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The temperature-dependent correction to the Lamb shift of a single-electron atom exposed
to black-body radiation at temperature T is considered. At room temperatures, the correc-
tion for Z)1 is dominated by a shift, not considered before, of the 2s~~2 level, involving 2P3&2
as an intermediate state, and is given by ~e3Z (A, T) /Sm. This competes with another shift
= x(kT) /Z (Q.m) discussed by Walsh, where x is a purely numerical but remarkably large co-
efficient of order 300.
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where, with k the Boltzmann constant,

n = (e
"—1) ', P = 1/k T .
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Equation (2) applies if the occupation numbers n
reach their new equilibrium values after the atom

Walsh has recently reconsidered the temperature
dependence of the radiative self-energy of an atom
exposed to black-body radiation. Here we devise
what we feel is a more transparent approach; dis-
tinguish the "total" energy shift from the "adiabatic"
shift which applies if the photon occupation num-

bers do not adjust to the presence of the atom; cor-
rect some minor errors; and exhibit a contribution
not considered previously, which is formally of
higher than leading order in e, but which in many
systems can nevertheless dominate the temperature
dependence.

We start from an expression suggested by Feyn-
man for that part of the electromagnetic self-ener-
gy which is due to the quantized nature of the radia-
tion field. We have discussed elsewhere its for-
mal connection with the over-all order e self-ener-
gy (though here we shall rely on it to higher order
in e~), and the nonrelativistic Bethe formula for the
Lamb shift has been derived from it by Power.
Consider the normal modes of the radiation field in

a quantization volume V; let them have wave vec-
tors K and frequencies = IK). Introduce an atom
into this quantization volume; the allowed K values
are unaffected, but the frequency of each mode
changes ' from to +5&:

5 jd = —2jj Ref (jd)/~V,

where f((u) is the spin-averaged forward Compton-
scattering amplitude from the atom. The consequent
shift in the zero-point energy of the field, namely,
2$„&5jd, was recognized by Feynman as the radia-
tive self-energy of the atom. (The factor 2 counts
both polarization states. )

In a black-body cavity at temperature T, the total
energy shift due to the atom is clearly

is introduced. In the other extreme, where the n

are unchanged, (2) is replaced by

1~U,«,b,«, = 24K hjjj(n+ 2) . (4)

We separate both (2) and (4) into their zero-point
parts, and their temperature-dependent parts d (T),
(~(0)=-0); e. g. ,

~ ~«jabajjc +«jabajjc(T)+ +K ~

The T-dependent parts are related by

&t.t.j(T)= (1+ lM/d&) &.dj.b.tj.(T) .
For simplicity, we shall consider only &«j,b,jj,(T)
from now on, and denote it by 6; thus,

&=»K «/(e "-1). (6)

(Since, as we shall find, 6 consists of parts propor-
tional to P and P, &jojaj and &«jaj,ajjg have opposite
signs. )

For the hydrogen atom (and for any one-electron
ion if the nuclear mass is taken as infinite), the non-

relativistic dipole approximation yields

Ref=~ ll(jd )= ~ +E olr ol' 2 „2 (&)
i

where II is the real part of the electric polarizabil-
ity, L runs over all atomic states with the Cauchy
principal value prescription for vanishing denomina-
tors, and where we have defined E;0= (E; —Eo), r;0
= (i lr l0), with l0) the state whose shift we are cal-
culating. From (6), (1), and ('7) we obtain

(8)
Here we come to a crucial point. If one works

strictly to order e, then there are no contributions
to (8) from intermediate states li) that have the
same principal quantum number as l 0), i. e. , which,
nonrelativistically, are degenerate with l0), since
for them, and to this order, E«= 0. On the other
hand, the temperature-dependent shifts 4, due to
the contributions "n" to (4), are minute compared
to the zero-temperature shifts, due to the "~" in
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a=1/aZm . (10)

Accordingly, we subdivide the shift 4 of the 2p»~
(2s», ) state into a "degenerate" part h„due to
the intermediate states i = 2sq/p (2Pq/p and 2P3/2),
and a "nondegenerate" part 4„„due to all other in-
termediate states.

The shift ~„, is the one considered by Walsh.
Here the excitations E«all correspond to orbital
excitation energies, IE~p I- (Za'. ) m, so that at prac-
ticable temperatures IPE+ I »1, and we can simpli-
fy (8) accordingly:

(4). Therefore, when evaluating 4, we include the
true zero-temperature splitting of the nonrelativis-
tically degenerate states into the "unperturbed"
problem, so that both the Lamb shift X= E (2s»2)
—E(2' /p), and the fine-structure splitting v
= E (2P3 /)p- E (2P, /p) are taken as finite. Here it is
essential to have expressed f in terms of the matrix
elements of r rather than of p, because &2s Ip I2P)
=0, while

1
&2e i/p I

r
I 2Pi/p& I

= 9~

(9)
1&2 1/2lr 12P3/2)l'=18 ',

where a is the Bohr radius, so that, with rn=elec-
tron mass,

sum in (11)is estimated as a (Zo/a) ' = a /Za,
whence we write, with xo a purely numerical co-efficientt,

4„~=xp(kT) /Z4(o. m)P. (12)

+ (2~+a)=
& 1&2~uslFIRPaga) I f

Remarkably, detailed calculation shows that

»,&2- », , I
- 300, a result already implicit in

the numbers given by Walsh.
Finally, we turn to the degenerate contribution,

which has not been considered before. Here, E«
is either the Lamb shift ~ or the fine-structure
splitting v. But in hydrogen for instance we have
~=0. 05'K and v'-"0. 5'K, so that at room temper-
ature, and for all low Z, I PE&o I «1, and we approx-
imate the integrand of &„by dropping (PE/p) from
the denominators altogether. This is a high-tem-
perature approximation, contrasting with the low-
temperature approximation which was appropriate
to 6„„. The individual contributions to (8) then be-
come proportional to E«, since v»~, the domi-
nant effect on the Lamb shift is evidently the dis-
placement of the 2s&» state due to the i= 2P3/~ inter-
mediate state, when E,p= v= (o'Z) m/32 Acc.ord-
ingly, from (8) and (9) we obtain

7T (X
2

(kT) )~'
nd

I ~ 5 4x10 7TRZ2
8 m

(13)

The prime on g,
' excludes states with n = 2.

