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We have kept only the dominant terms driven by
the resonance 0- ~. On the left-hand side of
Eq. (2) we keep only the k6c2A, term, with the
approximation kc» ~. The solution for A, is
then substituted into Eq. (1). The y factors on the
right-hand side of Eq. (1) can be neglected to the
order of interest, and expanded to order vs/c6 on
the left-hand side. Thus the electron density fluc-
tuations at + ~0 are coupled by the incident Eo
through relativistic mass corrections and through
the v && 8 force. The dispersion relation becomes

= (~~ —&6 + Sk KT/m - —,v6 &6/c ) /4(u6

—&u6v6/256c' . (3)

The maximum growth rate is '

1 16 (VO/C ) 6 0

when the bracket in Eq. (2) equals zero. As &d~,

approaches &0, the most unstable wave number
satisfies )'6 c = ~6 v6/4v, » &6. Since the incident
light satisfies the approximate equation ko c = +0
—+» we were justified in ignoring the wavelength
dependence of the incident light. [The modified
two-stream instability has a maximum growth rate
given by &d z

= 0. 17 & ~; (M/m) 1~ . t
Energy is being deposited in both the transverse

electromagnetic wave E, and in the longitudinal
electrostatic wave E,. The ratio of the two can also
be found from Eqs. (1) and (2):

Most of the energy will be deposited in the longitu-
dinal plasma oscillations. The wave vector k6 of
the laser light can be paralled to k or parallel to
5,. If k is perpendicular to the plasma density
gradient, then the effects of the plasma density
gradient should be minimized.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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The general motion of ions in He II is investigated assuming that nucleation of and escape
from vortex rings is a random thermally activated process. The mean drift velocity vz is cal-
culated as a function of temperature, applied field, and ionic species. It is shown that low-
field data up to and just beyond the giant discontinuity can be explained, provided careful atten-
tion is paid to the friction forces on small rings, by assuming that vz is the equilibrium drift
velocity. The transition between bare-ion and vortex-ring behavior is discussed in some detail.
At higher fields one must take into account vortex-ring dynamics and the possibility of escapes.
In general v& is larger than the equilibrium velocity and, for very large fields, increases with

field. Predictions of the theory are compared with experimental drift-velocity data. Also con-
sidered are the characteristics of ion currents in nonuniform fields. In particular, predictions
are made for the "persistence current" observed when ions propagate first through a region of
constant field, then through a region of zero or retarding field.

I. INTRODUCTION

The diversity and novelty of problems associated
with the motion of ions in superfluid helium has
made this subject a popular area of investigation
for both theorists and experimenters. The di-
versity arises because the ion has separate and
quite different interactions with the normal and
the superfluid components. The relevant physical
processes have been mostly identified, however,

and the main features of ion motion can now be
understood. It is the purpose of this paper to dis-
cuss the interplay of these processes and to pre-
sent quantitative calculations of the average ion
drift velocity and persistence currents.

The main physical effects governing the motion
of an ion under the influence of an electric field
are the viscous force on a bare ion, the possibility
the ion will nucleate and be captured by a quantized
vortex ring, the electric and viscous forces on the
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ion-ring complex, and the possibility the ion will
escape from the ring. Depending on the tempera-
ture and the applied field, different combinations
of these effects (in some cases all of them) are
important in determining the motion of the ion.

In Sec. II we discuss the ion drift velocity in
terms of the standard picture in which the bare
ion or ion-ring system moves with a constant
equilibrium velocity. Special attention is paid to
the viscous force on an ion trapped in a "small"
ring. In Secs. III and IV we discuss two regions
in which the simple equilibrium picture breaks
down. The discussion in Sec. III of the transition
region between bare-ion equilibrium and ion-ring
equilibrium includes an analysis of the effect on
the average drift velocity of the dynamic instabil-
ity first noted by Huang and Olinto. ' In Sec. IV we
discuss ion motion in large electric fields where
the peculiarities of vortex-ring dynamics and the
possibility of the ion escaping from its ring make
equilibrium a rarity. Formulas are derived giving
the average drift velocity v„ in these circumstances.
Extensions to account for small-ring dynamics
and other effects are discussed and applied to an
analysis of experimental data. In Sec. IV we also
discuss the "persistence current" observed~ when
ions propagate first through a region with a large
constant field, and then through a (macroscopic)
region of zero or retarding field.

Summaries of definitions used in the text may
be found at the end of Secs. GI and IV.

