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The general form for the moments of the Van Hove incoherent scattering function is derived
for a simple classical liquid with velocity-independent interatomic forces. With the additional
assumption of additive central forces, explicit expressions are obtained for the coefficients
which determine the asymptotic behavior of the moments at large momentum transfer v. This
enables one to obtain an exact asymptotic expansion of the scattering function in inverse powers
of tt. The theory is applied in detail to the Lennard-Jones liquid at the triple point and to the
hard-sphere fluid at arbitrary density. The results for these two cases are qualitatively differ-
ent as a consequence of the fact that the atomic velocities are continuous functions of time in
the former case and discontinuous in the latter. For example, the leading correction to the
impulse approximation due to final-state interactions is proportional to g for the Lennard-
Jones potential and to g for hard spheres. With decreasing y the scattering function changes
from the Gaussian shape, characteristic of the impulse approximation at large ~, to the Loren-
tzian shape characteristic of simple diffusion at small g. This change occurs in the hard-
sphere fluid when vl -1, where l is the mean free path (including the Enskog factor).

I. INTRODUCTION

In the limit of large momentum transfer z the
scattering of neutrons by a liquid can be described
in terms of the impulse approximation, in which
the scatter ing atom r ecoils as if it were fr ee, and
the energy distribution of the scattered neutrons is
the Doppler profile characteristic of the velocity
distribution of the atoms in the initial state. The
velocity distribution in a classical liquid is Max-
wellian so that the scattering cross section in the
limit g —~ is the same as that of an ideal gas at the
same temperature.

The scattering atom is inhibited by intermolecular
forces from recoiling freely so that, for a finite
value of ~, the effect of final-state interactions is
to produce a narrowing of the energy distribution
of the scattered neutrons. For a liquid which

scatters neutrons incoherently, the narrowing is
characteristic of the single-particle motion of the
atoms in the liquid and, in the limit z -0, is de-
termined by the macroscopic coefficient of self-
diffusion. For coherent scatterers interference
effects are important and the above-mentioned
narrowing is sensitive to both the spatial arrange-
ment of the atoms and their collective motion.

The present work is concerned with incoherent
neutron scattering by simple classical liquids and,
in particular, with the development of an exact ex-
pansion of the scattering cross section in inverse
powers of g. Such an expansion is useful for de-
scribing the scattering at large momentum transfer
where departures from the impulse approximation
due to final-state interactions are small. In prac-
tice this means, for example, y & 4 A in the case
of liquid argon at the triple point or z & &-' for a,
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hard-sphere fluid with mean free path E.

We begin in Sec. II by defining the incoherent
scattering function and reviewing briefly some of
its relevant properties. The general form for the
moments of the scattering function is deduced in
Sec. III under the assumption that the interatomic
forces are velocity independent. With the addition-
al assumption of additive central forces explicit
expressions are obtained for the coefficients which
determine the asymptotic behavior of the moments
at large g. The expansion of the scattering function
in inverse powers of g is derived in Sec. 1V and
the results are applied to the Lennard-Jones fluid
in Sec. V and to the hard-sphere fluid in Sec. VI.

II. CLASSICAL INCOHERENT SCATTERING FUNCTION

A. Definition

Consider a system of N identical atoms of mass
yn enclosed in a volume of space Q and in thermo-
dynamic equilibrium with a heat bath at tempera-
ture T. The cross section for the scattering of a
neutron by this system from a state with wave
vector ko to one with wave vector k is given by '

B. Cumulant Expansion

If the exponential in (2. 4) is expanded in powers
of g, the terms can be rearranged to give a cumu-
lant expansion of the form 4

s'(a, t)=exp ) (-)"~'"p.(0),
fI=I

where

pi(t) =(1/2))&d(t) ),
p (t) = (I/4!)(&d(t)'& —3 &d(t)'&' j,

(2. 6)

(2 7)

One can easily verify that

p, (t) = (kT/m)X(t),

so thatw, ith p, (0) = 0 and p)(0) = 0, we have

(2. 9)

p, (t) = (k T/m) f, (t - t ') l((t ')at '

etc. Only even powers of K occur in (2. 6) because
&d(t)") vanishes identically when z is odd.

The velocity autocorrelation function and its
spectral density are defined by the relations

X(t) = f e'"'j((o)d(d=(m/3kT)&v(0) v(t)) . (2. 8)

d ' =~ —(u', ..s...(», ~)+u'„,s„,(K )f )
dQd(d (k,

(2. I)

2kT 1 —cos0)t .
y0) d(d. (2. 1o)

where a„„and g„, denote, respectively, the bound

coherent and incoherent scattering lengths of a
nucleus, g =ko-k is the momentum, and w

=(k/2m )(k0 —k ) the energy, in units of k, which
are transferred to the system in the scattering pro-
cess, m being the neutron mass. The scattering
functions can each be expressed as

$(K, (0) = (I/2z) f e ' 'F(K, t)dt, (2. 2)

where, for incoherent scattering,

F( t) ( -()7 F(0) iT r((t) ) (2. 3)

in which r (t) is the position of one particular atom
at time t and the brackets (. ~ ~ ) denote a thermal
average. It is assumed at the outset that the sys-
tem is macroscopically isotropic, e. g. , is a gas or
liquid, so that the scattering function is independent
of the direction of g.

