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The theory of Lekner for the scattering of excess electrons in fluid argon has been applied
for densities lower than that at the triple point. We point out some discrepancies between the
theory and recent experimental electron-mobility data in fluid argon.

In a, recent paper from this laboratory' a com-
parison was made between experimental and theo-
retical zero field mobilities of an excess electron
in fluid argon. It was shown that the electron mo-
bility Ite could be related to an empirical effective
scattering length a. Given that single-scattering
processes dominate the rate of dissipation of en-
ergy, and that the electrons remain in thermal
equilibrium with the fluid (and hence have a Max-
well velocity distribution at temperature T), the
effective scattering length can be calculated from
the Lorentz-Lekner mobility relationa

~ [(lgttsy //~)1/2' , ml/2T8/2rt2 r It ]-t/2 (1)

Here m is the electron mass, y~ the isothermal
compressibility of the fluid, n the number density
of the fluid, e the electronic charge, and k~ the
Boltzmann constant. After noting that the calcu-
lated single-center e -Ar average scattering length
at the triple point is positive, 2 while that for the
free atom is negative, Lekner proposed3' a "zero
scattering length" model to explain the mobility
maxima which occur in excess-electron-heavy-
rare-gas fluid systems. According to this model,
the single-center average scattering length (a)
passes through zero at x,„, the fluid density at
the mobility maximum. The effective scattering
length, as defined, includes a term due to average
fluctuations in the scattering length (ha2) as well

as (a). Even when (a) = 0, (&a2) is not zero, so
that at rt,„(0.012 A s for Ar'), fluctuations in the
local environment suffice to keep the mobility fi-
nite. The experimental scattering lengths for Ar,
taken from Ref. 1, are plotted in Fig. 1, where
we have assumed that the scattering length changes
sign at n,„, according to Lekner's predictions.
The estimated magnitude'3 of the consequent fluc-
tuations in the scattering length is in rough agree-
ment with the apparent experimental value of
+ ((has))t/ - + 0. 1bohr. Thus, the zero-scattering-
length model successfully accounts for the mobility
behavior from the triple point to the mobility max-
imum in terms of the experimentally inferred ef-
fective scattering lengths.

In an effort to understand more clearly the mech-
anism responsible for the behavior of the effective
scattering length, we have made theoretical calcu-
lations using a method proposed by Lekner. ' As-
suming that fluctuations may be neglected in first ap-
roximation, we have calculated the average scattering
length for electrons influid argon at seven different
densities; the results are displayed in Fig. 1 and Table
I. It is clear that the theor etical and exper im ental
effective scattering lengths disagree in magnitude
and slope with respect to the fluid density. After
a brief discussion of the procedure used to calcu-
late these scattering lengths, we will consider the
apparent reasons for the discrepancies.
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where g (r) is the pair-distribution function of the
fluid and Uo is the value of the first maximum of
the first two terms of Eq. (2), which occurs at the
muffin-tin radius R . The single-site potential is
taken to be the sum of the Hartree field of a neutral
argon atom' and the screened polarization potential:
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FIG. 1. Comparison of phenomenological scattering
lengths a~t(ae~&) and calculated average scattering lengths
(a) ((a„,g) as a function of fiuid number density n appro-
priate to the zero-field mobility of electrons in fluid
argon.

x U, (Ra+ r a —2Rr cos8)"a —Ua, (2)

In essence, Lekner~ characterizes the field re-
sponsible for electron scattering in fluid argon by
the muffin-tin approximation. The potential inside
each muffin-tin sphere is taken to be the super-
position of the single-site potentials U, (R):

U, «(R)= (UR)+4 iaaf
tdrx g(r) f desine

2U, (R) = 2U„~„,(R) —,' » Ry,
n/a, f(R)

C

where distance is measured in units of bohr

(ao). In these units the polarizability of Ar is o.