II. IONS AND RINGS IN EQUILIBRIUM

In a typical experiment ions of negligible energy
enter a region of constant and uniform electric
field. The ions move in the field, gaining energy,
for a fixed distance d and are then collected. A
variety of methodss can be used to determine the
mean time v„ it takes the ions to negotiate the dis-
tance d, and hence the average drift velocity v„
=- d/7, .

eE —f„,(v,',")= 0 . (2. 2)

One can estimate from Eq. (2. 1) that the equilib-
rium velocity is achieved in a distance somewhat
greater than —,'M„,v",,' (eE) ', which is the order
of 10 BE ' cm with E in kV/cm. For the range of
fields considered in this paper, from about 1 V/cm
up to the order of 10 kV/cm, the latter distance is
much smaller than d, which is usually - 1 cm. The
history of a typical ion is therefore as shown by
curves (i) and (ii) of Fig. 2 (a). (The extent of
the acceleration regions has been exaggerated in
the figures. ) It is clear that the average drift
velocity v~ = v,"~' and v~ is therefore given by

eE f„,(v~—) = 0 . (2. 3)

The drag force can be expanded

fion(v) = 8 p v+ ' ' (2. 4)

where the dots indicate terms of higher order in v.
Comparison with (2. 3) shows that p, is the zero-
field mobility defined by v~= pE Straye.r et al.
have calculated' large-v corrections to (2. 4). The
decreased mobility at high velocities is reasonably
explained in terms of an enhanced density of rotons
in the disturbed region near the ion, giving rise
to an increased drag force. Use of the theory with
(2. 3) yields satisfying agreement with measure-
ments of v„. These results help confirm the simple
equilibrium picture. This point is emphasized
because of suggestions" that the ion generates
coherent turbulence of some sort (e.g. , vor'tex

rings) and that as a consequence f&„depends on
the past history of ion, not just the present velocity.
The inspiration for such theories was, of course,

One sees, incidentally, that the drift-velocity curve,
viewed with v„as the abscissa and eE as the or-
dinate, is just a plot of f„,(v) vs v.

B. Drag Force on Bare Ion

A. Motion of Bare Ion

In small electric fields the ion behaves as it
would in a simple fluid, v„ increasing with field
and the mobility steadily decreasing (Fig. 1).
The similarity to the behavior one would expect
in an ordinary viscous fluid makes plausible the
assumption that the motion of the ion is governed
by a balance between the electric force eE and a
mean viscous drag force f„,(v), where v is the
instantaneous velocity The equ. ation of motion
of the ion is

Vcl

"d

M...v= eE -f...(v) . (2. 1)
Ecj Eca.

According to this picture the ion accelerates from
rest and asymptotically approaches the limiting
velocity v,",' given by

FIG. 1. Typical plot of average ion drift velocity vs
applied electric field.
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exhibited no steps at all. It therefore seems
likely that the steps are associated with a facet of
the experiments other than the central property,
i.e. , v„, whose measurement was sought.

C. Beyond the Frist Critical Field

Now consider what happens with higher applied
fields. As the electric field is increased, and
for temperatures T&1.35 'K, one reaches a critical
velocity v„and field E,& beyond which v„ falls

precipitately with field. ' (See Fig. 1.) In this
region one supposes the ions to be trapped in
singly quantized vortex rings. ' Qn a microscopic
scale the motion of the ion is as illustrated by
curves (i), (ii), and (iii) in Fig. 2(b).

There is a narrow range of fields such that
nucleation of the ring' does not occur until the ion
has propagated a good fraction of the way across
the drift space [curve (i)]. The mean drift velocity
of a bare ion at these fields is generally close to

This case is treated in Sec. III below.
At higher fields the history of an ion is as follows.

The bare ion accelerates to an equlibrium velocity
greater than v„. Shortly thereafter it nucleates and
is captured by a ring, which then grows and de-
celerates to i ts equilibrium velocity. The equation
of motion of the ion-ring complex may be written
simply as

(2. 5)

where the momentum

P =M„,v+ &p, ~R' (2. 6)

FIG. 2. Characteristic ion histories for a sequence
of increasing electric fields: (a) 0& E & Egf (b) Egf & E
& E~2, (c) E~2 & E. The tick marks labelled (i), (ii), etc. ,
give the time-of-flight average velocity for the corre-
sponding history. Curve (a) (iii) is repeated as (b) (i)
and likewise (b) (iv) is repeated as (c) (i). The bare-ion
acceleration distance and the deceleration distance for
small rings are exaggerated.

the famous "Careri steps" by which the mobility
was observed to decrease at regular intervals of
the drift velocity. The mobility steps were ob-
served by at least two laboratories ' and frustrated

1,5attempts ' at a quantitative theoretical interpre-
tation. However, recent experiments using very
direct and reliable techniques for measuring 7'~

is the sum of the ion momentum and the momentum
of the ring. The total force F is eE-f„(v), where
f,„is the drag force on the ion-ring system. The
ring radius R is related to the velocity by the
classical formula

,= (&/4~R) h (R/q) . (2. 7)

Here and above I(; is the circulation m=0. 99V&10
2&cm /sec, p, is the fluid density and $ is related to

the core radius a= 1 A by $ =-', e'~ a. Once more
one expects the ion to approach an equilibrium ve-
locity, given in this case by

eE —f„(v,",) = 0 . (2. 8)

The numerator is the energy of the equilibrium
ring with R„related to v,'," as in (2. 7). For a.

wide range of ring sizes this characteristic dis-
tance is much less than d-1 cm; once more a
simple equilibrium picture obtains and the drift
velocity v~= v„. Curves (ii) and (iii) of Fig.
2(b) illustrate the effect of increasing the applied

The equilibrium velocity" is achieved in a distance,
subsequent to the nucleation of the ring, of the order

—.'p, ~'R.,[in(R.,/g) ——,
'

] /eZ .
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field-the equilibrium ring size increases and v&

decreases. (Once more the scale of the non-
equilibrium parts of the ion history is exaggerated
for clarity. )

f„=f„„=o.(T) in(R/$). (2. 9)

Here f„„is the drag on the ring alone. All de-
tails of the distribution and scattering properties
of impurities and excitations of the fluid are con-
tained in the temperature-dependent experimentally
well-known coefficient n.