In the classical limit F(K, t) is a real even function
of t and S(K, (0) a, real even function of (d. In addi-
tion (2. 3) can be expressed as

it follows that

4((d) = 3mk T(d'X ((u),

and, with y(0) = 1 and j(0) = 0, that

y (t) = 1 —(1/3mk T) f, (t —t ') O (t ') dt
' .

(2. 13)

(2.14)

Hence, we have

p, (t) =(ut) —(1/18m') f, (t —t ) 4(t )dt', (2.16)

where u = (kT/2m)'t .

The remaining quantities p„(t) are similarly ex-
pressible in terms of multitime velocity correlation
functions.

It is sometimes convenient to consider as well
the force autocorrelation function, '

4)(t) = f„e'" (k((d)d0) = &F(0) ~ F(t)),
in which F =mv is the total force on the atom.
Since

C (t) = —3mkT X(t),

F(K t) &
(t())()((

where

(2. 4)
C. Behavior at Large v

It will be shown later that for the case in which
the interatomic potential is smooth we have

d(t) =x(t) -x(O) = f, v(t ')at', (2. 6)

in which x denotes the component of r in the direc-
tion of » and v =x. Expression (2.4) is the basic
starting point for the work described in this article.

p)(t) = (ut)'+ O(t'),

(2. 16)
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whereas for a hard-sphere fluid we have

p, (t) =(ut)'+O(~ti'),

p,(t) =o(gati'),

p (t}= 0(( t
~

) .
(2. 1V)

In either case it is evident from (2. 6) that in the
limit &- ~, g-0 with gg=const, we have

-(nnt& (2. 16)

Hence, in the limit K- ~, &u- ~ with K/&u = const,

S(K, (u) - (1/2 &t t& Ku) e '" (2. 19)

so that the scattering function is Gaussian with a
full width at half -maximum given by

&(v = 4(ln2)'t'Ku . (2. 2o)

The asymptotic relation (2. 19) is the classical limit
of the impulse approximation' and is the same as
the scattering function for an ideal gas. '

D. Behavior at Small z

correct as long as it diverges slower than t".
E. Behavior at Intermediate x

With decreasing g the scattering function changes
continuously from the Gaussian shape characteristic
of the impulse approximation at large K to (presum-
ably) the Lorentzian shape characteristic of simple
diffusion at small g. The main purpose of the pres-
ent article is to derive an expansion of the form

2v7T KQ K 2KB

(2. 27)
in which the quantities G„(x) describe the effect of
final-state interactions which are neglected in the
impulse approximation. To obtain the above ex-
pansion it is first necessary to calculate the mo-
ments of the scattering function. This problem is
dealt with in Sec. III.

III. MOMENTS OF CLASSICAL INCOHERENT
SCATTERING FUNCTIQN

The asymptotic behavior at small z cannot be
established as rigorously as it can at large z.
Formally, one can argue from (2. 10) that

p, (t)-Dt —C as t-~, (2. 21)

D = (ttr/tn) J !((t)dt,
c=(t r/m) J t!((t)dt.

Similarly one can argue in general that

p„(t)-D„t-C„as t-~,

(2. 22)

(2. 23)

so that in the limit g-0, t- ~ with v g= const, we
have

(2. 24)
F(K, t)-e '"' '

and in the limit »-0, ~-0 with K /u&= const, we
have

where D is by definition the coefficient of self-dif-
fusion and

F(K, t)= ~&, S„(K),
(it)"

fl-0 8
(3.1)

where S„(K) is the nth moment of the sca!tering
function:

S„(K)= ( 2) „=i (d S(K, (d) d(t& . (3. 2)
. „s"F(», O)

mOO

If the velocity v(t ) in (2. 5) is expanded in powers
of t' it follows from (2. 4) and (3.1) that

S,(K) =1,

A. General Expression for Moments

We exclude for the time being the possibility of
hard-sphere interactions in order that r (t) can be
regarded as a smooth function of t. In this case the
quantity E(K, t) defined by (2. 3) can reasonably be
assumed to have, at least asymptotically, an ex-
pansion in powers of f, of the form

