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It has recently been proposed that several anomalous features in Raman and neutron scatter-
ing experiments on superfluid helium can be explained by the formation of two-roton bound

states. In the present paper we analyze in detail the structure in the superfluid helium excita-
tion spectrum associated with bound roton pairs and propose further experiments to examine
the nature of the bound states. The two-roton spectrum is calculated including roton-roton
interactions over a wide momentum range, and exhibits structure due to bound states which is
in remarkable agreement with experiment. Interaction of the two-roton bound state with the

single-particle excitations results in a hybridization of these states and a consequent splitting
of the single-particle spectrum into two branches; the calculated momentum dependence of
these branches is consistent with the neutron data. Inclusion of a finite roton lifetime is shown

to be essential to the interpretation of the experimentally observed excitation spectrum in the

vicinity of the bound-state energy. Possible physical mechanisms for the roton-roton inter-
action are considered, and the angular momentum character of the bound states is briefly dis-
cussed.

I. INTRODUCTION

Following the pioneering work of Landau some
thirty years ago, there has been considerable ex-
perimental and theoretical interest in the excita-
tion spectrum of superfluid helium. To explain the
peculiar thermodynamic properties of liquid helium,
Landau proposed that the excitation spectrum is
of the form shown in Fig. 1; i. e. , he suggested
that the spectrum consists of phononlike excitations
at small momenta plus a new type of excitation
(rotons) corresponding to the energy minimum in
the dispersion curve. Many of the physical prop-
erties of liquid helium, such as the viscosity, are
a direct consequence of the presence of these ex-
citations and consequently exhibit a temperature
dependence which can be related to the form of the
dispersion curve shown in Fig. 1. For low tem-
peratures, only a few excitations are present, and

they behave much like a gas. Thus, early treat-
ments of the thermodynamic properties based on
kinetic theory were reasonably successful.

Landau and Khalatnikov ' (LK) first considered
roton-roton interactions in an attempt to explain
the roton contribution to the viscosity of liquid He

Q. Lacking a theoretical understanding of the na-
ture of their interactions, or even the physical na-
ture of rotons, LK chose to represent the roton-
roton scattering by a simple 6-function interaction
of the form V05(r, —r, ), where Vo is constant and

r& denotes the position of a roton. To within avail-

able experimental accuracy, the LK theory was
remarkably successful in explaining a temperature-
independent roton contribution to the viscosity.
However, the experimental data were taken over a
limited temperature range, so that the temperature
dependence of the viscosity cannot be considered
as completely confirmed. In essence the experi-
mental data, albeit limited. suggest that the roton
lifetime is limited primarily by collision broaden-
ing from other rotons and therefore is inversely
proportional to the number of rotons. Further-
more, comparison of the LK theory with viscosity
data gives an estimate for the roton-roton inter-
action strength of I Vol = 2. 63X10 erg cm .

The theoretical understanding of the superfluid
helium excitation spectrum was placed on a more
fundamental foundation based on quantum mechanics
by the works of Feynman and Cohen. ' By means
of a variational calculation, 5 Feynman and Cohen
were able to derive from first principles the ex-
citation spectrum shown by dotted lines in Fig. 2.
Thus the latter theories verified the qualitative
nature of the superfluid helium dispersion curve
proposed by Landau and furthermore suggested
that rotons behave like quantum-mechanical analogs
of smoke rings. The above derivation of the excita-
tion spectrum does not include roton-roton interac-
tions. If we visualize rotons as modified free par-
ticle excitations which are moving surrounded by a
backflow of other helium atoms, i. e. , a description
reminiscent of classical smoke rings, then i'-' is
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FIG. 1. The excitation spectrum of superfluid helium
proposed by Landau is shown by the solid line. The
Landau spectrum exhibits a minimum corresponding to
roton excitations in marked contrast to the free helium
particle spectrum indicated by the dotted curve.

clear that the true roton-roton interaction is likely
to be very complicated and may depend on the rela-
tive orientations of the rotons. Nevertheless,
Cohen and Feynman 6 have shown that the roton-
roton interaction includes a component arising from
the possible process of one roton emitting a phonon
which is then absorbed by another roton. The latter
process can be treated in the so-called deforma-
tion potential approach which is valid only for small
momentum transfer. Assuming that the latter
mechanism dominates the roton-roton interaction,
and neglecting momentum-dependent terms in the
coupling, the coupling parameter Vo can be indepen-
dently estimated from the dependence of the roton
energy on the external pressure and is found to be

, Vo= —1.3&&10 erg cm .
Vigorous experimental efforts, especially by

means of neutron scattering, have yielded very pre-
cise information on the nature of the excitation
spectrum of He II and verified several features of
the dispersion curve shown in Fig. 1. On the
other hand, new theoretical as well as experimen-
tal developments suggested that the dispersion
curve for superfluid helium was in fact more com-
plicated. Pitaevskii argued, using elegant field
theory techniques, that the excitation spectrum
should bend over at an energy near 240, where ~0
is the roton energy. He reasoned that the disper-
sion curve should terminate at 2dp and at this ener-
gy the dispersion curve should have a horizontal
tangent of infinite order associated with an instabil-
ity of single-particle excitations toward decay into
two rotons. Such a "bend" in the spectrum at an

energy near 2~0 was demonstrated by neutron
scattering experiments, ' ' but seems to occur at
an energy larger than 2&0 in contrast to Pitaevskii's

theoretical prediction. It is important to note that
Pitaevskii's treatment neglects the influence of a
finite roton lifetime.

Recent neutron scattering data on helium have
revealed anomalous structure in the excitation
spectrum as shown in Fig. 2. An especially pe-
culiar feature of the experimental results shown in
Fig. 2 is the existence of two distinct branches in
the single-excitation spectrum which remained
anomalous in terms of previous theories.

With the advent of laser technology, light scatter-
ing experiments have proven to be an extremely
powerful probe of the excitation spectrum. Grey-
tak and Yan contributed considerably to our under-
standing of the excitation spectrum by observing
the Raman spectrum of superfluid helium as a func-
tion of temperature. In Raman processes the wave
vector of the light is much smaller than the roton
momentum; consequently the light interacts only
with roton pairs whose total momentum is approx-
imately zero. The theory of the scattering pro-
cess has been worked out by Stephen and is suc-
cessful in explaining many features of the Raman
experiments. On the basis of the existence of
sharp peaks in the joint density of states (involving
two excitations), the Stephen theory predicts two
peaks in the Raman spectrum at energies 2~0 and
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FIG. 2. The excitation spectrum as derived by Feyn-
man and Cohen (dotted curve), and the excitation spectrum
obtained from neutron scattering experiments of Ref. 11
(solid lines). Note that the experimental results show
the existence of two branches in the spectrum with a pe-
culiar dispersion in the vicinity of 240. The neutron data
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FIG. 3. Density of states as a function of energy for
two rotons with zero total momentum. The dotted lines
show the singularities in the density of states in the
absence of interactions between excitations. The solid
curve is the experimental spectrum of liquid helium taken
from the Haman data of Ref. 12.

2nq, respectively (see Fig. 3). Greytak and Yan's
experimental results were especially startling
since only a single peak was observed at an energy
nearly twice the single-roton energy, as shown by
the solid curve in Fig. 3.

The anomalous peak structure in the Raman data,
as well as the peculiar splitting of the excitation
spectrum observed by neutron scattering, were ex-
plained by the existence of bound states in the two-
roton system by Ruvalds and Zawadowski. ' As-
suming that the roton-roton interaction is attrac-
tive, as suggested by the phonon-mediated scatter-
ing mechanisms, a bound state of two rotons can be
split off below the continuum at an energy & = 2~o
—E&, where E, is the binding energy. By means
of extremely precise techniques Greytak has re-
cently measured the binding energy Eb and conse-
quently confirmed experimentally the existence of
two-roton bound states with zero total momentum. ~

The possibility of forming two-roton resonances
with total momentum zero has been demonstrated
independently by Iwamoto using a phase shift anal-
ysis of the scattering amplitude for two rotons cou-
pled by a separable potential.

In the present paper we consider in detail the
formation of bound states of two rotons and cal-
culate the roton spectrum for a wide range of mo-
menta. For the limiting case of infinite single-
roton lifetime, corresponding to zero temperature,
we give analytic expressions for the spectrum which
exhibit sharp peaks corresponding to a two-roton
bound state which is formed by arbitrarily weak
roton-roton coupling. In the weak-coupling limit,
the binding energy is calculated for bound roton

pairs with zero, as well as finite, total momentum.
The fact that bound states of two rotons can be
split off below the two-roton continuum by arbitrar-
ily weak coupling is related to the form of the un-
perturbed density of states pq '(&): In the K= 0
case, p~ '(e) has a square root singularity, where-
as for finite E the density of states has a threshold
in energy at twice the single-roton energy. The
present calculations are based on a model Hamil-
tonian representing the roton-roton interaction as
arising from a phonon- exchange mechanism. W' e
show that the analysis of the spectrum in terms of
generalized coupling g&, where / refers to the an-
gular momentum character of the roton pair, yields
the same energy dependence for the spectrum as
obtained by using a 5-function model for the inter-
action.

An essential feature in the calculation of the two-
roton spectrum is the inclusion of the single-roton
lifetime which is induced by collision broadening.
If the roton energy width becomes comparable to
the binding energy of the two-roton bound state,
then it is more appropriate to discuss the spectrum
in terms of two-roton resonances near the bottom
of the continuum. Presently available experimental
data are in a temperature range where the collision-
induced width is in fact comparable to the binding
energy; thus ma, ny features of the observed spec-
trum, especially the temperature dependence of
the roton lifetime, are difficult to interpret in
terms of previous theories. In fact, a primary
motivation of the present work was to resolve the
discrepancy in the strength of the roton-roton cou-
pling obtained from the Raman data, as opposed
to estimates from viscosity data. ' The above
estimates of the roton-roton interaction differ by
an order of magnitude. In an attempt to resolve
the above discrepancy we have gone beyond the
Landau and Khalatnikov theory of the roton lifetime,
which was based on second-order perturbation
theory, and include the changes in the single-roton
lifetime due to two-roton resonances. The latter
analysis will be discussed in a forthcoming publi-
cation.

We employ Green's function techniques as they
are ideally suited for our purposes, especially
since they provide a natural way to include the col-
lision-induced single-roton lifetime in the calcula-
tion, and demonstrate explicitly the structure in
the spectrum due to coupled roton pairs.