Combining (2. V), (2. 8), and (2. 9) gives the
Careri formula' in the form

K
vg=

4 (Ee

where E=eE/n. For E&E„, the ratio eE/a is
alwa„~s substantially larger than unity so the ex-
ponential dominates in (2. 10) and u~ falls off very
rapidly with field, as indicated in Fig. 1.

If the ring size is comparable to the ion radius
R&„, the situation is more complicated. Equation
(2. 9) is derived by assuming the drag force varies
linearly with velocity and with ring size. Because
the velocity is no longer much smaller than the
Landau critical velocity, even for a ring with no
trapped ion this assumption will be violated.
Furthermore, for small R the relations between
v, R, and the momentum of the ring depend on the
core structure (we have assumed a solid core).
More drastic effects follow from the presence of
the ion trapped in the vortex ring. First, the
momentum and velocity of the ring will be further
modified because of the modified velocity field.
And, more importantly, the drag force will be (a)
augumented by the drag force on the relatively
large fast moving ion, and (b) decreased according
to the amount of the ring perimeter which is oc-
cupied by the ion. To complicate things further,
one cannot expect that the drag force on the ion will

D. Drag Force on Ion-Ring Complex

Although v„' is determined in principle by Eq.
(2. 8), in practice f„is not easy to calculate. For
large slow rings, however, the situation is com-
paratively simple with f„given by'2

simply be f„,(v) (which is available from the drif t-
velocity measurements with E& E,~). This is be-
cause the environment of the trapped ion is en-
tirely different than for the bare ion-the circulat-
ing velocity field of the vortex ring is, in the
vicinity of the ion, as large as the translational
velocity of some 10 or 30 m/sec. Huang and
Olinto (referred to hereafter as HO) have estimated
that this effect results in a reduction of fq„by a
velocity-independent factor |;

Not all of these complications are of equal im-
portance and we argue that the drag force is ad-
equately represented by

f&, n(T——)[1—(mR) ~R„,]in(R/g)+ gf„,(v), (2. 11)

where f„,is taken from the drift-velocity data for
E &E„. The term in square brackets is expected
to account for effect (b) above and the term 0f„,
is like that suggested by HO to account for (a).
Consider the other effects. Because a is stil' an
order of magnitude smaller than R, effects due to
core structure, while noticeable, are much smaller
than those due to (a) and (b). Donnelly and Roberts'
(hereafter referred to as DR) have calculated the
velocity of a small ring with a trapped ion; we
find that the corrections are about the same size
as the uncertainty regarding the structure of the
core. Also, the velocity of the complex, while
substantial, is still only half the Landau velocity
(- 60 m/sec) and we do not expect an important
deviation from linearity of the dependence off„„
on v and R.

E. Comparison with Experiment

To check the consistency and completeness of
(2. 11) that expression was used for a least-squares
fit to drift-velocity data' for E just greater than

E„, allowing o, R&„, and f to vary as free param-
eters. If we have omitted important physical ef-
fects, or included them wrongly, one might ex-
pect that the free parameters will assume "un-
physical" values. Some results are shown in
Table I. The nominal values were determined as
follows: for n, from the HQ extrapolation of Ray-
field and Reif's low-temperature ( & 0. V 'K) mea-
surements' of the drag force on large rings (in-

TABLE I. Comparison of drag force parameters determined by least-squares fit to drift-velocity data with nominal
values determined independently.

Ion

Positive
Negative

Temperature
('K)

0.89
1.41

(eV/cm)
Nominal Fitted

value value

63 65+1.5
2320 2290 + 65

Nominal
value

5-8
16

Fitted
value

7, 3 21.2
18.6 +4. 5

Nominal
value~

Fitted
value

0.31+0.04
0.16+0.06

~See Ref. 13.
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III. TRANSITION REGION vq =v„
This is the first region we encounter in which

a simple equilibrium picture is inadequate to de-
scribe the motion of the ion. Because of com-
plications discussed below we are not yet able to
give a quantitative theory of the motion in this
region. However, some general points can be
made.

A. Nucleation of Vortex Rings

According to DR the nucleation of a ring is a
thermally activated process. For an ion travelling
with a velocity v, the activation energy AF(v) is
taken to be the energy of a ring which, in the
presence of the ion, propagates with that same
velocity. Since the ring energy, and hence bF,
go roughly as v ~, the nucleation rate P„(v) in-
creases rapidly with velocity. A critical velocity
v,'&'is defined by P„(v,'P ) = v', P/d, that is, by the

condition that I'„be the reciprocal of the drift time
of a bare ion. In the vicinity of v,'",', an adequate
approximation for I'„ is

v
P„(v)=

vci

vnuc
0„exp 0

kgT v

eluding a correction for the slight temperature
dependence" of th); for R„,from measurements
of low-field mobility'6 and vortex trapping times'~;
for f from the estimate of HO.