D~
S(K, R) 2 D 2)27T CO +(Dg

(2. 25) S„(K)= Z S„„K", n=l, 2, 3, . . . (3.3)

so that the scattering function is Lorentzian with a
full width at half -maximum given by

in which

+40= 2Dg (2. 26)
re-n + '

firn 5n, n(+ n2+ ~ "+nm+m
ny=0 n2=0 "m=0

The weakness of the above argument lies in the
fact that there is as yet no proof that the quantities
D„and C„are finite. The possibility that these
quantities may diverge must be taken seriously be-
cause it has recently been established ' that at
long times &((t) is proportional to t 't' so that, while
D is finite, C diverges as t'~ . Qn the other hand,
the asymptotic relation (2. 23) is more stringent than
necessary to establish the validity of (2. 25). Even
if D„were to diverge for n ~ 2, (2. 25) would still be

where

»„(n,n; n„), (3.4)

(n& & (n2&. . . (nm&}

S„(n&n2 ~ n)=~
(n&+1)!(n2+I)! ~ ~ (n +1)!

(3.5)

and v'"' denotes the ~th time derivative of v. For
an lsotroplc cla881cal system S„ 18 nonvanishing
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only if n and m are both even.
Since S„(n~n2 .. n„) is invariant under any permu-

tation of n, n2 n„, it follows from (3.4) that, for
m=2, 4, 6, ~ ~ ~,

s„„=s„(o"o),
nI ntS„„2=—

( 3) f
Sn 2(20 ~ 0) —

(
')

f f
Sn 2(110 0),

ni ni ni$„„4=(,f
S„. (40 ''0)+, , f

S„(310 '0)+,
f f

S (220 ~ 0)+8(n —8)
N — ) ~

ni
x "',S„,(21!D 0) +, 2, (0, S„,(11110. 0)),n —7 !2! "' (n —8)!4!

ni nI nI

(3.6)
ni ni ni—

( f f
S„3(330 0) —e(n —10)

f f
S„3(4110 0) +

f
S„3(3210~ ~ 0)

+ ',
,

S„~(21110 ~ 0)+ ',
,

S„s(2220 ~ D)+, '), , )~ S„~(22(10~ ~ ~ 0))n —10 !3'

—e(n —12), , S„3(211110. 0)+, ,
S„3(1111110'' '0) ~,jn —11' .'4 f n -12!6! i

n-2

S„,2=i' "
, H S2(nq, n——nq —2),2t n, 0

in which

e(n)=0, n o

=1, &O. (3.7)

n-2 2

( ) f( 1) f f 2 2 2

B. Velocity-Independent Interatomic Forces

(3.9)

The number of independent coefficients in (3.6) can
be reduced with the help of the relation (AB) = (AB)—
and one finds that

S„„=(v"),

It is now assumed that the atoms interact via
velocity-independent forces so that the total poten-
tial energy of the system, t/", is a function only of the
positions of the atoms, r&, r2, . . . , r„. The Cartesian
components of these vectors will be denoted

8 ~i ~ 2 n-4
Snn-2

( 4)f4f (V v )

8 ~ "2 n-6'-=(.-6) 6. '"" '
ni—e(n-8)

( —8)!8! v v" ),
ni

9On.i ~ ~ 2 ~ 2 n-10

(x —10)!10! )

(3.8)

=(e, e, v),
r2=((f4 93 93)

r N ('73N 2 f 3N-1 73N)

so that, with v
&

= q„we have

v, = —(1/m) V, ,

v', = —(1/m) V„v, ,

Vf ———(1/m)Vf»v& v&+(1/m )Vf&VJ,

where

ey a2V
y,=, V„.= —, etc. ,eq; ' '

8q&~q&
'

(3.1o)

(s.11)

(3.12)

n/2 1)2)

~ 6 n-12' )
( -12) f12 f

("' ""

where the last line follows from the identity

and summation over repeated indices is implied.
The velocity components v, are statistically inde-
pendent both of each other and of the quantities
V,&...,. Moreover, the velocity distribution is Max-
wellian so that
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(vt"&=
t

u ", n=O, 1, 2, . . .(2n) t

n
(3.13)

(3.14)

where u = (kT/2m)'i' as before. On substituting
(3.11) into (3.8), with v = v„and with the help of
(3.13) and the relation~ S,(~) = i,

Ss„(t()= (2n) lu'"

Ss(t() = 2u't(',

(3.18)

for s = 1, 2, ~, (n —1). It follows from (3.3) that
for velocity-independent interatomic forces the
moments of the classical incoherent scattering func-
tion for an isotropic system are of the form

it follows that

S,„,„=(2n)!. " —,i,

, ,„e(n —3)S,„, 4=(2n)!u"
(

, ,„e(n -4)
S,„,„,=(2 ) lu"

( j ~

e(n -4)
46+

( 4)t 46

(s. is)
J68

e(n —6) e(n —6)
+( 6)t 610+( 6)t 612)!