Other examples of bound states and resonances
of two excitations are given by two-magnon bound
states ~ in Heisenberg ferromagnets and bound pho-
non pairs in crystals. 8

Bather dramatic effects are expected whenever
the energy of a bound state is nearly degenerate
with the energy of another excitation. Under these
circumstances a hybridization of excitations is pos-
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sible which exhibits the general phenomena of level
repulsion in quantum mechanics. Such hybridiza-
tion processes have been considered for a variety
of physical systems. The first instance of level
repulsion between a single-quantum state and the
"overtone" of another state was suggested by
Fermi to explain the anomalous Raman spectrum
of CO2 in terms of molecular vibration theory. Hy-
bridization of two-magnon bound states with single-
magnon excitations has been demonstrated theoret-
ically and the analogous mixing of phonon excita-
tions in solids has been analyzed both experimental-
ly and theoretically. The hybridization can
strongly modify the single-excitation spectrum even
if the resonance is not near in energy to the single
excitation, providing that the hybridization inter-
action is quite strong, as in the case of phonon in-
teractions in the highly anharmonic quantum crys-
tals. Similarly, in the case of liquid helium, we
shall see that formation of bound roton pairs will
strongly renormalize the single-roton states.

It has been suggested that a hybridization of
single-particle states with a two-roton bound state
in superfluid helium would split the single-particle
spectrum into two branches in a manner similar to
experimental results shown in Fig. 2. In the pres-
ent paper we calculate the above hybridization pro-
cess over a large momentum interval and make a
detailed comparison of our theoret cal spectrum
with the neutron scattering data. Our results indi-
cate that the hybridization process can give rise to
an unusual temperature dependence for the single-
particle spectrum which should be observable by
neutron scattering experiments at lower tempera-
tures.

It is very important to note that the interpretation
of the two branches in the excitation spectrum
shown in Fig. 2 as a consequence of the above hy-
bridization process involving two-roton bound states
with finite momentum, "indicates that the proper
unrenormalized single-particle spectrum for super-
fluid helium should be of the form proposed by
Landau' and derived by Feynman and Cohen'; i.e. ,
the unperturbed dispersion curve has a continuous
momentum dependence as shown by the dotted curve
in Fig. 2. Thus the unxeno~nzalized spectrum does
not include the so-called "plateau" region of the
lower dispersion branch which is a result of the
roton coupling. The above distinction is vital in
understanding the experimental results. Some
theories which treat the uygpey'tug'bed single-particle
spectrum as consisting of two distinct branches
predict spurious results; e. g. , additional peaks
with considerably large intensity in the Raman
spectrum associated with the "plateau" region, "
and extra branches in the dispersion curve which
are not observed experimentally. It would be de-
sirable to develop a theory which includes the

"plateau" regions' as well as the higher anomalous
branch in a truly self-consistent calculation of the
two-roton spectrum. However such a self-consis-
tent analysis is beyond the scope of the present
paper.

Concerning the existence of two branches in the
He spectrum we should mention Iwamoto's recent
work ' discussing the problem independently. In
his calculation of the He spectrum the one- and
two-excitation intermediate states have been con-
sidered, so that the existence of the two branches
has been undoubtly shown, ' he started from first
principles, however his results give a gross be-
havior of the dispersion of the two branches which
bears little resemblance to experiment. Also,
Soda, Sawada, and Nagaya ' have discussed the
sum rules of the He spectrum by accepting the ex-
istence of the second branch on experimental
grounds. Their work assumes that the upper
branch is a two-phonon state which is completely
independent of the single-phonon states and has an
infinite lifetime. Since the upper branch is well
within the two-roton continuum and hybridizes with
the single-particle spectrum, the latter approxi-
mations do-not seem to be consistent with the neu-
tron data. " Finally we emphasize once more the
necessity of including roton lifetime effects in in-
terpreting the experimental neutron data. The fact
that rotons have a finite lifetime can produce a
temperature dependence of the structure associated
with bound roton pairs. In the present paper we
demonstrate the strong influence of the roton life-
time on the spectrum, particularly near the hybrid-
ization region, and thereby resolve the anomaly
concerning the position of the lower branch of the
single-particle spectrum which lies above 240 ac-
cording to neutron data in contrast to previous theo-
retical predictions. 4'

The present paper is organized in the following
manner. The mathematical formulation of the prob-
lem is presented in Sec. II. A detailed analysis of
the formation of two-roton bound states is given in
Sec. III for momenta K=O (related to the Raman
scattering spectrum) and K&0 as well. The results
of Sec. IIB are extended in Sec. IV to treat the hy-
bridization of the bound state with single-particle
states. Possible physical mechanisms for the ro-
ton-roton interaction and some conclusions drawn
from the present study are discussed in Secs. V
and VI.

II. FORMULATION OF PROBLEM

The basic theme of our theory is to consider the
superfluid helium excitation spectrum in two steps.
First we suppose that the quasiparticle excitation
spectrum in the absence of interactions between
quasiparticles is of the form proposed by Landau
and later derived by Feynman and Cohen using a
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It is important to stress that our description is
quite different from theories which treat the excita-
tion spectrum in terms of different products of
density fluctuation operators in the interaction
representation. 7

As the energies of interest in the roton spectrum
are much larger than the relevant temperatures,
we employ zero-temperature Green's function tech-
niques in most of the present paper and consider
the roton lifetime as a temperature-dependent pa-
rameter. However, in a subsequent paper, we
calculate the roton lifetime using thermodynamic
Green's function techniques to obtain a thorough
check on the validity of our approximations for the
roton lifetime.

A unique feature of superfluid helium is the exis-
tence of a large number of particles with zero mo-
mentum (condensed phase). It is convenient to
separate operators $3 for particles in the conden-
sate by introducing new field operators (
as discussed in Refs. 27 and 28. The single-parti-
cle causal Green's function is then defined in terms
of helium particle field operators as

G, (x-x', t t')=-(TQ'(x, t)-y"(x', t') ),t(2. 2)

where T is a time ordering operator. The corre-
sponding Fourier transformed propagator is

G,(k, (u) = J d'xdt G, (x, t)e """" . (2. 2)

In the spirit of our approach we suppose that the
zero-order Green's function includes all of the
physical information needed to describe the Landau
excitation spectrum shown in Fig. 1. In other
words, we consider the single-particle Green's
function to be of the form

variational calculation. Thus the unrenormalized
dispersion curve is a continuous function of momen-
tum and exhibits an energy minimum corresponding
to roton excitations as shown in Fig. 1. The second
step is to introduce interactions between quasipar-
ticles and study the modifications in the spectrum
due to the coupling between rotons, i.e. , quasi-
particles corresponding to the neighborhood of the
energy minimum. Our approach is analogous to the
scheme employed by Cohen and Feynman' and
Pittaevskii' to study the helium spectrum.

We choose to express the formalism in terms of
the mathematical framework developed by
Belyaev, +'~ and previously applied by Pittaevskii. 'o

Thus we apply standard diagrammatic techniques
for particles with finite momentum and consider
the condensate of zero-momentum particles as a
kind of external field. We introduce helium particle
field operators ((r, t) in the Heisenberg representa-
tion. These ( operators are related to the boson
destruction operators in the usual way:

g(r, t) = (2m)
't J d3k a„(t)e'"' . (2. I)

(,) Z, (k)
&u —Z(k) + —,

' iI'
1

td —z(k) +-,' jr
where Z1(k) is a normalization factor, E(k) is the
energy spectrum given in Fig. 1, and I' is the sin-
gle-particle width which is assumed to be indepen-
dent of energy and momentum but may be tempera-
ture dependent. The Green's function written in
Eq. (2. 4) neglects a second term with energy de-
nominator ~+E(k) ——,iI' which contributes only a
small correction providing kT «E(k). In the ab-
sence of information relating to the normalization
factor Z&, we choose Z& to be unity for convenience.
This assumption seems to be a good approximation
for large enough momentum k. At small momenta,
Z, (k) is strongly momentum dependent33: This de-
pendence is important in satisfying the sum
rules. ' It is worth mentioning that the approxi-
mate form of G1 in Eq. (2. 4) is based on the as-
sumption that the Green's function defined in terms
of helium particle operators [see Eq. (2. 2) J exhib-
its a strong pole at the quasiparticle energy.

Turning now to the problem of interactions be-
tween quasiparticles we write the two-particle cou-
pling in the general form

t 2(2~) J +kpkky(klk2k3k4)+kpk4d kl d k4

(2. 5)

where the irreducible vertex function y describes
the correct interaction between two quasiparticles
in the two-particle-two-particle channel and may
be strongly momentum dependent. 6 We construct
a model Hamiltonian by making the replacement

y(ktkkk3k4) g46(kt +k3 k3 k4) (2. 6)

where g4 is a coupling constant. This approxima-
tion assumes a point interaction, i.e. , a 5-function
interaction in real space, and yields a model
Hamiltonian of the form

3C t„t =-3'g4 J q "(x)g"(x)('(x)q'(x)d'x . (2.7)

Of course, in order to use the model in various
regions of momentum space, different values of g4
should be used in different momentum intervals.

In the case of interacting rotons with total mo-
mentum zero, the interaction term g4 couples only
s-like states. The extension of our model to cou-
pling of states with other angular momenta is
straightforward and is carried out in Sec. III.

The one-particle density of states p& is related
in a simple way to the imaginary part of the G&

propagator, i.e. ,

p, (k, (u)= —(I/w) ImG, (k, (o+i5) . (2.8)

To consider two-roton resonances we need to calcu-
late the two-particle Green's function

G,(x x', t —t')-
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= —3 (T(y'(x, t)q'(x, t)q' (x', t')q' (x', t')]),
(2.9)

and thus obtain the two-particle density of states

p,(E, (u) = —(I/42) Im G,(K, (u +t5), (2. 1O)

(2. 11)
where the 5 function refers to a particle in the
zero-momentum condensate and the vertex function

y3 can be expressed in terms of our model Hamil-
tonian:

Y3(k1k2 k3) g3(T)~(k1+k2 k3)

where E denotes the total momentum of the pair,
~ is the total energy, and G2(E, &u) is the Fourier
transform [as in Eq. (2. 2)] of the two-particle
propagator defined in Eq. (2.9). If a bound state
of two rotons can occur, it will be manifested by
a pole in the two-particle Green's function. Raman
scattering experiments measure the two-particle
density of states p2(K=0, +) and consequently ex-
hibit directly the structure in the spectrum asso-
ciated with two-roton bound states.

As pointed out in the Introduction, the existence
of a bound roton pair can modify the single-particle
spectrum in an essential way. The physical process
which dominates the interaction between one- and

two-particle states is illustrated diagramatically
in Fig. 4(a); i.e. , a single particle interacting
with a zero-momentum condensate particle can be
transformed into a two-particle excitation such as
a bound roton pair. The interaction Hamiltonian
for the latter coupling process can be extracted
from the general vertex function by writing the con-
tributions of the condensate coupling as

y (klk2, k3k4) = ~(k4)»( 1k 2 k3) + ~(k3)y3(klk2 k4)

+5(k1)y3 (k2 k3k4) +5(k2)y3(k1 k3k4)

consists of a single continuous branch as shown in
Fig. 1, in contrast to the experimentally observed
two-branch spectrum of Fig. 2. Interactions be-
tween excitations are represented by the model
Hamiltonians given by Eqs. (2. 7) and (2. 12), with
the coupling coefficients g4 and g3 considered as ad-
justable parameters which are related to the quasi-
particle vertex function in various momentum re-
gions. The zero-momentum condensate propagator
(zig-zag line) has only one connection to the diagram
vertices since it is represented by a c number.