The fit is not particularly sensitive to the cor-
rection factors R„, and g. Nevertheless, the
best-fit values are sufficiently close to the nominal
values to lend credibility to our choice of functional
form for f„.

At the same time Table I lends additional support
to the idea that the bare-ion part of the drift-ve-
locity curve is a simple equilibrium curve given
by (2. 8). HO also obtained a good fit to the v~

curve using (2. 11) but with R„,= 0. But they used,
instead of the measured f„,(v), the phenomeno-
logical form

fi««= —eEoln(1 v/vo)

where vo is the Landau velocity and Eo= vo p. '. In
general f"„,is less than f„„sothat processes
(the creation of large vortex rings) had to be in-
vented which prevent attainment of equilibrium.
However, the same feature (f"„o&f„,) means that
replacing f„,by f"„,is roughly equivalent to in-
troducing a nonzero R„, in (2. 11)—that is, either
procedure reduces f„, so a reasonable fit to the
v„data for & &&„ is obtained. It is interesting
in this connection that Cunsolo and Maraviglia,
using (2. 11) with f"„,for f„,and R„,= 0 to analyze
experiments with 0.4'K& T&1'K, found f= 3 and

5 for positive and negative ions, respectively, in
substantial agreement with the results presented
in Table I.

where AFo= bF(v,'",'). The parameter &Fo and the
preexponential factor Q„can be obtained from DR.
The quantity hF o/kaT is large (- 50—100), so that
e «'""I", which is the probability an ion can prop-
agate the distance d at a velocity v &without nu-
cleating a ring, changes rapidly from very nearly
unity for v & v,'",'to very nearly zero for v & v,'",'.
In the former case v„= v,',", and in the latter case

ig
Vg Vyq ~

There is an intermediate region where v,",

= v,'P [Figs. 2(a), curve (iii), or 2(b), curve (i)]
which is relatively narrow (-1 m/sec) but quite
observable. In this region we can calculate the
the average drift velocity as follows. Assuming
that once a ring of the appropriate size is nucleated
the capture probability is unity and that the re-
sulting ion-ring complex is stable, the mean drift
time is

~, = J't"«a' P„(v,",') exp[-P„(v,",') t]
0

x[t+(d —v,",' t)/v~] dt

+ exp[- P„(v,",') d/v,",']d/v,",' . (3. 2)

The second bracketed factor under the integral
sign is the transit time should nucleation occur
between t and t+dt and the rest of the integrand
is the probability of such an event. The second
term is the contributionof bare ions that survive the
entire distance d. The integral in (3. 2) is trivial
and the average drift velocity can be written

v~ = d/r, = v,", [1—(1 —v,",/v,",') 5 '(1 —e ')] ', (3. 3)

where & = P„(v,',")d/v, ',". The predicted v~ changes
rapidly, but smoothly, from the "ion" equilibrium
curve to the "ir"equilibrium curve.

B. Interpretation of Experiments

Often, however, the situation is not so simple
and Eq. (3. 3) is not obeyed experimentally. One
complication is partly a matter of definitions. Con-
sider an ion pulse of finite width which enters the
drift space. If we measure the current at d as a
function. of time, we will observe the same ion
pulse but smeared out in time because some of the
ions have nucleated rings and have therefore
arrived later than otherwise. The mean drift time
given by (3.2) is just the centroid of the smeared-
out pulse. However this centroid is not necessarily
what is measured experimentally. In Fig. 3 we
plot the shape of the pulse at d for several different
velocities near v,',"' and an initial pulse width about
one-fifth the difference in transit times of a bare
ion and of an ion-ring complex. One can see that
in the intermediate region there are two distinct peaks
at t=d/v, ',"and t=d/v, ",; fornofieldisthereapeak
"in the middle" where the centroid is located. An

experiment, particularly one based on a resonance
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or the distance it takes for an ion to accelerate
to a velocity near v,", . The mean free path is given
by & '= &„'+ &„+&,', where g, &„, and &~ are the ro-.

ton, phonon, and He mean free paths, respectively.
One estimates &„„s-(n„,, So„, s) ', where n„y ~ 3

is the roton (phonon) (Hes) number density and

e„„3the appropriate cross section for scattering
from the ion. For T~ 0. 3 'K one can neglect Q.
Also o„=mR«, and, because the important phonon
wave numbers have k~ R&„, o„-cr„. In this way
we estimate that & ranges from -10 ' cm for T
-0. 5 K to-10 cm for 1.0 K to-10 cm for
1.5 'K. Equation (1.1) has been integrated for a
number of fields and temperatures and we find for
fields -E„that & is indeed about an order of mag-
nitude smaller than the characteristic acceleration
distance. Ordinarily the bare-ion acceleration
distance is the shortest distance in the problem
and parameters of interest (such as v„) are in-
sensitive to it. It is only in experiments at the
very lowest temperatures (such as Ref. 20 dis-
cussed above) that the mean distance between
nucleation events is as small as the acceleration
distance. Characteristic distances in situations
involving rings are large because of the relatively
large energy of a vortex ring. It is only when E
» E„that the acceleration distances (and possibly
the distance required for a nucleation event) be-
come the order of X but, as we explain in Sec. IV,
the motion of the ion is then dominated by ring
dynamics and the ion escape rate.