, s„e(n —2)S,., ...=(2n)!u" (,,
J,4),j ~

2(n-m), 2(n-m+r) +
km=( r=l (m -r) n ~ )

where n=2, 3, 4, ... .
C. Additive Central Forces

We now assume that the atoms interact via addi-
tive central forces so that

N

v(rl rs "
f& /=1

(s. i9)

where r„=r; —r, and (t)(r) is the pair potential. In
the thermodynamic limit, N- ~, 0- ~ with p = N/0
= const, it follows on substituting (3.19) into (3.16)
that

2, 2 (2n) 'u (~2 2, 2 )

where n=l, 2, 3, . . . and

I II
Jsp= Jsp+Jsp

where

(s. 2o)

~.,=(1/st)(p& v„&),
~„=(1/6! )(-,' p'( v,', &),

~46= (1/6 l)(s p ( V 11 &
—P& Vllll &)

+66 = (1/7! )(2P ( vl(vll'vi j & + BP ( vl( j))
~, ,.=(1/7)) [ —", P'& V„V1;&

(s. iB)

t 2„)' e(n-s r)—
S2n, 2(n-n) = (2n).u ~ ) x

t ~sn, s(nor)n —s -vi ~

(3.17)

+ 8P (& v,'„&—2 & v„„v„&)1,
&,,„=(1/7 t)(f p'&v,', & 7p'(v„„-v„&+p&v„„„&),
and P = 1/k T. Hence it is evident that in general

424= 6 pp(PL(),

Z4s=~s 1(p(P Ls)

IIJ24= o

J,",= ~ p'p'(P'le, ),

L, = f L,( r)g( r) dr, (3.22)

in which g(r) is the pair correlation function and

!Igg=+sp ((p(p Ls 6 PL4) 1 ~ 46= iss ~ P (P ~2) !
(s. 21)

~66= s (tt/7!)P(P Ls+3P Lg),

&g, lp=rs (p/7l)p[s O'Lv+2P'(Ls —2Lp)1

&g 12= ss (tt/7 l)p[ 6 P Llp 7P Lll+PL121

The quantities L
&

are integrals of the form

Ll(r) =r (t) + 2r(t) Ls(r)=r Q +2/

Ls(r) =3r (t) 2+4rg (t) +8/ 2, Lg(r)=r (t) +4rg

I, ,(r) = rsy'"+(2/r)y", I,,(r) = rgb""+ 6[y" (1/r)y'—]2,

L7(r) = Srs(t) 6+ 2r(t) 2(t) + 2(l) P + (8/r)g

I.6(r) = 3r (t1"' + 4rp "'[p"—(1/r)(t) ']+ 16[(t)"—(I/r)y']

I.p(r)=sr (t)""(t)"+Br/' [Q' +(1/r)Q ] —12[/' —(1/r)(t) ]

Llp(r) = Br (!) + Br(t) (t) + 8(t) Q +(16/r)(t)

L»(r) =r Q [5(t) +(2/r)&f& ]+r(t) [12(t) +(16/r)Q ] —16[(t) —(1/r)g ]

Lls(r) = 5r (t) +SOr(!)

(3.23)
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where the primes denote differentiation with re-
spect to r .The quantities Mz in (3.21) involve the
triplet correlation function g(r, s, f), in which r, s
and t= s —r denote the relative positions of three
atoms:

~0(~)=1, ~2(~)=O,

'&-' e(2. -p)
622(K) = ~ 2s' 2s, 26 ~

K

(4. 5)

cos8 = (r + s —t )/2rs . (3.25)

The remaining quantities Jgg& Jg ip& and Jg» de-
pend on both the triplet and quadruplet correlation
functions but have not been calculated explicitly.

IV. CLASSICAL INCOHERENT SCATTERING FUNCTION
AT LARGE MOMENTUM TRANSFER

A. Series Expansion in Inverse Powers of v

Since the odd moments vanish identically, (3.1)
can be expressed as

( )nt 2n

z(~, f) = 5, „s,„(~)

Mp f0 dr fjjds fjj f df Mp(rs f)g(r, s, t)

(3. 24)
in which

M1(r, s, t) =cos erg (r)sp (s)

+ 2(1 —cos'e)r y "(r)y '(s )

+ (1+cos'8) y'(r) jtj '(s),
(3.25)

M,(r, s, t) = (1+2cos2e)rjIj "(r)sg"(s)

+4(2 —cos 8)ry "(r)y'(s)

+ 2(3+ cos 8)jjjj'(r) jtj'(s),

and 8 is the angle between r and s so that

in which p = 2, 3, 4, . .. . The above expression for
626(j4) allows the terms in (4. 3) to be rearranged as
a series in inverse powers of K of the form shown
in (2. 27) with

2s
G„(x)= &~ Z„„H„(x).

p=s+1

In particular, we have

G,(x) = Z„H,(x),

G4(x) = /46 H8(x) +J48 H6(x),

G6( ) 68 H8(x) + ~6, 10H10(x) + 6,12H12(x)

(4. 7)

(4. 8)

The above correction terms to the impulse approxi-
mation due to final-state interactions have the fol-
lowing structure as is clear from the results of
Sec. III C: G2(x) is determined entirely by the pair
correlation function; G4(x) involves in addition the
triplet correlation function, G8(x) the quadruplet
correlation function, and so on.

