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Recently, a self-consistent scheme for the mode-mode coupling theory of critical fluctua-
tions was developed by Kawasaki in which the decay rate of concentration fluctuations for a
binary critical mixture was obtained in the simplest approximation of ignoring all the vertex
corrections. In this paper we calculate the contribution of the simplest vertex corrections.
We find that the corrections are 2.44/p for q&(K, and 0.40% for q&&K, where q and K are
the wave number and the inverse correlation range of concentration fluctuations, respectively.

I. INTRODUCTION

The physical ideas of mode-mode coupling in crit-
ical phenomena were perhaps first introduced by
Fixman, who considered the critical behavior of
shear viscosity in a binary mixture. The idea was
reformulated in the language of a time-correlation
function by Kawasaki. ' Later, Kadanoff and Swift'

- developed a formalism for transport coefficients,
which can be given a schematic interpretation. In
these theories couplings among hydrodynamic fluc-
tuations play a crucial role in determining the mac-
roscopic behavior of the system. Recently this
formalism had been further extended with the aid
of a generalized Langevin equation due to Mori in
which kinetic equations obeyed by critical fluctua-
tions are derived. A main result of the theory is
the Dyson-type self-consistent equations for the time
correlations of critical fluctuations of the following
form:

Gg (t)=Gg (f)+ 10 dt, JO' dt~Gg (f —ti)

xZ& (f, fz)G,, (f, )

Ur (f)—:(a- (t)a- (0)) . (l. 2)

where G; (f) =(a;, (t)az, (0))i(at a~ ) is the renor-
malized propagator for the gross variable a; with
a wave vector q, Z;~(t& —tz) is the proper "self-ener-
gy,

" and G& (f) is the unperturbed propagator ob-
tained by ignoring coupling among hydrodynamic
modes.

By introducing a renormalized vertex represented
by a heavy dot ~, a corresponding graphical equa-
tion for G; (&) is given in Fig. 1, where the renor-
malized correlation function U;, (f) is given by

II. CALCULATIONS AND RESULTS

According to the rules given in Ref. 4, the sim-
plest vertex corrections for Fig. 1 are found to be
of the type shown in Fig. 2. Note that there all the
vertex renormalizations to the vertices at each
corner of the "triangles" in the right-hand side of
Fig. 2 are ignored. The unperturbed propagator
G';, (t) is given by

G& (f)= 8(t)e""~~ ~«" (2. 1)

where

(2. 2)

and w; and z; are the frequency and damping con-
stant of the mode a; in the absence of interactions

The theory has been applied, among others, to the
order parameter dynamics of binary liquid critical
mixtures, as well as of fluids near the liquid-gas
critical point, and excellent agreement with the re-
cent light scattering experiments has been achieved
throughout the hydrodynamic and critical regimes.
However, this particular calculation ignores all the
vertex corrections in the equation shown in Fig. 1.
Since the expansion in terms of renormalized prop-
agators contains no obvious small parameter of ex-
pansion, there is no a Pxio~i reason to ignore ver-
tex corrections, and as it stands, a possibility can
not be excluded that the excellent agreement with
experiments could be fortuitous. Thus it is impor-
tant to examine the effects of vertex corrections to
the order parameter dynamics. A calculation of the
contribution of the simplest vertex correction, in

the case of a binary fluid mixture, will be presented
in Sec. II.
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FIG. 1. Graphical equation for G ~(t). Thick
straight lines represent G-~.(t) . Thin straight lines rep-
resent G~~(t). A wavy line is a renormalized correlation
function U-~(t) given by (1.2).

G,-.((u) = l/[- f (u - s ~;„+y;. —Z;.((u)], (2. 4)

G; (+)= f G;, (t)e' ' dt, etc. (2 6)

From this equation one can see that the self-energy
Z;, (t) plays the role of an additional contribution to
the decay rate of critical fluctuations from the non-
linear mode coupling. In this paper we will focus

between modes. The Dyson equation then becomes

~

~

8—-f~;.+rg. Gg. (t)= «pZgn(t-4)G;a(t2)+6(t).
0

(2. 3)
After making a Fourier transformation, we obtain

~ = +Q+g i ~+~
FIG, 2. Simplest vertex corrections.

on the investigation of Z; (t).
In the case of a binary fluid mixture where we

will only be concerned with slower diffusive mo-
tions, the only gross variables' associated with
them will be considered. They are the relative
concentration c;, the transverse components of the
local velocity v;, and the local entropy s. Here,
as we are interested in the critical anomaly of the
decay rate of concentration fluctuations, we only
consider Z;, (~), and, for simplicity, we drop the
local entropy s in view of the absence of any criti-
cal anomaly in the thermal conductivity.