Regarding the second assumption, we note that
the thermal velocity of the bare ions (given by
—,'M„„v2,=k, T), is the order of 10 m/sec, so we
might expect a significant effect on our analysis
if the thermal distribution of velocities were
properly included. The problem of calculating
the velocity distribution, in the presence of a
particle sink (nucleation events), of an ion cloud
moving with respect to the excitation gas at a
velocity compa, rable to both vq and the Landau
velocity is theoretically formidable. The reso-
lution of the problem is closely related to the con-
siderations of the previous paragraph. Due to
collisions the velocity of an individual ion will
fluctuate (by an amount - v~) around the average
velocity of all the ions. If many such fluctuations
occur during the interval it takes anything macro-
scopically interesting (acceleration to v",,', nu-
cleation of a ring) to happen, then it is probably
a fair first approximation to describe the macro-
scopically interesting event as if the ion had at
all times its average velocity. The comparison
of the fluctuation time with the characteristic times
of the problem is of course the same one as was
concluded in our favor in the previous paragraph.

Note that the mean free path also determines
the diffusion of the bare-ion pulse which spreads

dR R2' vR = eE - e ln —= & .3 dt (4. 1)

With the definitions E = eE/n, E= F/n one easily
finds the time it takes a ring which has just been
nucleated to grow to radius R:

t(R) = 2',~f,"n 'e' [E,(2P) —E,(2E) ] . (4. 2a)

Here E~ is the exponential integral and the initial
condition is R= $ at t=0. Using the relation dx=vdt
with the velocity given by (2. I), one obtains in a
similar fashion

&(R) = 2~ P, o-'($E e [Eg(E) —Eg(E)] —R+ $) .
(4. 2b}

over a distance - (v~&vq)' - 10 3 cm«d. Cor-
rections due to diffusion of the pulse can therefore
be neglected in an ordinary experiment.

F. Summary of Definitions

We have defined a substantial number of special
velocities and fields. As an aid in rereading
Secs. II and III these def initions are summarized here:

average drift velocity, v„;
maximum value of v„just before giant discontinuity,

vcr j

value of applied field when v„= v,» E,»
equilibrium bare-ion drift velocity, v„";
equilibrium ion-ring drift velocity, v„';
Landau critical velocity, vo;
value of the bare-ion drift velocity for which

probability a ring is not nucleated is e ', v",",';
value of v for which f„(v) has a minimum, v,", ;
minimum value of f„(v)/e, E,", ;
velocity where f,» and f„intersect, n,',";
thermal velocity, v, .

IV. HIGH-FIELD BEHAVIOR

We now proceed to consideration of the high
field (E»E„)behavior. What is observed ex-
perimentally is qualitatively as follows. As the
electric field is increased v„ falls off, at first as
e ' I, then (at low temperatures) as E '. For
some field E,2, the drift velocity reaches a mini-
mum and subsequently increases approaching a
value near v, ~ for E-~ (»g. 1).

These effects are consequences of vortex-ring
dynamics and of the probability that the ion will es-
cape at least once from its ring.

A. Ion-Ring Dynamics

The dynamical behavior is determined by Eq.
(2. 5). For large rings we can solve this equation
completely. . If the ring radius R is always large,
then we can neglect the contribution of the ion to the
momentum and we can take f„=f„~= o. in(R/g) and
we obtain
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The functions x(t) and t(x) used below are given pa-
rametrically by (4. 2a) and (4. 2b). The assumption
that the ring radius always be large is apparently
violated for t=0. If the final radius is large, how-
ever, the time spent as a "small" ring is a small
fraction of t(R) and this error may be neglected.
In practice we integrate (2. 5) numerically for
R & 100 A and use (4. 1) when R & 100 A.

In the limit as E-~, mhen dissipative forces
can be neglected, Eqs. (4. 2) become

t(R) = wp, z(eE) R

x(R) = —,
'
p, k'(eE) 'R In(R/t) .

(4. 3a)

(4. 3b)

[Equations (4.3) are most simply obtained by setting
o.'= 0 in (4. 1) and integrating directly. ] Since E is
already - 5 for E = E,&, the limiting behavior can
be seen for relatively modest fields, say, E & 2E„.

The equilibrium radius, given by eE = nin(R/g),
increases exponentially with field. The energy of
the equilibrium ring therefore also goes up expo-
nentially with E. The available energy, however,
is less than eEd, so clearly if E is very large, the
maximum radius R,„will be very much smaller
than the equilibrium radius. Indeed, if d-1 cm,
this situation generally occurs for fields a few
times E,&, the effect is most pronounced at low
temperatures since the available energy for a given
E is smaller. This situation, where the equilibri-
um velocity is never attained, is illustrated by the
ion history sketched in Fig. 2(b), curve (iv).