&0j = 4(ln2)' j4ut I —I'(jj)], (4. 9)

in which I'(j4) represents the narrowing due to final-
state interactions. The expansion of this quantity in
inverse powers of K takes the form

B. Full Width at Half-Maximum

The full width at half-maximum of S(g, j0) can be
expressed in the form

where

= e '""" & (—)'(jjut)"4:„(~),
P=O

6 ( )Pn

jj (p -n)!(2n)! (jju)'" '

(4. 1)
)

s+1

1(~)= 5
s=i K

where

I"2= 1.1534J24,

I = 3.2659J —11.2515J +1.1390J

(4. 1o)

(4. 11)
Hence, one obtains from (2. 2) the following Gram-
Charlier expansion of the incoherent scattering
function '

H„(x) = „e" dx" (4. 4)

On substituting (3.18) into (4. 2) one finds, with the
help of the identity

S(jj:, jd) = e '" ""' H 4:2,(jj:)H26
2KQ

(4. 3)
in which H„(x) denotes the Hermite polynomials,

I' = l1.2515J —45. 3975J +206.8121J
+ 3.5393J24 J46 —1.5423 J24 J48 1.5783 J24 )

in which the numerical values of the coefficients are
determined from the relations

1.1534 = —2 Z+ 2,
3.2659= 2 Z —T Z+ ~8

11.2515= --,' Z'+7Z'- ~o4 Z+ —",',
1.1390= —4Z + 8 Z 8 Z+ 2 ~

3 19 2 51 9

45. 3975= —'Z ——Z + —Z — Z+4 4 8 32

s ( )sn
5 s8(P - f)j

derived in the Appendix, that

(4. 5)
206. 8121= ——'Z + 2 Z — Z

3465 ~2 519 75 ~ 311 85+ 4 w —
32 ~+

3 5393=-'Z ——"Z'+ ~Z —"' Z+2 2 + 8 16 32
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DK
I'(K) 1 1fp as K

2(ln2j u
(4. 13)

1.5423= --,'Z5+ ~44 Z4 —666 Z3

2205 g2 11655 Z y 4725
8 32 32

1 5783= —Z ——Z+P Z —~Z+' Z—6 8 6 2 32 ~2

(4. 12)
where Z= ln2.

Since, in practice, only the first two or three
terms in (4. 10) can be determined explicitly, the
usefulness of this series is restricted to large
values of z. For small values of g, on the other
hand, (2. 26) yields the asymptotic relation

sponding states of the form

J p(p, T)= (1/v')J*p(p, T*), (5. 2)

in which p* = po' is the reduced number density and
T*=k T/e the reduced temperature.

Verlet has performed a molecular dynamics
calculation of the pair correlation function g(r) for
the Lennard-Jones fluid for a wide range of densi-
ties and temperatures. His results for p*=0.850
and T~ = 0.719, corresponding to a state of the liquid
near the triple point, have been used in (3. 22) to
determine the values for J,*p shown in Table I. Also
shown in this table are values of J~«and J~48' ob-
tained from (3.21) and (3. 24) using the Kirkwood
superposition approximation, 20

C. Cumulant Expansion
g(r, S, &) =g(4)g(S)g(&) . (5. 3)

When (4. 1) is rearranged with the help of (4. 6)
to give a cumulant expansion of the form (2.6) it is
found that, with J02=—1,

pl(t) E ( ) +2,2 2(uf)
n=p

p 2(t) ( ~48 2 ~ 24)(uf) (~6,10 ~24 ~46) (ut)

+ (~8,12 8 ~ 46 ~24 ~ 68) (u t)

P8(&) =( ~6,12+~24~48 8 ~24) («)

(4. 14)

Hence it follows from (2. 9) and (2. 12) that the time
expansions of the velocity and force autocorrelation
functions are

x(t) = ~p (—)"(n+ 1)(2n+ 1)42„,2„,2(ut) ",
n=p

4'(t) = 3(kT) 5 (-)"(n+1)(n+ 2)(2n + 1) (4. 15)
nK

x(2n+3) J2„„,2„,4(uf)'" .

V. LENNARD-JONES LIQUID

The results obtained above are applied in this
section to a system for which P(p) is represented
by the Lennard-Jones potential,

y(p') = 4~[(o/r)" —(a/r)'] . (5. 1)

In this case the quantities J,p obey a law of corre-

Some years ago Schofield calculated the terms
up to t in the expansion of p, (t). In the present
notation he obtained J,4, J46, and J«. The calcula-
tion was later repeated by Nijboer and Rahman, '
who found the same expressions for J24 and J46 but
a different one for J«. The present results, shown
in (3.16), agree with Nijboer and Rahman and we
conclude that it is Schofield's expression for J«
which is incorrect. Schofield also evaluated the
leading term in p2(t) and his result for J48 agrees
with that given in (3.16). The remaining two quanti-
ties in (3 16) Z8 10 and J8,2, have not previously
been calculated.