= ll a,'. The function f(R) was defined by Leknera
to account for the average screening of the electron-
induced dipole interaction by the dielectric medium.
At large distances from the scattering center the
screening is described by the Lorentz local-field
f~=f(R-~) = (1+ 3 mo') '. At gaseous densities
(n& 10 ' atoms/Aa) we have f(R) -1. Functional
forms related to the polarizability interaction have
been frequently used to extrapolate the exact sec-
ond-order energy [—(n/as)/2R + O(l/R )], which
is valid only for positions outside the charge cloud
of the atom, so as to obtain an effective interaction
for electrons that penetrate inside the charge cloud
of the atom. Lekner2 chose the value R =1.22ao
in order that the cross sections calculated from
U, (R) would be in agreement with those inferred
from the drift-velocity measurements of Frost and

Phelps. 7 We find that with this value of the param-
eter A we are able to calculate total cross sec-
tions which agree with those determined in the
more recent experimental measurements of Golden
and Bandels to better than 20% for electron ener-
gies below 5eV. Further details of the calculation
of the ensemble-averaged effective potential U,«(R)
are given in Ref. 2. The potentials used in the
present calculations are shown in Fig. 2; they
are replotted from Ref. 1 in terms of the ordinate
log(a[- R U, ~, (R)].

Phase-shift calculations were performed, using

TABLE E. Single-site'parameters for express electron in fluid argon.

Fluid density
n(~ ) n(bohr )

Muffin-tin
radius

R (bohr)

Wigner-
Seitz
radius

R,(bohr)

Lorentz
screening

factor
fL

Maximum
average
potential
—v, (Ry)

Calculated
scattering

length
(a) (bohr)

Effective
mass
m+/m

Conduction-band minimum
Wigner- Optical-

Seitz potential
approximation approximation

kp(bohr ') aooPt(bohr ')

(Hartree core potential
for argon)a

0. 02113 0. 003 131
0. 01903 0. 002 820
0. 016 82 0. 002 492
0. 014 82 0. 002 196
0. 01176 0. 001743
0. 008 08 0. 001 197
0. 004 22 0. 000 625

(gas) ( 4 && 10 )

(5. oo)
4, 00
4, 16
4. 25
4. 29
4.38
4. 54
4. 82

(oo)

(~)
4. 24
4. 39
4. 58
4. 77
5. 16
5. 84
7.25

(o. ooo)
0 774"
0 ~ 794
0. 813
0, 832
0. 862
0. 901
0. 945

(1.000)

(0.000)
0. 157"
0. 121
0. 109
O. 099
0.087
0.070
0. 047

(0 ~ 000)

2. 233
1 458c
1.360
1.334
1,309
1.279
1,232
1, 136

—1.647d

0.75
0.78
0. 81
O. 84
0 ~ 88
0.92
0.97

0. 330
0.295
0. 270
0.248
0.213
0. 167
0. 110

0, 239
0.219
0, 204
0. 190
0. 167
o. 136
o. 094

See Ref. 5.
"See Ref. 2.

'Our value differs from that calculated by Lekner by 1.3%.
See Ref. 8.
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dieted from the "shape-independent effective-range
theory, "' that the low-energy cross sections for
such a class of "finite range" potentials must be
nearly equal, as we have empirically demonstrated.
More precisely, the logarithmic derivative po(R )
of the s-wave function of the deep potential well is
insensitive to small differences of energy near the
top of the well. In addition, the spherical Bessel
and Neumann functions, to which po is matched at
R, may be expanded to first order in their small
argument kR . Consequently, in the limit of small
k, Eq. (4) takes the energy-independent form

R2 )2
o, (s)=4m '

T
+0((kR )'), kR «1. (V)

Rmpo+ 1&

FIG. 2. Electron-fluid-argon single-center effective
potentials at fluid number densities n(A ).

o, (e) = —, Q sin'[6, (e) —5, „(e)],
l =0

where k = e(eV)/13. 6 bohr
It is found that for thermal-electron energies

(0.01bohr '& k& 0.05 bohr '), the cross sections
o, (s) are essentially energy independent and the
s-wave phase shifts 5o(e) dominate the other par-
tial-wave phase shifts by at least two orders of
magnitude. Therefore, the approximation

o, (e) = (4 v/k') sin 6o(e ) = 4 m (a), k «1 (5)

the effective potentials of Fig. 2, by numerically
integrating the Schrodinger equation for fixed elec-
tron energy e with Noumerov algorithm. The
scattering phase shifts 6, (e) were determined by
matching the logarithmic derivative p, (R„) of each
calculated wave function to a linear combination of
spherical Bessel and Neumann functions at the
muffin-tin radius R . Momentum-transfer cross
sections were then calculated from the relation

It turns out that the cross sections (and scattering
lengths) are even more constant with respect to
fluid density than the above expression would imply,
because the variations which do occur in R and

po(R„) compensate each other. This analysis
breaks down, however, when the scattering poten-
tials have long range.