The above formalism will be applied first to study
the formation of two-roton bound states by calcu-
lating the two-particle Green's function including
interactions given by the X4 Hamiltonian. We then
use the renormalized two-particle Green's functions
(including interactions) together with the K3 model
Hamiltonian to study the mixing of single-particle
excitations with the bound state. The mixing splits
the single-particle spectrum into two components
in agreement with experiment.

In a subsequent article, the present formalism
is extended to finite temperature techniques using
thermodynamic Green's functions in order to derive
the temperature dependence of the single-roton
lifetime.

III. TWO-ROTON BOUND STATES

To examine the structure of two-roton bound
states we restrict attention to the energy region
extending from the bottom of the roton minimum &0

to the local maximum ~& shown in Fig. 2. Hence
we treat the roton-roton scattering as a two-body
problem, since the contributions from coupling to
small-q phonons are not taken explicitly into ac-
count and the population of the roton states is small
in the temperature range of interest. As pointed
out by Feynman and Cohen, the phonon exchange

=g4[N3(T)]'t 5(k1+k2 —k3), (2. 12)

where N3(T) is the temperature-dependent number
of particles in the condensate. By writing g, (T)
=g4[N2(T)]1t, we are treating the creation and de-
struction operators $~~ and g3 for condensate parti-
cles as c numbers, i.e. , $3-[N3(T)] t, in the usual
manner. ~' Hence we represent the interaction
between one- and two-particle states by the model
Hamiltonain

{a)

&3=g3 f 1I "(x)P"(x)('(x)+c c. . (2. 13) {b)
To include interactions between excitations in

the calculation of the spectrum, we apply diagram-
matic techniques using the unrenormalized propa-
gators defined in Eq. (2. 4) and represented by solid
lines in our diagrams. Condensate particles are
denoted by zig-zag lines as in Fig. 4(a). Note that
the unrenormalized spectrum [E(k) in Eq. (2.4)]

FIG. 4. (a) Diagrammatic representation of the inter-
action responsible for the hybridization of the single-
particle spectrum with two-roton bound states. Solid
lines indicate single-particle excitations (e.g. , rotons),
whereas the zig-zag line represents a particle from the
condensate. (b) Bethe-Salpeter equation for two-roton
propagator 62.
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E(x -x') = i[GP'(x —x')]', (3. 2)

and, following the prescription of Eq. (2.3), ob-
taining the Fourier transform of the loop

E(K, (u) = [i/(2o)'] f d'k f da)G,'"

&&(K —k, (u —a))Gg'o'(k, (o), (3 3)

in terms of the propagators G~+(k, &u) defined in
Eq. (2. 3). Then it is a straightforward task to
Fourier transform the series in Eq. (S.1) and sum
the resulting geometric series to obtain the two-
particle Green's function including interactions

Go(K, +) = 2E(K, &u)/[1 g4E(K, &o)-] . (S.4)

From the above simple expression for the Green's
function, the two-roton density of states follows
immediately and is given by

p,(K, (u) = —(I/4o) 1mG, (K, (u)

1 ImE
( )

2m [1 -g4Re E] + [g4Im E]

in terms of the real and imaginary parts of the I'
function defined in Eq. (3.4). The factor of —,

' in
Eq. (3. 5) comes from two factors: One —,

' is due to
the possible pairings of the field operators while
another & takes into account the indistinguishability
of Bose particles. Incidentally, a simple check of
the factors in Eq. (S.5) is to substitute the two-
particle Green's function [Eq. (3.4)] in the limit of
zero interactions, into Eq. (3.5) to obtain the un-
renormalized density of states. Taking the single-
particle states as noninteracting excitations with
infinite lifetimes (1 =0), the joint density of states
po

' follows from Eqs. (S.3)-(3.5) using the unre
normalized propagators of Eq. (2.4):

p~o '(K, (o) =
2 2 o d k5((u —&, —e„~), (3.6)

1

where the —,
' factor is again related to the indistin-

process is important in the roton-roton scattering;
in our treatment these processes are considered
by means of an effective roton-roton coupling.

The scattering process can be expressed in terms
of a Bethe-Salpeter equation for the two-particle
Green's function which is obtained by summing the
diagrams in Fig. 4(b). The corresponding Green's
function equation is given by

Go(x -x ) = 2i([GI '(x —x')] +ig4 fd'x"[Gq '(x -x")]'
& [G,'"(x"-x')]'+ ~ ) . (3.1)

The factor of 2 outside the bracket arises because
of ordering of field operator pairings as required
by Wick's theorem. The theoretical development
is greatly simplified by writing a single diagram
loop as

guishability of rotons. Inclusion of the finite single-
roton lifetime is vital to our analysis and can be
done by evaluating Eq. (3.3) with unperturbed
Green's functions [Eq. (2.3)] containing a phenom-
enological width I" to obtain

( ) )t po (K, (0 )de)
co —40 +II (3.7)

In Raman scattering experiments the momentum
of the light is very small relative to the roton mo-
mentum and consequently the light samples only
the two-excitation spectrum with total momentum
zero. To calculate the two-roton spectrum we con-
sider first bound states with s-like symmetry,
i.e. , zero total angular momentum, which a,re cou-
pled by the model Hamiltonian in Eq. (2. 7) corre-
sponding to a point interaction. The extension of
our analysis to bound states with finite angular mo-
mentum involves only a trivial modification of our
model Hamiltonian and is carried out at the end of
this section.

We begin with a discussion of the spectrum for
the idealized case of infinite roton lifetime (I'=0)
and later proceed to the realistic situation of rotons
with finite lifetime.

As the primary energy regions of interest are
quite close to the extremal points of the dispersion
curve in Fig. 1, it is a good approximation to use
a parabolic form of the excitation dispersion:

Z„„.= ~o+(k -ko)'/2~o,

Z.~=~, -(k -k, )'/2l, .

(S.sa)

(S.8b)

The energy and momentum parameters (h„b„k„
and k, ) are defined in Fig. 2, and the "effective
masses" p. o and p, &

are associated with the roton
and "max" excitations. The max label refers sim-
ply to the excitations near the 6& local maximum of
the dispersion curve.

From the Appendix, the unperturbed two-roton
density of states, neglecting terms proportional to
the small quantities (u& —24o) and (2b,~

—~), is given
by

(o&(K 0 ) (

o
(

Po
27l' (0 2+o

where po
' is given in Eq. (3.6). It is apparent then

that the unperturbed density of states pz
' plays a

key role in determining the cha, racter of the full
two-particle Green's function including interactions.
The computation of po '(K, ~) is somewhat tedious
and is relegated to the Appendix. Since the spec-
trum derived in the Appendix displays rather dif-
ferent behavior in different momentum regions, we
shall treat the K=0 case separately from the K-k,
region.

A. Bound States with K=0



406 ZA%'ADO%'SKI, RU VALD S, AND SOLANA

(s.9)

The above formula is valid only near the threshold
regions (d 2&0 and ~ 2&i respectively. It is ap-
parent from Eq. (3.9) that the unrenormalized two-
particle density of states exhibits two singularities
as shown by the dotted lines in Fig. 3. However,
the experimental data for the Raman scattering
from liquid helium taken by Greytak and Yan (shown

by the solid line in Fig. 3) exhibits only a single
peak in the spectrum near twice the roton energy.
This anomalous discrepancy between experiment
and the unperturbed density of states led to the sug-
gestion that roton-roton interactions could strongly
modify the two-roton spectrum.

The influence of roton-roton coupling on the two-
roton spectrum is manifested by formation of two-
roton bound states and also by broadening of the
spectrum associated with the finite roton lifetime.
In the present subsection we neglect lifetime effects
and, in the interest of clarity, present a calculation
of the spectrum only near the two-roton region of
energy. Thus, we shall not write down explicitly
the contribution from the max energy region
(ur -2h~), but rather demonstrate the changes in the
latter part of the spectrum graphically. The two-
roton spectrum is obtained by first evaluating the
E function from Eq. (3.9); thus

~ X-'~2'
E(K =0, E) = 2 — ~ . , (3.10)

2w E -x+z6

in terms of convenient variables x= w' —2~0, E = &
—2&„and a cutoff energy D= ~i —&,. The F func-
tion in Eq. (3.10) determines the spectrum within
the continuum (E &0) as well as the spectrum as-
sociated with bound states at E & 0 which are split
off below the two-roton continuum by an attractive
coupling between excitations. '

Below the continuum, i.e. , E &0, the integration
in Eq. (3.10) is trivial and gives

F(K = 0, E & 0) = —4(k, /2v) p 0"
I
E

I

'"
x tan '(I 2D/EI ) i& (3.11)-

in the limiting case of 5 tending to zero. Now
making use of the representation for a 5 function
5(z) = lim, .ow o/(g +a ) in Eq. (3.5), we obtain the
density of states below the continuum,

pp(K = 0, E & 0) = (1/2g4) 5[1 -g4 Re E(K = 0, E & 0)] .
(3.12)

As in Ref. 14, it is convenient to express the re-
sults in dimensionless quantities f defined by E
,' qf, with q = —k

0 m 2(p0/2 D); e = E/2D = (&u —260)/
2D is a dimensionless energy and g4= —,qg4 denotes
a dimensionless couplir. g constant. In terms of

these dimensionless quantities the density of states
is, for «0,

p,(K =0, ~) =(I/4g, ) q~(l -g, ref" ),
with

(s. is)

(3.14)

A bound state of two rotons with energy below the
continuum exists if the argument of the 5 function
in Eq. (3.13) vanishes. It is clear, then, from
Eq. (3. 14) that for attractive coupling (g4& 0) a
bound-state solution exists for arbitrarily small
values of the coupling 1 In the weak-coupling limit
(I e I «1) the solution for the binding energy [from
Eqs. (3.13)-(3.14)] is found to be

&a = -~'(g4)'. (s. is)
The fact that a bound state is created by arbitrarily
weak coupling is a consequence of the singula. rity
in the unperturbed roton density at the & = 0 thresh-
old. Using Eqs. (3.13) and (3. 15), it is possible
to write the density of states in the form

p,(K=0, e) = —,'&I g, I
'~(~ —~, ) (s. i8)

which indicates the strength of the peak in the
spectrum corresponding to the bound state. It is
easy to show, and convincing on physical grounds,
that an attractive coupling can never give rise to a
bound state of two max quasiparticles above the
continuum. Of course if the coupling were repul-
sive (g4& 0), the situation would be reversed so
that a bound state would be formed above the con-
tinuum as in the case of bound phonon pairs in
solids.