The equation for Z;, (&), which includes the sim-
plest vertex corrections, is given graphically in

Fig. 3.
The first two terms on the right-hand side of

Fig. 3 have been studied earlier. The third term
has the form

Z;, ((u)= f e'"'dt f' ds f ds Q [(—2il g;, „-,; „- ) G," g„(t —s, ) G„,(t —s )(- 2i 'V; g, ,-, ; g f, )
~&~ r Pr. 7

Gf, (sq —s2)Xl, (-2sgp, ;-lc,jell) Gq-k-fc(sf)xk+fuGpP+fz(s2)(- 2z'U; P f, f f, ,",)], ,2. 6)

where

x;.= & I~;I'&,

Xp„(+j~j) 6n8 y2
~g fM g k(Mkg k+T

o. , P=x, y, z

(2. 6')
1 g (q —k) (a- k).),

k~T k q 1 1
, k, q-R 2 y1/2 2

Xkc X tl -fr,c

Near the critical point, we assume that the
kinetic shear viscosity p/p remains finite as pre-
dicted by the theory, and that the diffusion con-
stant behaves as D- ~, where d is the dimension-
ality. ' Then, denoting all the momentum by q,
the scaling property of Z,» with ~= 0 is found from
(2. 6) and (2. 6') to be

Z,~, = vsf(q/K) . (2. 9)

Indeed the first six terms on the right-hand side
of Fig. 3 can be shown to have the same scaling
property, namely, they all have t' he form & f(q/&).
On the other hand, the last four terms scale as

Z, (~) =
c

V'
C c

C

I

transverse velocity has a lifetime of the order
(q q/p)

' and also the fact that X„-q ~'" .
The scaling form of (2. 7) is then

Z,»--~ f(q/a) . (2 6)
where x is the inverse of the correlation length and f
is a suitable scaling function.

Thus in the three-dimensional case, we have

q'(n/p) x,. " q'D q'(&»)

2(d-1) L)
-1

-q d (2. 7)

+ ~ c

C C

Here we have used the fact that a state with only
concentration fluctuations has a lifetime of the or-
der of (q &), whereas a state with at least one

FIG. 3. Self-energy including the simplest vertex cor-
rections.
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FIG. 4. Simplest self-energy.

~'" "f(q/x), or ~ f(q/x) in three-dimension case
(here we have used the fact that at $, q/p is much
greater than D). The difference in the behavior of
two groups of vertex correction terms arise from
the fact that in graphs of the latter group there is
no intermediate state in which only concentration
fluctuations appear. In investigating the critical
anomaly of the decay rate of fluctuation correla-

tions, one considers the case when both the wave
number q characterizing spatial inhomogeneity and
the inverse correlation length ~ are much smaller
than the microscopic wave number 4' . Thus the
most important contributions to Z",,(&) are the first
six terms of Fig. 3.

Since the contributions from the first two terms
to the decay rate Z;„(&)given graphically by Fig.
4 have already been investigated, 4 we will in the
following evaluate the contributions of the vertex
corrections Z+, (~) represented graphically in
Fig. 5, in which the propagators and correlation
functions are replaced by those obtained earlier.

The complete expression for Z;~(~) with (d- Z;„
is thus found to be

(2. 10)

Z;„(0)= —(k~T/6vg*) voK(q/z),

where

K(x )= g [1+x + (x' —x ') tan 'x] .

For the case where q «K,
Z;„(0)= —(ks T/67'*) x q

and when q»v,

(2. 11)

(2. 12)

(2. 13)

(2. 14)

Using this result of Z;„(0), one can evaluate
Z;~(0) numerically. For q» ~ the problem re-
duces to a three-fold integration, and we obtain

Z;s(0)/Z;~(0) = —2. 44 X 10 (2. 15)

where p* is the shear viscosity of the liquid mix-
ture at critical point, and G)"„(t)=e~)&+", etc. ,
with Zg&(0) given by Fig. 4 and (2. 11)below

Here we have used the fact that concentration
fluctuations decay much more slowly compared to
the viscous damping, and the fact that appreciable
(d dependence of Z„-„((d), etc. , appears only for
large comparable to viscous damping rate. Since
we are interested in the decay rate of concentra-
tion fluctuation near the critical point, we take
(d = 0 in (2. 14). [In contrast to Z-„„(&), here one
should expect an appreciable & dependence already
for &- Zp& because of the long lifetime of the inter-
mediate states containing only concentration fluc-
tuations. ] We also use the Ornstein- Zernike form
for y„",~ (k + x ), which still gives the correct
temperature dependence of the diffusion constant.