We first reexamine, qualitatively, the influence
of the long-ranged polarizability interaction on the
scattering cross section. The following argument
suggests that when Eq. (2) is adopted the potential
responsible for scattering is dominated by the
core contribution, and hence is onl.y accurate when
the fluid is so dense that the superposed tails of
interactions centered far from the region of interest
have negligibly small spatial variation.

It has been shown'~ that the polarizability inter-
action predominately determines the form of the
electronic wave function and, consequently, the
value of the phase shift, whenever the total elec-
tron energy is of comparable or lesser magnitude
than the (classical) potential energy. That is, in
the absence of screening, the polarizability inter-
action dominates for distances RS d(s) from the
Ar nucleus, where we have

used to obtain Eq. (1) is indeed justified within
this model. The resultant theoretical average
scattering lengths

d(E)—:( q ) bahr. (6)

(6)

are plotted in Fig. 1. We estimate that these scat-
tering lengths may vary up to 20-30%%u~ depending
upon the details of the lengthy numerical calcula-
tions for the effective potentials (2). Agreement
between experimental and theoretical mobilities
is quite good at and near the triple-point density
as has been noted previously. ~' '" However, the
slow variation of the scattering length with respect
to fluid density is inherent in the muffin-tin model.
From Fig. 2 it is evident that the "deep" part of
the argon effective potential is very weakly depen-
dent upon the density of the fluid. It may be pre-

d„„„(e)= d(e)f~"'= d(s) (I+~~mo.') '" .
For fluid Ar at a density of n =n,„=0.012 A 3,

fr, =0. 86, and d, „,~(E)=0.96d(E). Now, in the

(9)

This range can be very large when the electrons
have low energy, such as we have assumed for the
thermalized excess electrons in fluid Ar. For
example, a 0. 02 eV electron scattering from an
isolated Ar atom has a "polarizability range" of
d(e = 0. 02 eV) = 9bohr. Screening of the electron-
induced dipole interaction by a dielectric medium
only slightly reduces the range of the interaction.
Using the Lorentz local-field function fI, the polar-
izability range of the screened interaction at the
same electron energy is approximately
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fluid, because we must consider the effects of the
superposition of single-site potentials, we are led
to compare the magnitudes of d„„, ~(s) and R .
According to Table I, for a, fluid density of n = 0.012
A~, R =4bohr. Thus, given the sensitivity of
the cross section to the actual potential in the re-
gion R &R, we suspect that the average field de-
fined in Eq. (2) is an inadequate characterization
of the potential. After all, g(R) has radial sym-
metry whereas the instantaneous potential "seen"
by the electron, and responsible for scattering,
does not. Deviations from radial symmetry in-
crease in importance as the density decreases
Near the triple-point density the packing of atoms
is sufficient to inhibit gross deviations in the ar-
rangement of the centers of nearby atoms. Then
the assumption that there exists a mean field with
radial symmetry is a good approximation. As the
density decreases, and more space is available
for atomic motion, instantaneous configurations
with nonradial symmetry become more and more
probable. While it is always true that in the fluid
the average environment of an atom has spherical
symmetry, the instantaneous environment need
not have said symmetry, and it is the instantaneous
environment that defines the scattering potential.
Thus, to obtain a more accurate single-scattering
model it is necessary to use a more sophisticated
averaging procedure than that inherent in Eq. (2).

It is also pertinent to question the use of the
modified static Holtsmark potential. ' It neglects
many interactions, such as the exchange interac-
tion, except insofar as the parameter R is chosen
by the requirement that the potential reproduce the
experimental low-energy electron-atom scattering
cross sections. However, since the long-range
polarizability interaction is known to dominate such
cross sections, it is not clear that the core part
of the potential, which is important for these fluid
studies, is adequately tested by such a requirement.
Qn the other hand, by the arguments given in the
two preceding paragraphs, it seems unlikely that
any simPle modificationof the fluid Ar single-center
effective potential appropriate to this problem
could achieve the strong density dependence implied
by the experimental zero-field mobility.