Turning now to the continuum energy region E & 0,
Eq. (3. 10) takes the form

E(K=O E&0)=2 m p7
2m

/q E + (2D) i(x E ln i(2 i-@ -zgE

or, in terms of our dimensionless units,
(3.17)

-i 2
1+~1/2

f(K=O, e&0)=e ~'In —
&&,

—in& +. (3.18)

Substituting the real and imaginary parts of f from
Eq. (3. 18) into the general expression for the den-
sity of states given by Eq. (3.5), we obtain

p,(K=O, e &0)= —— Imf
4~ [i -g, Ref]'+[g, imf ]'

(s. i9)
The spectrum given by Eq. (3. 19) displays an inter-
esting physical consequence of the excitation cou-
pling which may be observable experimentally at
sufficiently low temperatures. Namely, a glance
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at the imaginary part of f in Eq. (3. 18) shows that
the total density of states p2 exhibits a sharp dip
near the threshold energies, i. e. , the imaginary
part of f diverges at energy e = 0 which means that
the density of states vanishes at the threshold ener-
gy. A similar analysis shows that the spectrum must
also vanish at ~= 1, i. e. , at the E threshold. In
other words, the square root singularities of the un-

renormalized density of states at the continuum
edges (see Fig. 2) are completely removed by the
interactions between excitations. The latter re-
sult was previously pointed out by Iwamoto. ' Fur-
thermore, as a result of the structure in Eqs.
(3. 18) and (3. 19), secondary peaks in the spectrum
can appear within the continuum at energies near
the threshold edges. To examine the structure in
the spectrum within the continuum we substitute Eq.
(3. 18) into Eq. (S. 19) to obtain

p2(K=O, e &0)

"t ~ -1/2

4 [I+f4~ "' lnl (1+e'")/(I —~'") I'+ m'e 'g',

(3.20)

The spectral function pz from Eqs. (3. 13) and (3. 20)
is plotted in Fig. 5 and displays vividly the changes
in the spectrum due to the roton-roton coupling.
Namely, the coupling removes singularities in the
unperturbed density of states at both roton and
max-excitation thresholds, depresses the spectrum
near the continuum edges, and splits off a bound
state of two rotons below the two-roton continuum.
Furthermore, in Fig. 5, when the max-excitation
contribution is included as well, the spectrum ex-
hibits secondary peaks within the continuum near
&=0 and &=1, respectively. In order to estimate
the observability of the secondary peaks, it is
necessary to include a finite roton lifetime in the
analysis. Such a calculation is presented below.

The above results, although in part restricted to
the weak coupling limit, provide a refreshing in-
sight into the physics of the formation of bound ro-
ton pairs. As the attractive interaction between
excitations becomes stronger ( Ig4 I increases), the
strength of the bound-state peak increases at the
cost of depressing the density of states within the
continuum.

In the preceding part of this section we have cal-
culated the two-roton spectrum neglecting the roton
lifetime associated with collision broadening. As
discussed above, the calculated spectrum displays
unusual structure near the edges of the continuum
due to interactions between excitations. On the
other hand, it is apparent that the theoretical re-
sults in Fig. 5 differ substantially from the pre-
sently available Raman data shown in Fig. 3. This
discrepancy can be readily explained by including

the finite roton lifetime and keeping in mind in-
strumental broadening in the experiment.

To include a finite roton lifetime we proceed as
above, but include in Eq. (3. 7) a phenomenological
parameter I' which describes the temperature-
dependent single-roton width. Thus, using Eq.
(3. 7) together with the unrenormalized density of Eq.
(3. 9), we need to evaluate

2D

E(K 0 E) 2
"0 qua

0 E —X+ i I' (3. 21)

(2L))1/2 P+ (2D)1/2

P
"

P (2D)~» (3. 22b)

where P =-E+iI". The real and imaginary parts of
Eq. (3.22) may be, respectively, expressed in the
form 1,/, (1+r 2c)'—

Ref = 2,/zr (r+6) lnl+r [2(r+&

—2r —q+(r )' ('tan-' (3 23a)-1+r

—(x —f) ln ),&~), (b. 2')(1 + r —26)

where r = (e +y )' and the dimensionless energy
(&) and width (y) parameters are defined above. In
the limiting case of infinite roton lifetime (y- 0),
Eqs. (3.23) reduce to the results presented in Eq.
(3. 11) which were previously discussed. Finally,
the two-roton spectrum, including a finite roton
lifetime, is given by

p~(K= 0, &) = —— „„2
[ p,. (3. 24)

Imf
47) 1 -g4 Ref + g4 Imf

the latter result is valid for positive as well as neg-
ative energy (a) values.

In Fig. 6 the spectrum calculated from Eq. (3. 24)
is shown for various values of the roton width cor-
responding to different temperatures. As seen in
Fig. 6, when the binding energy is larger than the

for finite I" values. Here we shall approximate I'

by an energy-independent parameter; the extension
of our analysis to energy-dependent lifetimes is
straightforward, but involves numerical integra-
tions. In terms of a new variable z=x"', Eq.
(S. 21) can be expressed in the dimensionless units
[writing3 =2F/q, where tI = (ko/))') (po/2D)" ] as

f (K=o E)=2(2D)"' E
~2

I
0

(3. 22a)
Evaluation of Eq. (3. 22a) is straightforward and

gives
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1.2

Appendix. To investigate the formation of two-roton
bound states with momentum KWO, we calculate the
spectrum in the same manner as above, but includ-
ing the appropriate unrenormalized two-roton den-
sity of states. From this point on we shall not re-
iterate the arguments regarding the sign of the cou-
pling, but rather pursue the theory developed in the
previous sections and hence restrict attention solely
to the energy region near the roton minimum.

A straightforward but tedious derivation (see the
Appendix) yields the unperturbed density of states,
accurate near the N 0 threshold energy, as

FIG. 5. Calculated joint density of states p2 for two
rotons with zero total momentum plotted as a function of
dimensionless energy &= ( —2~o)/2D. Dotted lines in-
dicate the spectrum in the absence of interactions. In-
clusion of an attractive roton-roton coupling removes
the singularities at &=0 and &=1, shifts the spectrum
to lower energies, and splits a two-roton bound state off
below the two-roton continuum as shown by the solid
lines. In this figure the single-roton lifetime was taken
to be infinite, i. e. , p=0.

single-roton width (a, situation attainable experi-
mentally" ), the peak corresponding to a. bound state
is well separated from the continuum. For very
low temperatures, i.e. , small-roton widths, three
distinct peaks appear in the spectrum. As the tem-
perature is increased, the two peaks near the bot-
tom (E 0) of-the continuum merge, while the
smaller peak near the top of the continuum (e-1) is
further depressed. Finally for large enough tem-
perature a single asymmetric peak remains in the
spectrum (see Fig. 6) in remarkable agreement
with experiment. ' Unfortunately, the experimental
instrument width obscures the resolution of the
bound state peak from structure within the contin-
uum. Nevertheless further studies of the Raman
spectrum of superfluid helium at lower tempera-
tures may be able to resolve the double-peak struc-
ture discussed above. Also such Raman studies
would provide very precise information concerning
the roton lifetime.

We believe that the close resemblance of the cal-
culated density of states to the experimental Raman
spectrum provides strong evidence for an attractive
interaction between rotons, and the existence of
bound roton pairs with zero total momentum.

B. Bound States with E $0

It is interesting to ask wI;ether bound roton pairs
with nonzero total momentum can be split off below
the two-roton continuum even though the unperturbed
density of states pa

' (KW 0) is nonsingular, in con-
trast to the K= 0 case, but does contain a discontin-
uity at the bottom of the continuum as shown in the

(3.26)

where F- = (d 2~0 and x= (d 2~0 Performing the
integration, the results for the real and imaginary
parts of E(K, &u) can be expressed analytically:
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FIG. 6. Calculated joint density of states p2 for two
rotons with zero total momentum plotted as a function of
di.mensionless energy ~ = ( —24o)/2D. At low tempera-
tures (p= 0. 001 case) the two-roton bound state exhibits
a sharp peak below the continuum («0) while two sec-
ondary peaks occur in the spectrum near the energy
thresholds &= 0 and & =1. At higher temperatures the
roton width p increases and, as in the example &=0.05,
smears out the secondary peak structure. In the latter
case the spectrum is dominated by a single peak near
~ = 0 in accord with experiment.

which is valid for momenta K in the range
2[go(~ —2&o)]'~ &K& ako. With the simple expres-
sion for po(K) from Eq. (3. 25), which is independent
of energy, it is a simple matter to express the func-
tion of Eq. (3.7) in the form
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Ea+ pa
ReF (K, ui) = pa(K) ln

E2 p2
ReF(K, m) = pa(K) ln a

ImF(K, u~) = —2pa(K) tan ' —tan 'I

(S. 27a)

(3. 27b)

(S. 27c)

in the spectrum. Note that the strength tends to
zero as the coupling vanishes.

Within the continuum the interactions between ex-
citations modifies the density of states in a spectac-
ular way which bears little resemblance to the un-
perturbed density which is independent of energy. The
modified spectrum follows by inserting Eqs. (3. 28a)
and (S.28c) into Eq. (3. 5) to find

and

ImF (K, (o) = —2pa(K) [a'v+ tan '(E/I")]. (S. 27d)

In the approximate expressions [Eqs. (3.27b) and

(3. 27d)] we have used the fact that I"«D and IE I

«D, where D is the cutoff energy. The results
given by Eqs. (3.27) provide a complete description
of the two-particle density of states as defined in
Eq. (3. 5).

For simplicity we consider first the limiting case
of vanishing roton width. In this instance the spec-
trum is especially lucid and described by the func-
tions

aIld

ReF (K, ~) = 2pa(K)»(
~

E
~

/2D),

ImF (K, iu) = —5 for E & 0

= —2mpa(K) for E& 0,

(3. 28a)

(3. 28b)

(3. 28c)

2D8-1/2lg4 I

8 (3. 30)

an expression which is analogous to the Bardeen,
Cooper, and Schrieffer (BCS) theory of supercon-
ductivity. The appearance of a two-roton bound
state with finite momentum for arbitrarily small
roton-roton interactions is related to the discontin-
uity in the unrenormalized two-roton density of
states at the bottom of the continuum.

