,

To achieve the proper symmetry one considers
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also the interchanged function f =f(r2, r&, B»). For
I, =O the complete wave function g is independent
of o, 4, and 4 and thus g=f. For I.=1, M~ =0
odd-parity, one has

g = cose(f+ cosB»f )+ sine cos+sinB» f,
where the upper (lower) sign is for the singlet-sym-
metric (triplet- antisymmetric) case. For L = 1,
Ml, =0 even parity, one has

g = sin%' sine f.
The presence of the sin% implies that there is one
unit of angular momentum about the axis of r& and
a centrifugal force which keeps 3,2 away from 0 or
7T ~

The central point of the Wannier-Rau analysis
is that the two electrons leave the atom in opposite
directions (B»--v) to minimize their mutual repul-
sive energy. Moreover they must be approximately
at the same distance from the nucleus (r, = r2) to
minimize their mutual screening. This is the so-
called "dynamic" or energy-dependent screening~:
If one electron has more energy thanthe other, then
the slower electron will fall behind, get screened
less, slow down even more, and will end up still
bound, The region of space ~&-x2, 3»™mis called
the Wannier line. To take advantage of this intui-
tive picture we transform the equations into hyper-
spherical coordinates; R = (r~+r3)', n =tan '(r2/
r~) The .L = 1 odd-parity equation becomes

2 1 Bf
H~f + —

~ ~ cats~~ —f)R cos n 83)2

We then set y = v - B„and p = 4v -n. This makes

y and P small parameters in which the equations
can be expanded. R will be large to ensure that
the electrons are far from the reaction zone.

The operators in all three L= 1 equations con-
sist of the L = 0 operator with additional terms.
All of the additional terms have a factor 1/R2 as
expected for a centrifugal potential. It seems rea-
sonable that in the threshold region of large R
these terms will affect the wave functionless than
the potential which goes as 1/R (or as 1/R'~P after
the transformation presented below). This argu-
ment suggests that the threshold law holds equally
for L=O, L= 1, and for L &1 as well. However,
the mathematical analysis becomes more compli-
cated for L &1 because there is a larger number of
coupled equations,

Setting f=R '~ P
se c(2 P)P, f=R '~ 2sec( 2P)$ and

retaining terms to lowest nonvanishing order in 8
and in y, Eq. (3) becomes

H,y+ —(1-2P) y
R2 r» y

+ (1+2P) —— = 0, (6)
1 Bg

By

where the upper (lower) sign is for the symmetric
(antisymmetric) states and Hp has become

2 18
I10- 2+ ~ +

BR

1 8 8 1 y 8
+ + 4(1+4P ) +R2 BP2 t8y' y 3 By i

1 Bf
~ 2sin ~ sin~„ Be»

=0
7 Ry"

2)ZR —4qZRP + - . (6)
4

where the upper (lower) sign is for the symmetric
(antisymmetric) states. Hp is the operator for the
L =0 equation, namely,

82 5 8 1 8 . 2 8
0 2+ + 2 sin 2n

BR2 R BR R2 sjn22~

1 8 . 8
+ 2 ~ 2 ~R sin 2n sin~&2

Sln3 g2

+ B(o', Bgm)+k, (4)
»z 2

in a. u. , where —,'k2 is the total energy and —ZB/R
the potential with

( )
1 1 1/Z

cosa. + sinn (1 —sin2o. cosB»)'~'

The term in the second square bracket of (6) comes
from the electrostatic potential. We have also de-
fined $ = 2@2 —(v2Z) and q = 3/W2 —(4v2Z) ' as in
Ref. 1.

Following Rau' we proceed by the following an-
satz;

y = exp[ice R(1+-,' aP'+ iby')] y(R),

with a, 0, and c to be determined later. The inter-
change r, —rp leads to R-R, y-y, p--p since
by our ansatz g is an even function of p and there-
fore Q=P.

Substituting expression (7) of p(= p) in Eq. (5)
and neglecting terms of order p /R, y /R
and of higher order yields

Rd~, + 0 +, + — 2k'Z —— + ——a c — + 4rtt)
4- (f+ 2)' 1 c' p' » ac'
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+ ———+ 16b c — + — + —(- —,
' + a+ b') X(R) = 0,y v 2 2 2 ic b ic d 1

R 8 2 vR dR R
(8)

H ——(1+4P )—/=0.1
(10)

Owing to the presence of the centrifugal potential
1/v2, the ansatz must include a factor y.

/= @exp[icvR (1+ —,'aP + iby )]y(R).

Substituting in Eq. (10) we obtain again Eq. (8) but
with l =-', v3 ——,

' and b =32ib. Consequently this

where l = —,
' and b = 32zb for the symmetric case

a«b = 16ib for the antisymmetric case. The values
of a, b, and c which eliminate the 1/R terms in (8)
are identical to those determined for the L = 0 case
by Rau. ' The remaining terms of the equation 1.ook
like a one-electron radial Schrodinger equation with
orbital quantum number f and with a 1/R'~2 poten-
tial. This form differsfromRau' s equation(A1)only
in the value of l, which is ——,

' for L = 0 and —, for
L = 1, and in the value of b which is 16ib for L = 0
and is 32ib for I.= 1 triplet (antisymmetric) case
and is 16ib for the I.= 1 singlet (symmetric) case.

At this point we need only note that in Rau's dis-
cussion of the threshold law, given in Secs. III and
IV in his paper, ' neither l nor b affect the thresh-
old law which is

Eg4 -1/4

where

1PPZ —9
2 4Z-1

The equation for the even-parity L = ], ~ = p
state after setting f=R '~2sec(2P)Q and keeping
terms to lowest order is

equation will yield the same threshold law for L = 0.
However the amplitude of the wave function (11)
will be small in the far zone due to the node along
the Wannier line. This should result in a small
cross section.

To connect theory with experiment, it is impor-
tant to estimate the range of validity of the thresh-
old law. The approximations made in solving our
equations involved dropping terms of the order ya/
R~~2 and keeping terms of order Z /R. Expanding
our equations keeping lowest terms in p and y in-
volved ignoring terms of y3/R. To justify such
approximations 1/R'~, P, and y must all be ~0. 1.

The point P R =-2 Z defines a boundary between
the two asymptotic regions considered by Wannier
and Rau in deriving the threshold law. With R & 100
we find that the approximations limit the energy
(—,'k2) to less than 0. 02 a. u. = 0. 55 eV for Z= 1 and
to less than 0. 05 a. u. =1.3 eV for Z=2.

Experiments on double photoionization and ioniza-
tion by electron impact have been carried out ' that
are not inconsistent with the above theory. How-
ever the range and accuracy of the data are not suf-
ficient to provide a critical test of the threshold
law. In principle, double photoionization is the
more accurate of the two.
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