The maximum radius is given by x(R,„)=d and
from (4. 3b) we see that when E and R, are„large
A is nearly proportional to E. Consequently, by
(4. 3a), the drift time

v~ = t(R,„)~E, (4.4)

so that the average velocity v~ = d/7~ goes as E
Implicit in our description of ring dynamics is

the assumption that the ring reacts as though uni-
formly charged. The time required for the ion to
diffuse around the ring is -R2(v~A) . The dynami-
cal description is certainly justified if this time is
substantially less than the time required for the
ring to propagate a distance -R. Hence we obtain
the condition (Xvz) z In(R/$) «1, which is definitely
satisfied for low temperatures. (Note the weak R
dependence. ) The criterion may not be satisfied
for T & 1 K; one still has recourse, however, to
the following argument: Suppose a force directed
along the axis of the ring is applied locally on its
perimeter via a trapped ion. This will generate
an opposite Magnus force and the element of core
will move radially outward, in this way decreasing
the local curvature. Hence it will slow down rela-
tive to the rest of the ring. The ring is bent so that
the electric field now has a component along the
core of the ring. The ion is at a point of unstable

equilibrium and will be driven along the core to-
ward the opposite side of the ring. The effect,
therefore, serves to co-ordinate the motion of dif-
ferent parts of the ring so we can apply the simple
dynamical description. The time involved is
-R/v,",' and the above criterion is replaced by the
condition (v, ,"R) v In(R/$) «1, which is readily
satisfied.

B. Thermally Activated Escapes

Even though the ion-ring complex may be com-
pletely stable with respect to the averaged forces,
there is a finite probability that the ion will escape
from its ring due to thermal fluctuations.

In the presence of the electric field E the ion is
bound to a ring with an energy W(iEi ) which can
be estimated from classical hydrodynamics. ' If
the escape is thermally activated, one expects the
escape rate P, to have to form

S', =n, exp[- W(iEi)/(y, Z)]. (4. 5)

There have been few experiments measuring P,
directly. In this mork Cade's analysis of his posi-
tive-ion escape data was used to obtain the ap-
proximate form

W/k =(p, /p)(15. 9-1.44~E~ +0.04E )

and 0, = l. 5&&10 sec '. Here p, /p is the super-
fluid fraction and W/ke has units of 'K and E units
of kV/cm. The fit is for data taken with E- 10
kV/cm and T-0. 5'K.

Only zero-field data are available for negative
ions and it is not possible to extract a formula
similar to (4. 5). It is possible to obtain some
estimates as follows. From the hydrodynamic
analysis'~ one can see that the zero-field binding
energy will scale roughly as R,„ln(R„,/a), and
the coefficients of the higher-order terms roughly
as R„,. Using R„,/R'„, = ~~~ and fitting 0, to zero-
field data, 2~ one obtains, for negative ions, 0, = 2.6
&& 10 sec and

W/&~ = (p, /p) (51.5- 3. &4
~

E
~

+ 0. 11E') .
This very crude estimate may be expected to give
results accurate only to within a couple of orders of
magnitude and, as is also the case for the positive-
ion formula, only for E not larger than - 15 kV/cm.
However, because the escape rate changes by very
many orders of magnitude over the accessible
ranges of field and temperature, such an estimate
can still provide useful information. (For example,
see Sec. IV J below. )

In general, escapes are important when P, & z„.
For positive ions, given fields of a few kV/cm,
the effect of escapes mill be seen domn to tempera-
tures -0. O'K. At temperatures above -1'K the
effects of escapes are inevitable at all fields for
which dynamically stable rings can be observed.
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—F„=eE —M„,v —gf, (4.8)

I

The negative ion is much more tightly bound. The
classical theory tells us that the negative-ion es-
cape probability is significant only for fields 20
kV/cm or temperatures ~ l. O'K where the tem-
perature dependence of p, causes P, to increase
rapidly. At some very large field E,2 (-40 kV/cm
for negative ions and about half that for positive
ions), the potential well binding the ion to the ring
is completely overwhelmed by the electric field
and P, - 0,. For fields approaching E,3 the escape
rate will be large even for very low temperatures.

Escapes provide the explanation for the minimum
in the drift-velocity curve at E,2 and the subsequent
rise in v„. After it escapes, the bare ion acceler-
ates once more to a velocity near v„and is cap-
tured by a new ring which then commences growing
toward its equilibrium radius. This sequence of
events can be repeated many times. The average
velocity of an ion propagating in this fashion is ob-
viously larger than if it had remained trapped in the
original ring. If escapes become sufficiently nu-
merous —a situation which inevitably occurs if one
goes to high enough fields —then the average drift
velocity will increase with field, eventually ap-
proaching a velocity near v„as rings are continu-
ously nucleated and shed.

Representative ion histories are illustrated in
Fig. 2(c). Curve (i) is supposed to be for a field
small enough that P, is insignificant. In curve (ii)
the escape rate P, -7 „' and we see, typically, a
single escape. Because of the escape, the average
drift velocity is substantially larger than if there
had been no escape. Nevertheless, the average
velocity for history (ii) is smaller than for history
(i). [Note that the time-of-flight average velocity,
which can be written as (d ' f v 'dx) ', is determined
by the trajectory average of v ' not v. ] In curve
(iii) the applied field has increased so there are very
many escapes and the average velocity is larger
than for either (i) or (ii).