It is informative to rewrite Eq. (3. 29) as

ps(Ã fd)=
4 a po(K)e " 'll( ), (3. 31)

4

which exhibits the strength of the 6-function spike

where it is understood that & tends to zero. Again
it is convenient to define a dimensionless quantity

f via F= pa(K)f, and -then obtain the total spectrum
from the general form in Eq. (3. 5) in terms of the

f functions. In the energy region below the contin-
uum (E & 0), substitution of Eqs. (3. 28) into Eq.
(3. 5) gives

Pa(K, ~) = (I/gg4)Pa(K)5[1 —@4ln(~E~/2D)], (3.29)

in terms of the dimensionless coupling g4—- pp(K)g4
parameter. It is clear from Eq. (S. 29) that a bound
roton pair with finite total momentum will be formed
below the continuum for arbitrarily small but attrac-
tive coupling. The binding energy EB follows im-
mediately from Eq. (3.29):
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FIG. 7. Calculated density of states p2 for two rotons
with nonzero total momentum K plotted as a function of
dimensionless energy ~ = (~ —240)/2D. Dotted lines show
the spectrum without roton-roton coupling. The single-
roton width p was taken to be zero for all three curves
to demonstrate vividly the formation of bound roton pairs.
In the small coupling limit (g4 = 0. 1) the spectrum be-
comes asymmetric and exhibits a 6-function peak corre-
sponding to a bound state as shown by the dashed lines.
Stronger coupling (g4 =- 0.2) further depresses the den-
sity of states within the continuum («0) and simulta-
neously gives rise to a bound state with increased
strength and larger binding energy as shown by the solid
lines.

I

0.4 0.6

pa(K) 2','
2vg4 [I —gg4 ln(E/2D)]'+ (2vg4)a

'

(3. 32)
The latter expression exhibits a peak near the bot-
tom of the continuum at an energy E = tE& ), with a
height of It= pa/[4v (g4) ]. Consequently the
strength of the secondary peak within the continuum
is roughly ~Es I pp/[4v (g4) ], which is considerably
smaller than the strength of the bound-state peak
[from Eq. (3.31)]. These spectral features are
illustrated in Fig. 7, and demonstrate how the ro-
ton-roton interaction pushes states toward lower
energy and simultaneously enhances the strength
of the bound-state peak.

To relate our theory to experimental data we
again turn to a finite temperature-dependent single-
roton width. In the present case, because of the
simple unrenormalized density of states, the spec-
trum is obtained in analytic form using Eqs. (S. 27)
and (3.5). The results are plotted in Fig. 8. Note
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roton pairs with various even 1 values [as required
by the restriction of Eq. (3. 34)] may exist and give
rise to sharp peaks in the p2 spectral functions at
different energies corresponding to the respective
bound states. It is important to stress, however,
that the analytic form of the energy dependence of the
theoretical two-roton spectrum is identical for all
of the allowed l states. Thus a distinction between
bound states of different angular momentum char-
acter requires experimental information other than
the energy dependence of the spectrum, e. g. , the
polarization properties of the scattered light.

The depolarization ratio R(R= I,„/I» where I s
denotes scattered intensity of light incoming with
polarization z and scattered light having polariza-
tion P) of the Raman spectrum has been measured
for liquid helium by Greytak and Yan. ' Their ex-
perimental data yield R = 0. 9+ 0. 2, whereas the
Stephen theory' of the light scattering predicts
R = 0. V5 for a D state in contrast to R = 0 for s-type
states. On the basis of the depolarization data,
Iwamoto and Greytak et al. ,

"have argued that
the bound roton pair is in a D state (I = 2) of angular
momentum. Nevertheless it may be that S-like
bound states also exist, but contribute very weakly
(if at all) to the observed spectrum due to a rela-
tively smaller light scattering amplitude from the
latter states.

Furthermore, it is worth mentioning that in the
case of bound roton pairs with finite total momen-
tum, the spectrum contains admixtures of states
with various angular momenta. Thus the coupling
parameters g4 discussed above are not simply re-
lated to the coupling of rotons with finite total mo-
mentum.

IV. HYBRIDIZATION OF TWO-ROTON BOUND
STATE VfITH SINGLE-PARTICLE STATES

As discussed in the Introduction, the existence
of bound roton pairs in a large region of momen-
tum space suggests that a hybridization of the
bound state with the single-particle spectrum
should occur. An interesting consequence of such
mixing would be that structure associated with the
bound state would show uy in the single-particle
spectrum. It has already been mentioned ' that
the above hybridization would split the single-
particle spectrum into two branches in agreement
with the neutron data.

It should be emphasized that the two-particle
spectrum relates to the dynamics of two helium
particles, while the single-excitation spectrum
describes essentially the motion of a single helium
particle. For this reason the coupling of one-
and two-particle states proceeds via an intermedi-
ary particle from the zero-momentum conden-
sate. The coupling mechanism is shown dia-
gramatically in Fig. 4(a), where the zig-zag line

a (K, E)=E-n(K)-Z, , (4. 1)

where Q(K) = E(K) —2b, o is the single-particle dis-
persion measured from the energy 2bo and E(K)
is shown in Fig. 1. Furthermore, Z& is given by

~i = 2(g 's) &of(E)/[1 -g'4f(E)], (4 2)

with the dimensionless quantities f and g 4 defined
in the previous sections and using a dimensionless
parameter g s=gs[p (Ko)/n, ] oto describe the
hybridization process.

Carrying over the results of Eqs. (3.28) for
the case of zero single-particle width, the one-
particle spectrum below the continuum (E & 0) is
determined by the Green's function

G j (K, E & 0) = E —A(K) —(g s) hp

4ln(! E I/2D)
1 —2g41n( I E I/2D)

' (4 3)

Throughout Sec. IV we consider the roton-roton
coupling to be attractive. The position of the pole
in the single-particle Green's function is the solu-
tion of the equation

E —Q(K) = —2b, p
s — 1—(g 's)'

g4 1 —2g', ln( I E I 2D),

(g',), I E I= —2 -, p +0 g4+ 2 ln
(g 4) Ea

(4. 4)

FIG. 9. Dyson equation for the single-particle self-
energy Z~. The propagator G2 includes bound roton
pairs and is shown in Fig. 4(b). The zig-zag lines rep-
resent particles from the condensate and the hybridiza-
tion coupling is g3 =g4[Vp(T}]~, where Np(T) is the nurn-
ber of particles in the condensate.

pertains to the condensate particle and the solid
lines refer to single-particle states. In other words
one particle together with a condensate particle can
scatter into the two-roton system. This type of in-
teraction is represented by the model Hamiltonian
in Eq. (2. 13) and is characterized by a coupling
parameter g3=NO g4, where g4 is the roton-roton1/2

coupling constant and No is the number of particles
in the condensate.

Bound roton pairs will cause a particularly
strong distortion of the single-particle spectrum.
The influence of the bound states shows uy in the
single-particle self-energy Z& as shown diagram-
matically in Fig. 9. In other words, the single-
particle propagator becomes
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x 5(E —E,(K)), (4. 5)

where E,(K) is the root of Eq. (4. 4), at which en-
ergy the singularity occurs.

In order to discuss the one-particle spectral
function below the characteristic energy 26p it
should first be mentioned that at arbitrary momen-
tum K one gets one solution of Eq. (4. 4) corre-
sponding to a singular contribution to p1 without

any continuous part. In this way, below 260 one
branch appears, which approximately coincides
with the unperturbed one-particle branch if
Q(K)«0, i. e. , E(K) &260. As E(K) approaches
and goes above 2&p, this branch tends to the en-
ergy of the two-roton binding energy asymptotical-
ly. The strength of the singular contribution is
approximately unity if the energy is far from the
two-roton binding energy. However if the E(K)
energy is near the energy of the bound state, the
strength rapidly decreases. The asymptotic form
of the strength is proportional to E(ln E) . It is
worth mentioning that there is no contribution to
the p& spectrum between the. energies -E~ and
E —0

The lower branch described above has been first
discussed by Pitaevskii, who in his final formulas
has neglected the binding energy E~. Carrying out
this approximation our results reproduce his pre-
vious ones. On the other hand, in these publica-
tions'0 the possible existence of a second branch
has not been mentioned.

Continuing our discussion let us turn to the en-
ergy range E & 0 where the spectrum is continuous
but may exhibit sharp peaks. Now we need to in-
clude both real and imaginary parts of the f func-
tion defined in Eq. (3. 28) to express the single-
particle propagator given by Eqs. (4. 1) and (4.2):

G j (K, E & 0) = E —Q(K) —2( g ~)

x f( g4f I (4 8)(1-g4Ref) + (g4 Im f)
where

f= 2 ln ( E/2D) + 2»4 . (4. 7)

Then the one-particle spectral function given by
Eq. (2. 8) can be written as

where the expression (3. 30) has been used for the
binding energy EI, . At the energy given as the
solution of Eq. (4. 4), one gets a Dirac 5 singularity
in the one-particle density of states. The strength
of this singularity can be calculated in a straight-
forward gray and one obtains

pi(lC, 8 0)= 1+(; ) (ln )

I

5Q(K) = 2(g 4) AORe
(

(4. 8)

which can be taken to be independent of the energy
variable E, and similarly the lifetime v(K),

1

)
= ImZ& I &4=u&r&=+™41» „4r»-1

2vK
(4. 10)

where Eq. (4. 1) has been applied.
In terms of these functions p&(K, u&) shows a

Lorentzian fopm in the neighborhood of the single-
particle peak

1 1/2r(K)
[E Q(K)—M(K—)]'+ (I/2&(K))'

(4. 11)
The inverse lifetime given by Eqs. (4. 10) and

(4. 7) can be expressed in a simple form in terms
of the two-particle spectral function introduced by
Eq. (3. 5), namely

I/7. (K) = 2»(2 g, ) p, (K, E = Q(K)), (4. 12)

where the notations F(K, E)=po(K)f and g4(K)=g»
x [pa(K)/&0]'~ have been considered. This expres-
sion of the lifetime has the form of the "Golden
Rule, " where 2g, is the matrix element of the Ham-
iltonian given by Eq. (2. 13) and pa(K, E) is the final
density of states of the process in which a one-
particle excitation decays into the two-roton con-
tinuum. It is obvious from this result that the
width of the single-particle branch is mainly deter-
mined by the two-particle density of states.

The other interesting limit, which should be dis-
cussed separately, can be found at the threshold of
the two-particle continuum E ~ 0. If Q(K)» E
~ I Im Z1 I, that means we are far from the hybridi-
zation point, and if 11mZ~ I is "small" (i.e. , does
not exhibit a strong peak near the two-roton binding
energy as in the infinite; lifetime case), then one
can get a simple asymptotic form for p1. In this
case, [Q(K)] is dominant in the denominator of the

1 . ImG'(K, E)
» [ReG (K E)] +[ImG '(K E)]

(4. 8)

First we discuss some particular limits. If
E(K)» 2&o and, in the first approximation, the
single-particle branch given in Fig. 1 is far from
the two-roton bound state, the hybridization is
weak and a strong peak is expected at the energy
E(K). Only the single-particle lifetime should
be affected by the possible decay of the single-
particle excitation into the two-particle continuum
which begins at energy E = 0. We introduce an en-
ergy shift 6Q(K) as
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expression (4. 8). The numerator can be written
in terms of ps(K, E) similarly to formulas (4. 10)
and (4. 12), and we obtain

pg(K, ~)- (2gs)'p2(K, E)/[Q(K)]' (4. 13)

Thus if the original one-particle branch is far from
the threshold, then the two-particle density of states
is mixed into the one-particle spectrum, and the
mixing is weaker the further p& lies from the orig-
inal single-particle branch. The peak in the two-
particle spectrum shown in Fig. 5 is reflected by

the single-particle spectrum also. This hybridiza-
tion can be seen in Fig. 10. It is worth mentioning
that the validity of Eq. (4. 13) depends only on ful-
filling the assumption I Q(K)1» I E I I imZ, I, so
it holds for both sides of the hybridization point
providing the single-roton lifetime is sufficiently
short.