The result for Z;„(0)was found in Ref. 4 in the
closed form as

For q» ~, we have a five-fold integral, and we
find that

Z;~(0)/Zz„(0)= 0. 40x10 '. (2. 16)

Thus, the contributions from the simplest vertex
corrections to the decay rate of concentration fluc-
tuation amount to only 2. 44% for q «((' and to 0. 40%
for q»&. We did not evaluate Z;~((d) for more
general values of q and &, but we expect it to be
equally small too.

III. CONCLUDING REMARKS

FIG. 5. Simplest vertex correction contribution to the
self-energy + ~,g(~}.

The results obtained in the preceding section
give enough confidence in our earlier result [Eci.
(2. 11)]although we have not yet understood the
reason why the corrections turn out to be so small.
Note that the situation appears to be not so favor-
able for magnets where much larger contributions
are expected from the vertex corrections. ' Fi-
nally, for detailed comparisons with experiments,
the deviations of Xp, from the Ornstein- Zernike
form would have to be taken into account '" along
with the vertex corrections, and furthermore, a
small contribution of vertex correction can in prin-
ciple be detected by its dependence, i. e. , a devi-
ation from the Lorentzian line shape already at the
frequencies comparable. to the Rayleigh linewidth.
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Gyroscopic measurements of superfluid persistent currents in liquid helium below and near
the ~ transition are presented here. Measurements were conducted in a variety of sizes of
porous material from 0. 05- to150-p average size. Near the A, transition, both the superfluid
density p~/p and the critical velocity cu exhibit a 3-power dependence on the temperature dif-
ference from the transition. A depression of the X transition is observed for both p~/p and

co~ in the smallest pores. Data for pgp and m~ away from the transition and down to about

1.25 K are given and are in agreement with measurements made by other methods.

I. INTRODUCTION

Persistent currents in superQuid helium have
been examined extensively since their prediction
and discovery. ' This paper will discuss the
superfluid critical velocity co, and the superfluid
density p, /p in the region of the superfluid-normal-
fluid phase transition. '6 Near the A point both of
these quantities exhibit a simple-power-law be-
havior.

There is a wide class of second-order transitions
exhibiting a X specific-heat anomaly at a critical
temperature T,. One can discuss their thermody-
namic functions in terms of an order parameter g
that vanishes at T,. The scaling-law approach '
postulates that il =res(T —T,)t near T,. Although
the details of the singularity are not known, it is
still possible to determine various relations be-
tween their critical exponents. Consider the 3

point in liquid helium. Measurements of the specif-
ic heat'0 show a logarithmic dependence on the
temperature difference from the X point. The
scaling-law approach leads to a connection between
the temperature dependence of the specific heat
and the superfluid density with a critical exponent
of -', for the superfluid density. "

Persistent-current critical velocities discussed
in this paper have the same general properties as

those obtained by pressure-vs-flow-rate studies. '
That is, they are temperature independent away
from the X point, and they increase inversely with
channel size. Near the X point the situation is
quite different. The critical velocity is indepen-
dent of channel size and is proportional to (T„
—T) ~s. Langer and Fisher's have arrived at a
critical velocity exponent of —,. They consider the
flowing superfluid to be a metastable state which,
because of critical fluctuations, breaks up into
vortex rings. Their argument leads to a critical
velocity proportional to p, /p and hence a —,'-power-
law behavior.

II ~ EXPERIMENTAL METHOD

One of the most intriguing things about super-
fluid helium is its similarity to a superconductor.
A given ring of superconductor will trap a magnetic
field because of a persistent circulation of current
in the superconductor. It remains essentially as
long as the ring is superconducting and the critical
field is not exceeded. Onnes first detected such
persistent currents by placing the ring in an ex-
ternal magnetic field and obser ving the torque
produced. The mechanical analog for a superfluid
persistent current is shown schematically in Fig.
1. An externally applied rotation of velocity ~ is
applied to the vector angular momentum L~ of the