To conclude this section, let us examine the bal-
ance of forces on the ion and the ring. The ion is
acted on by the drag force, the electric field, and
a trapping force F„exerted by the ring. The trap-
ping force is important because it is —F„which
must be substituted for eE in (4. 5) to determine the
escape rate. One has

eE —1f„„+F„=M„,v'

or

(Q & =Z2P2Q2 (4. V)

where Q„ is the value of that quantity for the his-
tory h.

For the time being we will assume

(4. 8a}

P„(v,",')» r, ' . (4. 8b)

These assumptions together imply that the ion
spends most of its time trapped in a vortex ring.
Equation (4. 8b) is always satisfied if the applied
field exceeds E,j by more than a few per cent.
Under the same condition (4. 8a) is violated only for
very high fields or high temperatures. It is also
fair to assume that the rings are large enough so
that the dynamics can be described by Eqs. (4. 2}
and so that P, is constant; this assumption is
valid provided only that v& is not close to v, &, which
again means E should not be near E„.

Because of (4. 8), a typical history is completely
characterized by the number and position of the
escape events. Since P, is independent of time
the probability an escape occurs between t and t+df
is P, exp( P, t)dt, where t -is measured from the
last nucleation event. The probability P' '(tq,
t2 ' ' ' tN) dtldt2' ' 'dt's of & escapes occurring at
successive intervals t&, t&, . .. , t„ is therefore
given by

Now v goes as R In(R/$) so that for large rings
the second term on the right-hand side of (4. 8) can
be neglected. Similarly for large slow rings f„„
is very small as well and ff„,can also be ne-
glected, so that the magnitude of F„ is nearly equal
to eE. In fact, it is only for the very smallest
rings that the corrections are of any importance.
This fact constitutes an important simplification
for it means that in most cases the escape rate P,
can be taken to be constant throughout the experi-
ment.

C. Calculation of Drift Velocity

We are now in a position to make quantitative
calculations. The problem can be looked at in the
following fashion: Because of the presence of two
stochastic processes (nucleation of rings and es-
capes}, there are many different possible ion his-
tories, characterized by the number and locations
of escape and nucleation events. With each history
h is associated a certain total probability P„. The
average value (Q) of any quantity can therefore
be calculated by the formula

P"' = exp[- P,t(d)),

P,"exp[- P,(t, + t2+ ~ ~ ~ + t„)] exp[- P,t(d —x(t,) —x(t2) —~ ~ ~ —x(t„))],
provided x(t, ) + x(t ) ~ ~ ~ . +x(t„)&d

0, otherwise .

(4. 9)
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The first N factors P, exp( —P,t, ) give the probability escapes occur at the intervals t&, to, . . . , t„and the
final factor is the probability that the last ring survives to the end of the drift space without an escape.

The history dependent quantity is the time of flight t&,t&"&:

&& '=t(d),

(t„ to, . . . , t&&) = t&+ to+ ~ + t„+ t(d —x (t, )- x(to) — —x(t„)),
and the mean drift time r„ is, according to (4. 7),

(0) (0) t(u-x(t~)) t(d-x(tg)- ~ ~ ~ -x(tN g))7'„=P N + ~ dt) dt~ ~ ~ dtN
N=1 O 0

and of course the average drift velocity v~= d/T~
One interesting feature of (4. 10) is that if P,t(d)

is the order of unity, so that most ions suffer no
more than one or two escapes, and if E is large
enough so an appreciable fraction of the drift space
is required for a ring to approach its equilibrium
velocity, then 7„exhibits a significant d dependence.
The velocities are generally lower if more distance
is available for deceleration; hence, the mean drift
velocity is smaller for the larger distance. If there
are many escapes on the average, the ions "forget"
their early history and the d dependence fades away.

As with Eq. (3. 3), some caution is necessary in
the application of (4. 10). The structure of the latter
equation makes it clear that the collected ion pulse
will be a superposition of a "zero-escape peak, " a
"one-escape peak, " and so on. Assuming a sharp
input pulse, the zero-escape peak is a 6 function
with t&. t = t(d); the N-escape peak has finite width
and is centered near a (shorter) drift time dd
= (N+ I)t(d/(V+ 1)). If P, is such that m. any escapes

are likely, these merge into a single peak centered
near t&. t = (V+ I)t(d/(F+ 1)), where N is the average
number of escapes. If, however, P, is such that
no more than one or two escapes are likely, then
an experiment may resolve the separate contribu-
tions from N = 0, N = 1, etc.