The general formula given by (4. 8) for the one-
particle density of states in the region E &0 can be
obtained by inserting the expression (4. V) into Eq.
(4. 6) and, after performing some algebra, one ob-
tains

(g ) (g') &o [~ +On(EIE )) ] (4 14)
([(gi)'&o'(E-Q) —2 I g' I (g')'][&'+(»(E/E ))']+(g')'»(E/E ))'+(vg")'

where the notation given by Eq. (3.31) has been
used. It is worth noting that the main approxima-
tion applied here is that we have calculated the un-
renormalized two-particle density of states
ps '(K, E) using the parabola approximation for the
dispersion curve around the roton minimum. The
calculated single-particle spectrum p& from Eq.
(4. 14) is shown in Fig. 10 for different values of
the unrenormalized single-excitation energy. In
the renormalized spectrum of Fig. 10 there is a
lower branch very close to the original one-parti-
cle energy for momenta close to the roton momen-
tum. As the single-particle energy moves closer
to the hybridization region, the lower branch bends
over and asymptotically approaches the roton pair
binding energy E = -E&. In the above analysis,
the lifetime of the lower branch is infinite; how-
ever the intensity .of the lower branch decreases
very rapidly as the lower peak moves nearer to the
two-roton binding energy. Thus, in the latter
limit, the spectrum is dominated by the resonance
structure as shown in Fig. 10. On the other hand,
if the single-particle branch coincides with the

pq(K, E) = ( —1/w) Im G), (4. iS)

with G~ defined by Eq. (4. 6) in terms of the f(E, I')
from Eqs. (3. 28b) and (3.28d)[recall that F = po(K)f].
The final result for the single-particle spectrum
becomes

two-roton continuum, a peak in p& occurs near the
original one-particle energy; but the latter peak
is then substantially broadened. In short, as a
result of the hybridization, two peaks appear in the
single-particle spectrum pz . One peak corresponds
to a renormalized single-particle excitation, while
the other peak represents structure associated with
the two-roton bound state. In the preceding anal-
ysis we have neglected the single-roton lifetime.

To provide a more reasonable description of
the neutron scattering data, the theory should in-
clude a finite single-particle lifetime. Since we
are primarily interested in the influence of the
bound state on the spectrum, we include solely the
finite single-roton lifetime which broadens the two-
roton bound-state structure. The single-particle
spectrum then becomes

p~(K, E)= ——Im E —Q(K)+ ,'iI—2(g-3) "
0

1
J
f(1-g-f")

r I -g4He + g', Im.
(4. 16)

where

f=ln[(E + I' )/4D ] 2i [2m+tan '(—E/I')] .
(4. 17)

The spectrum given by Eq. (4. 16) is plotted in Fig.
11. The calculated spectrum shown in Fig. 11 ex-
hibits some prominent features which are in strik-
ing accord with the neutron data: (i) Over a wide
range of single-particle energies Q (corresponding
to a large span of momenta K:—0. 6 ko to 1.2 ko), the
single particle density -of states exhibits turo Peaks-

one which is sharp and lies below the two-roton
continuum, and a broad secondary peak extending
well above the two-roton threshold. (ii) As the
unrenormalized single-particle energy moves
closer to the two-roton continuum (Q- 0), there
is a transfer of intensity from the sharp "single-
particle" peak to the secondary structure within
the continuum. (iii) When the unperturbed energy
Q overlaps with the continuum (e. g. , Q = 1), the
secondary peak near E= 3&0 is broader and slightly
higher in energy than the structure corresponding
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to = —O. 5; in the latter case the single-particle
energy is well below the continuum. These three
basic features of our theoretical spectrum are in

FIG. 10. Calculated single-particle spectrum p~ in-
cluding hybridization with two-roton bound states for
various values of the single-particle energy O. The
dotted arrows indicate the position of the single peak in
the spectrum which wouM occur in the absence of cou-
pling between excitations. Turning on the roton-roton
interaction (g4' ———0. 1, g&'= 0.3, V = 0 for a11 three curves)
splits the single-particle dispersion into two branches;
thus taboo peaks appeag in p~ as shown. For the choice of
zero roton width considered here, the peak below the
two-roton continuum is perfectly sharp, but decreases in
strength as 0 approaches the continuum. The secondary
peak within the two-roton continuum (& & 0) is broad and
asymmetric in agreement with experiment.

remarkable agreement with the experimental neu-
tron data.

Furthermore, our theoretical analysis explains
yet another anomaly of the neutron data; namely,
as the momentum of the excitation spectrum ap-
proaches 2ko, the sharper peak near the continuum
edge 2&0 becomes very weak and appears to pene-
trate into the continuum, i. e. , the peak maximum
seems to occur at energies slightly /axger than
twice the roton energy in contrast to previous the-
oretical predictions. ' This apparent anomaly is
readily explained by including a finite roton life-
time in the calculation of the spectrum. First, in
the vicinity of &- 200, the single-particle energy
is much higher than 2~0; thus from the results
shown in Fig. 11 and discussed above, the st~engN
of the peak near 2&0 which represents a contribu-
tion primarily from the two-roton bound state, be-
comes very small in accord with experiment.
Then, as demonstrated in Fig. 12, at very small
values of the roton width (y = 0. 02) a weak double-
peak structure appears near 2&~. As the width is
increased (y = 0. 1), only a single peak appears in
the theoretical spectrum at an energy very close
to 2+0 ~ By keeping in mind instrumental broaden-
ing, it is apparent that the structure shown in Fig.
12 would show up as a very weak peak in the neutron
spectrum at energies quite close to and perhaps
above the two-roton energy threshold.

Finally, from Fig. 11 it is clear that the hybridi-
zation process provides a qualitative explanation
of the dispersion for the anomalous upper branch
in the spectrum observed by neutron scattering.
Although the energy of the bound state varies with
momentum fC I since the unperturbed density is
ps(Z) celt ' ], hybridization pushes the bound state
into the two-roton continuum as shown in Fig. 11.
Thus the single-particle spectrum displays an
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FIG. 11. Theoretical single-
particle spectrum p~ including a finite
roton lifetime (y =0.02) for various
values of the single-particle energy

The dotted arrows show the un-
perturbed single-particle energies
0; in the zero coupling limit the
spectrum would consist only of indi-
vidual peaks at the 0 energies. The
hybridization coupling (g4

———0. 1,
g3=0. 3 in this case) demonstrates the
appearance of two new peaks in the
spectrum for all three values of Q.
The peak higher in energy is broad
and asymmetric in accord with the
neutron data. As 0 approaches, and
becomes degenerate with the twc-
roton continuum (E)2) there is a
transfer of intensity from the lower
(sharper) peak to the upper branch.
Note the logarithmic scale for p~(K, E).
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extra branch whose position in energy is deter-
mined primarily by the single-particle energy.
Hence for momenta away from the roton minimum,
the upper branch is pushed higher into the continuum

and becomes broader. Lastly, for very small mo-
menta, the single-particle energy is very low so
that the hybridization with the two-roton bound state
is very weak; therefore the upper branch near 2»0
should not be observable at small momenta. The
latter features are also in accord with the neutron

The theoretical results of this section suggest
that further neutron scattering experiments at lower
temperatures would display the hybridization pro-
cess more explicitly since the coupling parameter
gs = g4 [&o(T)] is strongly temperature dependent.
Also, at lower temperatures the roton lifetime
would be longer and the single-particle structure
associated with the bound state would become more
prominent. Finally, it is worth commenting that
detailed neutron studies of the hybridization pro-
cess would yield the temperature dependence of
Ao(T), which is of considerable theoretical interest.

FIG. 12. Theoretical single-particle density of states
p~ at finite roton lifetimes as a function of energy. The
unperturbed single-particle energy was taken to be large,
0=4, corresponding to the momentum region K=—2kp.
Note that the sharp peak near 240 is much weaker in in-
tensity than the peaks in Fig. 11 although the excitation
coupling is the same: g4 = —0. 1, g3 = 0.3. At low tempera-
tures (small roton width p= 0. 02} two sharp peaks appear
in the spectrum as shown by the dotted lines. As the width
increases to p= 0. 1 the double-peak structure is smeared
out and the precise position of the single peak {solid curve)
is difficult to ascertain, although it is clearly close to the
two-roton threshold E = 240.

= ~ J V„~ P2(cos&~ a )d(cos8~ ~, ),0 p 0 0 o 0
(5. l)

where I'2 is a Legendre polynomial whose argument
8»t is the angle between the scattered rotons. In

0 0
addition the Raman studies" yield a very accurate
estimate of the single-roton lifetime which is pri-
marily responsible for the broadening of the bound-
state peak. The single-roton width can be extracted
from the Raman data by convoluting the spectral
function for two interacting rotons [defined in Eq.
(3. 24)] with the instrumental broadening profile as
discussed by Greytak and Yan. ' However, it is
important to note that the single-roton width in-
cludes contributions from scattering processes at
finite total momentum which represent an admix-
ture of ~-type and D-type, etc. , coupling param-
eters. As a first approximation it is useful to esti-
mate the value of ~in@1~ S-like coupling param-

The true nature of roton-roton interactions is
surely very complicated, especially since it relates
to a residual interaction between elementary ex-
citations (rotons) whose character resembles a
moving helium particle surrounded by a backflow
of other atoms. As shown by Feynman and
Cohen, ' one physical mechanism for an "effective"
roton-roton coupling is the phonon-exchange pro-
cess discussed in the Introduction. An alternate
physical description of the roton-roton scattering
is to consider a phenomenological coupling de-
rived from the "particle-backflow" description
of rotons.

In the present calculation we have taken a very
simple model to represent the roton-roton inter-
action; i. e. , we assume a point interaction in real
space which corresponds to a momentum-indepen-
dent coupling. However we allow the coupling
parameter to have different values in various mo-
mentum regions to attempt a more realistic repre-
sentation of the excitation spectrum observed ex-
perimentally. In this section we relate the values
of the coupling parameters which give reasonable
fits to different experimental data in order to shed
light on the validity of our approximations and pro-
vide clues as to the true nature of roton-roton
scattering. We discuss the relevant experiments
below and present estimates of the coupling param-
eters in Table I.