Consider, now, the possible effects of multiple
scattering. According to the simple approximations
utilized by Lekner, multiple scattering mainly
changes the kinematics of the excess electron. A
low-energy excess electron in a periodic lattice of
Ar atoms would be expected to occupy the bottom
of the conduction band at an energy eo above U,«(R„).
In the perfect lattice there are no unoccupied
states with energies c& co available to the excess
electron, since such states would be annihilated
by the interference of the superposed wave functions
from each scattering center. In the case of liquid

(const) sin k(R —(a))
cos 50(e) kR

where (a) is the scattering length calculated ac-
cording to Eq. (6)."Thenko

-=(eo(eV)/13. 6)' 2bohr '
may be calculated by solving the equation

R, + (a&

(1/k', ) -R, (a&
' (12)

Values of ko so calculated are given in Table I.
Alternatively, we could estimate the energy of the

lowest conduction band from the optical-potential
approximation'~

kP' -=(47m (0))'"bohr -' (13)

For comparison, ko" is also listed in Table I.
The two estimates differ by only 30%.

The effect of raising the excess-electron energy
appreciably above U,«(R„) is mainly that the p
phase shift now contributes and consequently the
momentum-transfer cross sections (4) are reduced
Approximation (5) and, consequently, Eq. (1) are
then no longer valid. We can roughly correct the
relation between mobility and single-scattering
amplitude by replacing the calculated scattering
length (a) by [o,(eo)/4v]'~ . Values of these "cor-
rected scattering lengths" (a„„}are plotted in

Fig. 1. Although this correction improves the
agreement of theory and experiment at the triple-
point density, it fails to do so at lower densities.

In the perfect lattice, the shape of the conduction
band near eo is well described by the effective
mass approximation

6'0+
2m

(14)

The value of m* may be estimated according to a
method proposed by Bardeen'7 in the framework of
the Wigner-Seitz approximation. He finds

m P2 (R,)/q~([(R/P) (dP/dR)]„—1] (15)

Ar at the same density n, we may suppose that
states of e &eo have a low probability of occurence
because of similar interference effects. In the
Wigner-Seitz approximation'4 fp is simply the en-
ergy at which the s-wave single-site radial wave
function Po (R) has zero derivative at the Wigner-
Seitz radius R, , which is defined by the relation

(10)

The values of R, appropriate to our problem are
given in Table I. At all densities considered we
have R, &R . Consequently, the s-wave radial
wave function in this case may be written

4o (R = (sinkR —k (a) cos kR)
(const)
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Here t) is the normalization constant r)s -=[4m
& jc"' gs(R)R' dR] ', and P(R)/R is the p- wave single-

site radial wave function, which may be expressed
in terms of the p-wave phase shifts so that

I

(R dP keR, + [(k,R,)' —1]tan(), (se)+ [(k,R,)' —kQ, ta«, (s,) —1]tan keR,
&P dR n tandt(se) —kcR, + [1+keR, tan(), (es)] tan koR,

The calculated values of m*/m are given in Table
I. If one assumes that the energy-momentum re-
lation (14) is preserved in fluid Ar at the same
density n, the excess electron may be expected to
achieve a modified Mwoveil-Boltzmann velocity
distribution in the fluid, with m~ replacing m and
with the zero of energy at eo above U„,(R„). These
new kinematics introduce a small correction factor
to the experimentally inferred scattering-length
formula (1):

over a wide range of densities of the fluid. Due
to the failure of the single-center effective-poten-
tial model to give even a qualitatively correct un-
derstanding of the variation of the mobility with
density, it appears to us that the problem requires
a fresh analysis. We suggest that the important
elements in such an analysis will be: (a) a more
accurate description of instantaneous atomic con-
figurations and their density dependence, and (b)
a more accurate treatment of the effects of multiple-
scatter ing processes.

The values of a„„are p],otted on the dotted line of
Fig. 1. It is evident that this zero-order kinematic
correction factor fails to appreciably improve the
agreement between theory and experiment.

The single-scattering model with simple multiple-
scattering corrections developed by Lekner has
previously been shown', 10,11 to explain the experj. -
mentally observed drift velocity as a function of
electric field of an excess electron in fluid heavy
rare gases near their triple-point density. How-
ever, it has become clear in this work that this
model inadequately describes the experimental ob-
servations made in the limit of zero electric field
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