TABLE l. Values of J,& for a Lennard-Jones liquid
with reduced number density p*=0.850 and reduced tem-
perature T*=0.719.

gkii gp2I +g+II
sp sp sp

(x10 ) (x10 )

~sp

(Ref. 16)

2, 4
4, 6
4, 8

6, 8
6, 10
6, 12

65.1
4. 20 x103
1.02 x103
4.65 x10
2.20 x10"
1.98 x104

0 65.1 45 49
1.03 5.23 3.2 x10'
1.53 2.55

55c 62

From (3.21).
"From (4. 15).
From the second moment of the velocity spectrum.
From isotope separation measurements on liquid argon

(Hef. 25).

This approximation generally overestimates the
magnitude of g(4, s, t) for nearest-neighbor triplet
configurations by an amount which is typically
10-15% at liquid densities. ' One further ap-
proximation was also employed, based on the fact
that the integrand of (3. 24) is appreciably different
from zero only when r =s =o. In evaluating M,- we
therefore put cos8 = 1 ——,

'
(t/o) and let the integra-

tion over t run from 0 to 2o. This latter approxi-
mation greatly simplifies matters since the expres-
sion for M,. then reduces to a sum of products of
single quadratures.

The value 65. 1, which we have found for J ~24, is
in good agreement with the empirical value 62 ob-
tained by Nijboer and Rahman from an analysis of
phase equilibrium isotope separation data for liquid
argon. ' The remaining values of J~~ shown in
Table I were obtained by ¹ijboer and Rahman from
molecular dynamics data for a Buckingham poten-
tial with p~ =0.830 and T*=0.714. The discrepan-
cies between these values and those we have calcu-
lated for the Lennard-Jones potential are presum-
ably due in large part to the fact that the integrals
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1.0.,
LENNARD- JONES LIQUID

I

P=pl T -.'~p'J, ~'y'(~)g(~)dr, (6. 3)

0.8— where P is the pressure. To evaluate such inte-
grals it is convenient to express g(r) in the form

0.6—
g(~) e ss-(t') g(~) (6.4)

0.4—

OP—

0.0
0

I

2 6 8
~ ( A-')

10 12

in which the quantity g(r), unlike g(r), remains
continuous at r= o in the limit a-0. 6 Substituting
(6. 1) and (6.4) into (6.3), and noting that in the limit
a-0 the integrand is nonvanishing only at r = o, one
can show that for the hard-sphere fluid,

FIG. 1. Comparison of the approximants for I'(g) cal-
culated from (5.4) (full lines) vrith the molecular dynamics
result of Nijboer and Rahman (Ref. 16) (dashed line).

(3.22) and (3.24) are very sensitive to the values of
the pair potential and correlation functions in a
small neighborhood of the point x= o.

The calculated values of J,*~ shown in Table I
were used in (4. 11) to obtain the following expansion
of r(g) in inverse powers of ~:

r(z}=O. 751(IO/zg)'+O. 678(10/&g)'

—0. 147(10/xg) + . (5.4)

The coefficient of z was calculated with J,~= J,~
for sp = 6, 8; 6, 10; and 6, 12 and is therefore to be
regarded simply as an estimate of the order of
magnitude of this quantity. The curves labeled 1,
2, and 3 in Fig. 1 were computed from (5.4), with
cr given the value 3.405 A appropriate to argon, '
by truncating the series after the first, second, and
third terms, respectively. The dashed-' curve was
obtained by Nijboer and Rahman' directly from
their molecular dynamics data and merges nicely
with the approximants calculated from (5.4). It
will be noted that for most purposes one need retain
only the leading term in (5.4) if x 4 A ' or, more
generally, if zp ~14.

VI. HARD-SPHERE FLUID

A. Equation of State and Enskog Factor

The theory developed above cannot be applied di-
rectly to the hard-sphere fluid because it is based
on the assumption made in Sec. IIIA that the posi-
tions of the atoms are smooth functions of time. To
discuss the hard-sphere fluid we therefore consider
first a pair potential of the form

P = pk T[1 + pbg(g) ]I, (6. 5)

where b = (
—', rr)g' is the second virial coefficient and

g(g) is the Enskog factor. 's sv

B. Calculation of J,z
The integrals (3. 22) and (3.24) can be eve, luated

in a similar way and, keeping only the dominant
term as a-0, one finds that

J s4= —'(x]/ga),

~ ss
= +o (rl/«')