As discussed in Sec. III, the depolarization ratios
for light scattered from liquid helium indicate that
the primary contribution to the observed Raman
spectrum arises from a bound state of two rotons
with D-type angular momentum. Thus the recent
measurements of the pair binding energy provides
an accurate estimate of the coupling parameter
g4 defined in Eq. (3. 35):
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TA&LE I. Values of the roton-roton coupling parameter
g4 in units of 10 3 erg cms as taken from comparison of
our theory to various experiments.

Experiment

Baman scattering; measurement of
binding energy of roton pair (Ref. 15)

Raman data for single-roton life-
time (Ref. 37).

Neutron scattering; position
of bound state peak (Ref. 11)

Neutron studies of hybridization;
Sec. IV (Ref. 11) (taking No ——0. 1).

Viscosity data (Ref. 4).

g4 = —0. 12l=2

)g4 (LK) t =2.4

g4= —o ~ 3

Ig4 l=0. 85

g, (LK) =2. 6

eter g4 from analysis of the roton lifetime using
the theory of Landau and Khalatnikov (LK).' How-
ever, it is important to stress that their theory is
restricted to second-order perturbation theory
which is surely inadequate in view of the existence
of bound roton pairs. Estimates of the above coup-
ling parameters are given in Table I.

To relate our theory to neutron scattering studies
is somewhat problematic since neutrons sample the
density-density correlation function S(K, to) which
is not related in a simple way to the single-particle
spectrum p, (K, &u) which we have calculated. How-

ever, very useful information regarding the roton
coupling may be obtained from neutron data by
noting that p~(K, ~) and S(K, ~) exhibit peaks at
the same energy. Furthermore, a crude compari-
son of structure in p& with the observed spectrum
yields information about the strength of the roton-
roton coupling in various momentum regions.

The existence of two-roton resonances with non-
zero total momentum gives rise to structure in the
neutron data related to the strength of the coupling
constant,

g4(K)=r(ko K ko ko K ko) (5. 2)

where IK- kol —IK- ho!-ko. Thus a crude estimate
of g4(K) can be obtained from the strength and posi-
tion of the peaks in the neutron data corresponding
to two-roton resonances.

Another clue to the strength of the roton-roton
coupling is provided by the hybridization of the
resonance with the single-particle spectrum which
is probed by neutron scattering. "' In this case
the relevant coupling is

g~(K) -g4(K)[NO(T)]'~~- y(0, k, k', k —k'), (5. 3)

with Ik'I - Ik —k'I -ko, and No(T) representing the
temperature-dependent number of particles in the
condensate. Here the estimate of g4(K) is hampered
by uncertainty in the value of No(T).

Other experiments which provide an estimate of

the roton lifetime include viscosity data, neutron,
and iight scattering studies. The neutron measure-
ments provide a direct probe of the single-roton
lifetime but are quite limited in accuracy due to
instrumental broadening. The analysis of the
viscosity data in terms of the LK theory has been
carried out, but must be interpreted with care
because the formation of resonances casts doubt
on the validity of the LK theory of the roton lifetime.
Also the relation of the viscosity to the roton life-
time may be more complicated than suggested by
the simple point interaction model for the roton-
roton coupling invoked by LK. It appears at pres-
ent that the most accurate determination of the
single-roton lifetime is possible by Raman scatter-
ing. However, the light samples only the second-
order spectrum which involves roton pair excita-
tions. Therefore the light scattering experiments
do not provide a direct measure of the single-roton
lifetime.

As discussed in Sec. IIIA, our theoretical analy-
sis using a constant single-roton width as aphenom-
enological parameter provides a remarkably
good description of the observed Raman spectrum. "
However an extension of the roton lifetime theory3'
including possible resonances shows that reso-
nances can give rise to a strongly energy-depen-
dent roton self-energy. The analysis of the Raman
spectrum using the more complete calculation of
the roton lifetime will be presented elsewhere.
It is worth noting a few results of the roton life-
time analysis ' insofar as they provide insight into
the roton-roton interaction. The previous theory
of the roton lifetime based on second-order per-
turbation theory includes with equal importance
the contribution to the lifetime from scattering
processes with various momentum transfers. In
contrast to the latter conclusion, the lifetime
theory3 including resonances suggests that scatter-
ing processes with /ange total momentum dominate
the scattering contributions to the roton lifetime.

Cohen and Feynman~ have suggested that the
roton-roton coupling can be induced by exchange
of a phonon in a manner reminiscent of the BCS
theory. Using a deformation potential type of
approach for the roton-phonon coupling and neglect-
ing momentum dependent terms in the coupling,
Cohen and Feynman estimated the roton coupling
from the variation of the roton energy with respect
to pressure which was known from experiment.
Thereby they obtain an estimate of g4 = —1.3
&&10 3 erg cm . The latter estimate of the cou-
pling is valid only for coupling of two rotons with
nearly parallel momentum, since the deformation
potential approach is valid for small momentum
transfers.

Summarizing the results of this section, the
phonon-exchange mechanism seems to play an im-



BOUND ROTON PAIRS IN SU PERF LUID HE LIUM 417

portant role in determining the roton-roton cou-
pling, especially for nearly forward scattering of
two rotons. The latter processes are most impor-
tant3' in determining the roton lifetime and there-
fore it is gratifying that the Cohen-Feynman esti-
mate of g4 is consistent both in sign and magnitude
with our estimates for g4(K) given in Table I. From
Eg. (5. l) it is apparent that the coupling go=2, for
total momentum near zero, involves an average
over the angle 8, „.. Thus it is reasonable that
gl4=2 should be an order of mag itude smaller than
the Cohen-Feynman estimate in agreement with ex-
periment.

It is not surprising that the coupling of rotons
bears little resemblance to the interatomic helium
potential. Nevertheless, it is curious to note that
the relative importance of roton scattering process-
es with large total momentum (as discussed above)
cannot be related to the interatomic potential since
the hard-core portion of the potential would strongly
influence forward scattering processes with nearly
zero total momentum.

Another approach to understanding the roton-
roton interaction is to construct a phenomenologi-
cal model for the coupling based on the influence
of the backflow. Such an approach has been em-
ployed to calculate the scattering of two Hes quasi-
particles in liquid He3-He4 mixtures, and suggests
that the backflow terms give rise to a strongly mo-
mentum-dependent coupling.

In this section we have seen that the phonon-ex-
change mechanism for the roton-roton coupling
provides a qualitative understanding for the coupling
parameters taken from various experiments. How-
ever, more detailed theoretical analysis of both
the phonon-exchange and the backflow mechanisms
as well as further experimental efforts are needed
in order to understand the physical origin of the
roton-roton interaction.

VI. CONCLUSIONS

We have shown that the formation of two-roton
bound states can modify the excitation spectrum of
superfluid helium in an essential way. The exis-
tence of such bound states provides a simple physi-
cal explanation for the discrepancies between the
excitation spectrum originally proposed by Landau
and the spectrum observed experimentally.

The anomalous features of the light scattering ex-
periments on liquid helium have been resolved in a
natural way by taking into account interactions be-
tween excitations. Coupling of rotons gives rise
to bound pairs which exhibit a sharp peak in the two-
roton spectrum at an energy below the two-roton
continuum. The energy dependence of the spectrum
is of the same form for bound states with different
angular momentum character. Our calculated spec-
trum gives good agreement with the observed Ra-

man data. However, further analysis of the light
coupling to liquid helium is needed to determine
whether both s- and d-type bound states can occur:
The light polarization data suggest that the major
contribution to the observed Raman spectrum arises
from bound pairs in d-type angular momentum
states. On the other hand, there is no a Priori
reason to expect that only d-type pairs exist. Fur-
ther Raman scattering experiments at lower tem-
peratures would provide considerable insight into
the formation of bound roton pairs. As the temper-
ature is lowered, the structure associated with
bound states becomes much sharper since the roton
lifetime becomes longer. In the present paper we
have followed LK in using a phenomenological ener-
gy-independent roton lifetime. The existence of
resonances in the two-roton scattering requires a
more thorough analysis of the single-roton life-
time which may turn out to be strongly energy
dependent. Thus careful studies of the tempera-
ture dependence of the Raman spectrum from liq-
uid helium would provide valuable information
concerning the temperature variation of the roton
lifetime which would reflect the calculated energy
dependence of the lifetime.

Further neutron studies of liquid helium are
necessary in order to determine the extent to which
the bound states hybridize with the single-particle
spectrum. Of particular interest is the behavior of
the heretofore unexplained "extra" branch in the
spectrum above 2Q, i. e. , greater than twice the
single-roton energy. We have shown that the for-
mation of two-roton resonances splits the single-
particle spectrum into two branches near 2~o and
thus provides a simple physical explanation for the
"extra" branch in terms of quantum-mechanical
level repulsion (hybridization). Experimental in-
formation about the extra branch would give valu-
able information in regard to the strength of the
roton- roton coupling in various momentum regions.
Furthermore, neutron data in the vicinity of the
extra branch would provide an estimate of the tem-
perature-dependent number of particles in the con-
densate No(T) which plays an important role in the
hybridization process, and whose value, is of con-
siderable theoretical interest.

Another manif estation of roton- roton interactions
is the renormalization of the roton energy which is
strongly temperature dependent. One source of re-
normalization is the hybridization process dis-
cussed in Sec. IV. It is clear that hybridization of
the resonance with single-roton states lozvexs the
single-roton energy, thus in part removing the dis-
crepancy between the Feynman- Cohen excitation
spectrum and the experimentally observed energy as
shown in Fig. 2. However. there are a number of
other scattering processes which contribute to the
roton renormalization; the latter processes pose
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an interesting theoretical challenge which lies be-
yond the scope of the present paper.

Our results indicate that light and neutron scat-
tering experiments on superfluid helium at various
pressures should reveal fascinating information
about the excitation spectrum. It is already known
that the roton energy depends strongly on pressure.
Thus an analysis of the bound-state structure and,
in particular, the hybridization process at various
pressures would be of considerable interest from
both the experimental and theoretical points of
view. Such experiments may determine to what
extent the phonon- exchange mechanism dominates
the roton-roton scattering insofar as the latter
physical mechanism predicts a variation of the cou-
pling with changes in the roton energy with respect
to pressure. Changing the roton-roton coupling by
varying the pressure would result in a change in
the binding energy of coupled roton pairs in various
momentum regions and, at the same time, modify
the hybridization of the bound state with the single-
particle spectrum. Providing that the coupling is
sufficiently enhanced, it may be possible to ob-
serve the double-peak structure near the two-roton
energy threshold as discussed in the text.

According to our simple theory, the existence
of the Bore condensed phase is important for the
hybridization g3 &0. Above the transition tempera-
ture the hybridization and the two branches struc-
ture of the spectrum should disappear, which must
be observable in experimental data.