Note the following points. (i) Equations (11)
agree with Walsh's state-dependent expression [his
Eqs. (6) and (7)] in magnitude but not in sign. (ii)
The sign of (11) is easily checked by comparing the
total energy density of black-body radiation in
vacuo with that of radiation in a dilute medium con-
sisting of the atoms in question, expressing the re-
fractive index in terms of II(0), and attributing the
difference to the self-energy of the atom. (iii)
4„„has no state-independent part proportional to
T' at low temperatures, i. e. , for IPE,pl »1. The
expression of this type found by Walsh [his Eq. (5),
which should actually have its sign reversed] should
have been canceled, in his approach, by a shift due
to the quadratic interaction Hamiltonian e A /2m.
Such a T -proportional part exists only for a free
electron (cf. also the last paragraph of the present
paper); it is absent for a bound electron, basically
because binding to an atom suppresses the scatter-
ing amplitude for low-frequency photons, which,
by the Bose-Einstein factor, are precisely those
responsible for the leading term when 4„„is ex-
panded in powers of T. (iv) Dimensionally, the

From (12) and (13), we estimate the order of mag-
nitude of the ratio

2. 2x10 Z
8x, ( ) kr) xT' (14)

At 300'K, (14) takes the value - 25Z /xp. Be-
cause of the large numerical value of xo, &~ dom-
inates 4„„only for Z & 1. But the effect is still
very small: For Z= 2 at 300', (l3) yields only
0. 2 Hz.

For completeness it may be amusing to record
the high temperature limit appropriate when I PE;p I

«1 even for orbital excitation, but where retarda-
tion may still be neglected, i. e. , P-a. In this
regime &~ and ~„~ combine, up to relativistic correc-
tions of relative order (o.'Z)', to reproduce the free-
electron shift o.m(kT) /3m. This is obtainable di-
rectly from (6) and (1) by putting f= —n/m, which
by virtue of the dipole sum rule is just the high-
frequency limit of (7). Of course, at such temper-
atures the atoms are almost fully ionized, and the
problem becomes yet more academic.

It is a pleasure to acknowledge useful discussions
with P. Knight.
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The inclusion of dipole polarizability of the core for argon is shown to substantially improve
the agreement between the theoretical and experimental photoionization cross sections for the
ground-state configuration.

Core polarization has previously been included
in the calculation of photoionization cross sections
by Klein and Brueckner. ' Bates found that for
potassium, where the cancellation within the mat-
rix element is excessive near the series limit,
the inclusion of cere polarizability improved the
agreement between the calculated and experi-
mental cross sections. The purpose of this paper
is to point out the importance of core polarizability
in a case where cancellation is only moderate and
to suggest an improvement to the scaled Thomas-
Fermi (STF) wave functions of Stewart and Roten-
berg. 3

Stewart and Rotenberg introduced the use of a
scaling factor to provide a means of empirically
improving the wave functions provided by a Thomas-
Fermi potential. The resulting wave functions may
be computed rapidly making them most practical
for the calculation of some atomic parameters such
as photoionization cross sections and recombi-
nation coefficients, which require large numbers of
wave functions. For the ground state the positions
of the nodes and maxima. compare well with the
wave functions of Clementi, ' but one major defect
of the STF wave functions is apparently caused by
the neglect of the polarizability of the core.

To include the effect of dipole polarizability of
the core in the calculations presented here, the
STF potential was modified by adding an effective
polar ization potential:

where &, is the dipole polarizability of the core and
~, is the effective radius of the core. ' The polar-
izability was derived from the energies of the ng
levels by applying the polarization theory of
Edlen, 6 while (r) for the ground-state wave function

TABLE I. Argon r 3p6 photoionization cross section.

787
774
754
671
625
549
490
422
343
289

0 (nq =7.4a3p)

(10' cm)

35.74
37o 23
39.14
43.97
44. 53
42. 21
38.04
31.64
23.45
17.94

0(~& =0)
(10 &8cm2)

107.18
106.66
94.57
65. 69
53.48
38.42
29. 80
22m 37
15.97
12.54

for the next-higher ion was used for x,. The phase
of the continuum wave function, and subsequently
the amplitude of the cross section, is related to the
scale factor used to obtain it. This scale factor is
obtained by linear extrapolation in energy from the
bound-state values in much the same manner as the
quantum-defect extrapolations for the quantum-de-
fect method. 7 For argon, the inclusion of U~ in the
calculations reduces the energy dependence of the
scale factors for the bound-state wave functions
from -0.078 to -0.055 By ' for the s series, and
from —0. 183 to —0. 160 Ry for the d series. Lin-
ear extrapolation seems quite adequate for energies
up to a few times the threshold energy. For high
values of /, the wave functions are less sensitive
of the scale factor, since the amplitudes of these
wave functions are small in the non-Coulombic re-
gion of the STF potential.

The results for a.rgon with and without polari-
zability are presented in Table I, where it is ap-
parent that the effect of dipole polarizability of the
core is large. For the dipole polarizability of the