~ s, lo ls'rs (n/ga

in which

Z ss= s's (rl/ga'),

J s's=
~s (q/ga'),

~s, is- esses (rl/ga ) ~

(6.6)

rl = pbg(g) = P/pjs T —1, (6. I)

llJ24=0,

2 2 4 f 2

(z —z +-,'z )g(g, o, gz)dz, (6.8)135 g

2 2 4

(3z —2z'+ —,'z')g(g, g, gz)dz .4' 135 a'

S(g, (u)-I/(u' as (u- ~, (6.S)

In the limit a-0, the quantities J46 and J48 are
negligible compared with J46 and J 48 because the
former are proportional to a and the latter to a '.
Physically, this is a reflection of the fact that three-
body collisions occur with vanishing frequency in the
limit of a hard-sphere fluid. Since this is true of
n-body collisions in general, we infer that J,~ =J,'~
for a hard-sphere fluid.

The fact that the quantities J,~ all diverge in the
limit a-0 means, according to (3.18), that the
fourth- and higher-order moments of the scattering
function are infinite. Hence, we have

y (g) &v-o) /s

and later take the limit g - 0 in which

y ~)-

(6. 1)

(6. 2)

where 3 & n &5. The long high-frequency wings are
characteristic of the hard-sphere fluid and reflect
the fact that the velocity is a discontinuous function
of t.

The integrals (3. 22) are similar to that which
occurs in the virial theorem,

C. Velocity and Force Autocorrelation Functions

In order that the expression (2. 15) for p, (t) satisfy
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asymptotic and does not include effects of intercol-
lisional correlations. Equation (6.11) does not sat-
isfy (6. 10) but gives instead, in the limit a- 0,

J t"C(t)dt=2A, n=0

where

=0, ~=1, 2, 3, (6 ~ 12)

0
0

X = (12~,'i/o) (2~)'"(aT)"',

(,= f (1 —2x'+ —", x' — ) dx .
p

(6. ia)

(6 ~ 14)

FIG. 2. Force 3utocorr elation func tion.

It follows from (6. 12) that the intracollisional part
of the force autocorrelation function for a hard-
sphere fluid is a 0 function:

C(t) =X 5(t), (6 ~ 15)

1, t"O(t)dt=o, n=0

(2. 21) it is necessary that '
and hence, from (2. 14), that the asymptotic form
of the velocity autocorrelation function at small t
is given by

= —Smkr, n= 1
„(t)= i -~

l tl /6mar . (6 ~ 16)
= —6m D, g=2

= —18m C ) n=3 (6.10)
An estimate of f, can be obtained by expressing

(6. 14) in the form

The relations for n=0 and 1 also ensure that y(t)-0
as t- ~, as is evident from (2. 14). The simplest
form for 4 (t) consistent with the above relations is
that illustrated in Fig. 2, consisting of a positive
peak at f, = 0 and a negative tail at large t. The
positive peak represents, physically, the intracol-
lisional force correlations and persists for a time
of the order of Tp the duration of a single collision.
In the present context 70-a/u and vanishes in the
limit of a hard-sphere fluid. The negative tail, on
the other hand, describes the intercollisional cor-
relations among the forces acting on a given atom
in successive collisions and persists for a time of
the order of v. , the mean time between collisions.
Intercollisional correlation effects play an impor-
tant role in Brownian motion, nuclear electric di-
pole relaxation, collision-induced infrared ab-
sorption~' ' and collision-induced light scatter-
ing. '

Substitution of the expressions (6.6) into the ex-
pansion (4. 15) for the force autocorrelation function

gives

~(t) = 6q(kT) ut 10 ut )
+ ——l- ~ ~ ~

oa a 3 a]
(6.11)

This expansion clearly describes only the intracol-
lisional part of the force autocorrelation function
because it is an expansion in powers of t/ro with
density-independent coefficients. It is felt that the
asymptotic nature of the above series is not due
entirely to the fact that (6.6) gives only the dominant
contribution to J,p, but also to the fact that the
formal Taylor seri.es expansion (4. 15) is itself

OO 2(,= J e "(1+—,
' x'+ ~ ~ ~ ) dx

0

= -: (-:.)'".—:(-:.)'".~ ~ ~

= 0.627 +0. 157+ ~ '
=0.784 (6 ~ 1V)

This is very near the exact value, $, = (2/z)'+
= 0.V98, obtained from a direct evaluation of j(0')
for the hard-sphere fluid. ' ' In terms of the exact
value for g, the asymptotic expressions for the
velocity and force autocorrelation functions become

x(t) =I -2ltl /»,
C (t) = (4m' r/~)5(t),

(6 ~ 18)

in which 7' is the mean time between collisions":

m—
4o~pg (o) „PZ &I

D. Cumulant Expansion

(6 ~ 19)

On combining (6. 18) and (2. 15), one finds that

p, (t) =u (t —2ltl'/9~), (6. 20)

1 q(ut)' 8 q(u t)"
150 oa' 15V5 oa'