An essential feature of our analysis is the in-
clusion of a finite roton lifetime in the calculation
of the excitation spectrum. By starting with the
excitation spectrum proposed by Landau (see Fig.
2) as the appropriate unrenormalized spectrum,
we have demonstrated how the formation of two-
roton resonances at finite momentum gives rise
to quite unusual structure in the single-particle
spectrum near, 2&0, i. e. , near the resonance ener-
gy. By including the roton lifetime we have demon-
strated why the spectrum observed by neutron scat-
tering contains a peak at an energy greater than 2Q
in contrast to predictions of other theories. ' ' '

Our theoretical development suggests that the
momentum dispersion of the two-roton bound state
should be relatively smooth as a consequence of the
threshold in energy in the unrenormalized two-
roton density of states. Thus the hybridization of
the resonance with single-particle excitations seems
to be primarily responsible for the unusual momen-
tum dependence of the resonance structure observed
by neutron scattering experiments and shown in Fig.
2.

Finally, it is worth mentioning that the present
paper has demonstrated the necessity of using a
strongly momentum-dependent roton-roton coupling
in order to achieve a qualitative understanding of

various experimental results for superfluid helium.
These conclusions point out the need for further
theoretical analysis of the roton-roton coupling
which is essential to an understanding of the super-
fluid helium excitation spectrum in terms of funda-
mental microscopic principles.
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APPENDIX: TWO-ROTON DENSITY OF STATES

The calculation of the joint density of states for
a pair of rotons with arbitrary total momentum is
straightforward but somewhat tedious. In this
appendix we present the salient features of the
derivation, beginning with the standard expression
for the unperturbed density of states from E&l. (3.6),

p,' '(Ã, td)=, fd'k il(~ —E —E .,), (Al)

where the factor of 2 takes into account the roton
indistinguishability. Writing the momentum inte-
grals in terms of polar coordinates by introducing
the angle ~ between the total momentum K and the
momentum of one of the two rotons, and making
use of the roton dispersion formula Eqs. (3. 8a)
and (3. 8b), one can transform the two-roton den-
sity into the form

p,'o)(K, (o)= [»,o/(2»)'] fk'dk J, dx6(2po(o& —2ho)

—(k —ko)o- [(K + k —2xkK)" —ko ] )

(A2)

using x =cos8. Let us denote the root of the ex-
pression under the Dirac 5 function by x = xo(k, K);
then in Eq. (A2) the integral with respect to the x
variable can be performed to give

&o)(K, &o)= Po P ™~dkk

min

[K +k —2Kkxo(k, K)] ~

[»o(~- »o) —(k - ko)']"'

(A3)

where (k' „, k ) stand for the momentum intervals
in which the cosine function denoted by x takes real
values lying between —1 and 1. The index i labels
the different intervals. The first step of the cal-
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k"""=k + 2K+-[2a —K']'" (A7)

where the notation (2= 2i1p((d —2&p) is introduced.
This is the case for small enough total momentum
K. Furthermore, discussing the second case, one
obtains two other roots:

k(1&, (2& 1K~ 2-2/2 [2o( (2k K)2] 1/2

which are real if K&2kp- (2(y)'/', i. e. , at large
enough total momentum.

Similarly, for the condition xo(k, K)=-1, the
following two boundary values are defined:

(A8)

culation is to find the roots denoted by xo(k, K) and
the corresponding momentum intervals. The an-
gle xp(k, K) is the solution of the equation

2i1o(o& —2Q) —(k ko) [(K + k 2kKXo) / -ko] = 0 ~

(A4)

Considering this equation for the roots xo(k, K),
the two-rotons density of states given by Eq. (AS)
can be transformed into a simpler form

yS.~ min

k0
lmrr(~-»)-() -)r)')"') '

(A5)
where the + correspond to different roots of Eq.
(A4).

The requirement that x0 should be real yields the
following necessary restrictions for the ends of the
intervals:

ko- [2i1o(o&- 2%)1'"-k' 1.. ..—ko+ [2i1p((0- »p)]'",
(A6)

which follows from Eq. (A4) immediately.
To obtain conditions for finding x corresponding

to real angles 8, four regions of the total momen-
tum K should be considereg separately.

Case A: K& [2p0(u -23,0) )
'

Let us start with the boundary conditions as
xo(k, K) = a 1, and write k„= 1 as the solution of Eq.
(A5) for xo(k, K)= 1. This equation may have two
different types of solutions. In the first case the
square root has the value k —K, while in the sec-
ond case K- k, depending on whether k &K or K &k.
Discussing the first case, one gets two roots:

mined by the values yielded by Eq. (A7), one can
obtain the final result

As we can see in Fig. 13, the integration paths
illustrated by the broken lines are limited by the
necessary condition given by Eq. (A6) at the ener-
gy values k=k0- o. and k= k0+ &", respectively.
On the other hand, both paths labeled by + and-
are running out of the interval —1 &x0 &+ 1 and later
they are turning back. Those momentum values
at which the xo= +1 lines are crossed are yielded by
Eqs. (A7) and (A8). In this way there are four in-
tervals, two labeled by "+,"

(k (21/2 k(2&
)

and two by "—,"
(A11)

In these intervals the integrals given by Eq. (A5)
can be calculated in a straightforward way and the
following result is obtained:

p'"(K ~) = " 2''+K(2n -K')"'
2 r 8 2K 0

g ( Zr! (2r! rr ) ')+ 2kp s1n
I 2 2 1/2

Xp
/)L

+1

~ 4
4

/' K~ -1/2 2 Kpi 1/2

pz '(K, &o)= 2 2ko~ arcsin
2

+ 2SmK I, 2 Q

Ko. ~-K—arcsin — + — rrr(2u —K )
'

IQ

(A10)
In the limit K-0 this result reduces to the special
expression discussed before and given by Eq. (3.9).
Finally, we mention that in case A the necessary
condition written in the form of Eq. (A6) does not
affect the two integration intervals.

Case B: [2p, (u-2h )] & K & [4p (u-2h )]

k' " ' =k —2K+ 2(2Q-K ) (A9) ~ ~

~ ~

~ 4

but now we get only one set of the solutions.
In this region the two momentum intervals labeled

by + and — are illustrated in Fig. 13 by the solid
lines and they represent (k','„k' '

) and (k','„k' ' ).
Performing the integrations in the expression given
by Eq. (A5) and considering the intervals deter-

ko+ Wa

FIG. 13, Schematic representation of the integration
paths in the evaluation of the unperturbed joint density of
states as discussed in the Appendix.



420 ZAWADOWSKI, RUVAI DS, AND SOLANA

2kp[4Pp((A)2ZLp)])E)[4Pp(M2&p)]

In this case, the momentum values at which the
absolute value of the cos would be larger than unity
are complex as can be seen from Eqs. (A7) and
(A8). Therefore, the two integration paths illus-
trated in Fig. 13 by dotted lines do not cross the
xp = + 1 lines. In this case we have a simple situa-
tion, where the paths are limited by the momentum
values k =ko —n~+ and k =ko+ o.'~2 given by Eq. (A6).
In these intervals the integral in Eq. (A5) can be
performed and one obtains

p' '(K, (u) = (p /4~)(k /K)H((u —2& ), (A14)

i.e. , the density of states is given by a simple step

Heaviside function II, which is unity when w & 26p
and zero otherwise.

Case D: K)2k —[4Pp(~ —&~p)]
It2

In case C, Eq. (A7) does not yield any real solu-
tions of Eq. (A4), and therefore the paths do not
intersect the line xp= 1 in the upper part of Fig. 13.
This situation may change at large total momentum
where the result given by Eq. (A7) does not hold

any more and there is another set of solutions. The
condition for appearance of these other solutions
determines the fourth region discussed now. In
this region one of the curves intersect the line x, = 1
twice. We do not go into the details here; it is only
mentioned that the threshold of the unperturbed two-
roton spectrum becomes larger than the energy of
two free rotons at these very large momentum
values.
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Recently, a self-consistent scheme for the mode-mode coupling theory of critical fluctua-
tions was developed by Kawasaki in which the decay rate of concentration fluctuations for a
binary critical mixture was obtained in the simplest approximation of ignoring all the vertex
corrections. In this paper we calculate the contribution of the simplest vertex corrections.
We find that the corrections are 2.44/p for q&(K, and 0.40% for q&&K, where q and K are
the wave number and the inverse correlation range of concentration fluctuations, respectively.

I. INTRODUCTION

The physical ideas of mode-mode coupling in crit-
ical phenomena were perhaps first introduced by
Fixman, who considered the critical behavior of
shear viscosity in a binary mixture. The idea was
reformulated in the language of a time-correlation
function by Kawasaki. ' Later, Kadanoff and Swift'

- developed a formalism for transport coefficients,
which can be given a schematic interpretation. In
these theories couplings among hydrodynamic fluc-
tuations play a crucial role in determining the mac-
roscopic behavior of the system. Recently this
formalism had been further extended with the aid
of a generalized Langevin equation due to Mori in
which kinetic equations obeyed by critical fluctua-
tions are derived. A main result of the theory is
the Dyson-type self-consistent equations for the time
correlations of critical fluctuations of the following
form:

Gg (t)=Gg (f)+ 10 dt, JO' dt~Gg (f —ti)

xZ& (f, fz)G,, (f, )

Ur (f)—:(a- (t)a- (0)) . (l. 2)

where G; (f) =(a;, (t)az, (0))i(at a~ ) is the renor-
malized propagator for the gross variable a; with
a wave vector q, Z;~(t& —tz) is the proper "self-ener-
gy,

" and G& (f) is the unperturbed propagator ob-
tained by ignoring coupling among hydrodynamic
modes.

By introducing a renormalized vertex represented
by a heavy dot ~, a corresponding graphical equa-
tion for G; (&) is given in Fig. 1, where the renor-
malized correlation function U;, (f) is given by

II. CALCULATIONS AND RESULTS

According to the rules given in Ref. 4, the sim-
plest vertex corrections for Fig. 1 are found to be
of the type shown in Fig. 2. Note that there all the
vertex renormalizations to the vertices at each
corner of the "triangles" in the right-hand side of
Fig. 2 are ignored. The unperturbed propagator
G';, (t) is given by

G& (f)= 8(t)e""~~ ~«" (2. 1)

where

(2. 2)

and w; and z; are the frequency and damping con-
stant of the mode a; in the absence of interactions

The theory has been applied, among others, to the
order parameter dynamics of binary liquid critical
mixtures, as well as of fluids near the liquid-gas
critical point, and excellent agreement with the re-
cent light scattering experiments has been achieved
throughout the hydrodynamic and critical regimes.
However, this particular calculation ignores all the
vertex corrections in the equation shown in Fig. 1.
Since the expansion in terms of renormalized prop-
agators contains no obvious small parameter of ex-
pansion, there is no a Pxio~i reason to ignore ver-
tex corrections, and as it stands, a possibility can
not be excluded that the excellent agreement with
experiments could be fortuitous. Thus it is impor-
tant to examine the effects of vertex corrections to
the order parameter dynamics. A calculation of the
contribution of the simplest vertex correction, in

the case of a binary fluid mixture, will be presented
in Sec. II.