(6.aS)
2 q(ut)"

6615 oa'

as asserted in (2. 1V). The corresponding asymptot-
tic expressions for p~(t) and p, (t) can be obtained
by arguments similar to those employed in Sec.
VIC. Thus, one begins by substituting (6.6) into
(4. 14), finding that
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from which it follows that, in the limit a - 0,

d p2(t) 2)2tltt 6( )
dt o

d'p, (t) 2&3tlu'
( )0'

where

$2= f (+x —V68x + ~ )dx,

f (
42240 4 . . . )d

0

For a &0, p2(t) and p3(t) satisfy the identities

(6. 22)

(e. as)

Enskog theory of transport phenomena in a dense
hard-sphere fluid ts'av

Molecular dynamics studies of the hard-sphere
fluid by Alder and %'ainwright ~ 3~ show that the
decay of X(t) is in fact exponential to a good approxi-
mation at all fluid densities over the time intervals
investigated (I tl ~ 8r) .The molecular dynamics
value for D agrees within 20% with the Enskog value
(e. sa).

For very large values of t, however, X(t) no

longer follows an exponential decay but obeys a
hydrodynamic t / law.

F. Calculation of 1 {z)for the Hard-Sphere Fluid

0

P,(t) = 7, (t —t')'
1 p

(6.24)

so that from (6. 22) it follows that, in the limit
a-0,

p, (t) =((23I/6 t(r) ~ut~ 3,

p, (t) = ((3tl/7 l(T) iuti ' .
E. Markovian Approximation

(e. as)

~(t) e 2lt I l3t-
from which it follows from Sec. IIB that

37' 1
x(~ =—

az (-,' 3(u7 )2+ I '

4(1}
I
5(1} ~-21 I 0

)
4~us (

7. ( 37

(6. 26)

(6.27)

(6.28)

The simplest model for y(t), consistent with
(6. 18) and the requirement that y(t)-0 as t-0, is
that of an exponential decay,

= 1 -0.7984 gl . (e. ss)

For large values of g, on the other hand, the
series (4. 10) provides a useful representation for
I'(K). If the coefficients (4. 11) are evaluated from
(6.6), it follows that

ga 0. $5447 D. 07D 141 0.010555
)(KQ) (K43) (KQ)

(e. 34)

Hence, with X=1/K, it is easily seen that, in the
limit a- 0,

d r(4(.) afoul
( ) (6.36)

d~ 0

where

g = f [(2)(0.38447) —(12)(0.OV0 141)x

The quantity I"(K), which according to (4. 9) mea-
sures the narrowing of the classical incoherent
scattering function due to final-state interactions,
is given for sma, ll K by (4.13). If the Enskog value
(6.32) for D is employed in the latter relation, then
one finds that

r(K}= I --,' (2/h 2)'"Kl

amltr (-.' 3(d~)'
tt7 (2 3(d3.) +1

p (t)= l-9m ~ 2l t l -8l I /37'

32 37

in which E is the mean free path, '

l = I/&2tt(r2pg(tJ) .

Also, from (2. 21), we have

D = g3 tt(l /7 ), C =
~g

tt l

(e.29)

(e. so)

(e.sl)

(e. sa}

+(SO)(O. OIO 633)x —'. ]dx

=O. V3496 f e ' (1 —0.15703y'+ ~ ~ ~ )dy

= 0.651 34 —0.076 71+
=0.57 .

If a &0, r(A) satisfies the identity

(e.se)

Jp
(e. 37)

from which it follows with the help of (6. 35) that, in
the limit a-O,

The exponential model (6. 26) means, physically,
that one neglects memory effects and assumes
Markovian behavior. From the point of view of
the theory of Brownian motion it is equivalent to
the assumption that the motion of the atoms is
governed by the Langevin equation. The expression
(6. 23) for D is identical'3 to that obtained from the

r(~) =(tq/~)~~~,

or, from (6.V) and (6. 31),

7( at 0. 27
3Kl Kl

(6.38)

(e. 39)

The asymptotic relations (6.33) and (6.39) indicate
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that with decreasing g the change of the scattering
function from the Gaussian shape, characteristic
of the impulse approximation at large g, to the
Lorentzian shape, characteristic of simple diffusion
at small g, occurs in a hard-sphere fluid when yl
-1. Since g ~1 A in most neutron scattering ex-
periments it follows that departures from the im-
pulse approximation are appreciable only if l 1 A,
i.e. , only at typical liquid densities.

APPENDIX: DERIVATION OF EQ. (4.5)

The identity (4. 5) can be derived with the help

of the binomial theorem by noting first that

5~ 0= lim
&

(e —1)e(p)
a 1 P

(p) ~ p!,()
p I 0 (p -e)!e!

P ( )p-m
e(p) 5

( ) ~
~

Equation (4. 5) follows immediately if one replaces
p by p -q and puts n=q+m.
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