D. Limit P, t(d)&&1

Equation (4. 10), while perfectly general (granted
our assumptions), is interesting only for P,t(d), the
order of unity. If P,t(d) «I, the theoretical calcu.-
lation is easy-the first two terms in (4. 10) suffice
—but the experiment is hard because v, is increased
only a little from the no-escape value. On the other
hand, if P,t(d)»1, then the experimental effect is
dramatic but numerical evaluation of the multidi-
mensional integrals occurring in the higher-order
terms becomes impractical. By taking advantage
of the symmetry of P' ' and ~t'"', one can reduce
the regions of integration somewhat, so that (4. 10)
becomes

40 t(ttt-x(t ) j(N-y3-& ~

P&o&nt& &+ Z N & dt
N=i

t(tt-x(tg)- ~ ''-x('tN g))~ ~ ~

' N-1
dt P'"' ht'

N (4. 11)

but this is a modest improvement. One can, how-

ever, obtain the large P, behavior directly. If there
are many escapes, the average distance a ring sur-
vises is given approximately by

&&~=d/T~= (x)/(t)=P, (x) . (4. 13)

= T~/(t). Solving for the average drift velocity, one

finds the simple result

(x)= Jo dt P, exp(- P, t)x(t) . (4. 12) E. Extensions of Results

The approximation is a consequence of our neglect
of a residual d dependence —the fraction of rings sur-
viving for very long times - T~ is not simply given
by P, exp(- P, t). The total fraction of such long-
lived rings is very small, however, and the error
is negligible. In the same way we find the mean
duration

(t)= J~ dt P, exp(-P, t)=P, '.
The mean number of escapes is given by d/(x) =N

The above results can be easily extended to in-
clude corrections to compensate the imperfect treat-
ment of small rings and also to allow for the possi-
bility that P, can be comparable to Pal[violating con-
dition (4. Sa)]. If the latter possibility obtains then
the time spent as a bare iori is significant. The
bare-ion equation of motion (2. 1) can be integrated
(numerically) to give T(v), the time it takes the ion
to achieve the velocity &&, and X(v) the distance it
travels in that time. The probability that a ring is
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v, =((x)+ (X))/(P, '+ (T)). (4. 16)

As for improving the treatment of small rings, it
is an easy matter to modify the numericalprocedures
to use the more accurate equation of motion

~„,v+P„„a=eE —o.'[I —R„j(mR)]In(R/$) —ff„,(v)

(4. IV)

for the time just subsequent to a nucleation event.
The momentum P,&„is the impulse of the ring with
a trapped ion. ' During this time also the escape
rate P, varies somewhat; this effect can be incor-
porated by replacing the probability P, exp[—P, (t)]dt
by

P, (t) exp[- fo P, (t')dt']dt,
as in (4. 14) and (4. 15).

F. Comparison with Experiment

There is, unfortunately, a paucity of published
data on drift velocities for E &E,2. The theory does,
however, provide quite satisfactory agreement with
available data. In Fig. 6 the results of calculations
incorporating all the extensions discussed above are
compared with experimental data' at two tempera-
tures.

Consider the results for T=1.18'K. Curve (a)
was obtained using the extrapolation of Cade's data
discussed in Sec. IVB. The other parameters were
fixed as follows: & using the formula of HO, cor-
rected for the temperature dependence of 4; R„,
and ( from Table I; M&„ from Dahm and Sanders
~0 from DR; v,'",' by matching the point E = E,f vg

= v„(resulting values of v,;"' are close to but a little
smaller than those calculated by DR). It is also
necessary to make a rough extrapolation of f„,(v)
for v &v„; the results are not, however, sensitive

nucleated between T and T+ dT is

P„(v)exp[- f P„(v')dT'jdT.

[In this last expression, and below, v and v' denote
v (T) and v (T'), respectively. j In essentially all
cases P„and P, are both large and we can apply
the ideas of Sec. IVD. Now we have to consider
the bare-ion and ring stages together. The mean
distance between escapes is

f fo dtdTP, exp( Pt)—P(v)exp[- f P„(v')dT']

x[~(t)+X(T)]=(g)+ (X), (4. 14)
where

(X)= fo P„(v)exp[- f P„(v')dT']X(T)dT .
Similarly the mean time interval between escapes is
(t)+ (T) with

(T)= f P„(v)exp[- fo P„(v')dT'] Tdt (4. 15)

and, using the same argument as before, one finds

30-

I I

b, T=l. l8 K

T= l.30K

ao

E

O

/
/

/
/

/
/

/
I
I

I
I

/

g
/

/
I

/
I

I
I
I I

8
E (kV&cm)

FIG. 6. Comparison of the theory with the experiments
of Ref. 24. Curve (a) through the l.18 K data is a zero-
parameter fit. For curve (b) and the curve through the
T = 1.30 'K data, the escape rates obtained from Ref. 26
have been scaled by a constant factor of 1.6. The drag
force on a bare ion was obtained from the data (dashed
curves).

to the manner in which this is done. Note that this
calculation therefore contains essentially no free
parameters.

In a previous paper, ' we obtained a satisfactory
fit for E &E„. The present, more accurate, treat-
ment of small rings has enabled us to fit the data
for all fields &E,&. It is now apparent, however,
that the predicted values of the drift velocity are
consistently a little low. The most probable source
of this error is our extrapolation of Cade's escape
data from 0. 5 to 1.2'K. One might, for example,
think that the preexponential "attempt rate" Q, in
Eq. (4. 5) for P, should be temperature dependent.
Plotted as curve (b) in Fig. 6 is the predicted drift
velocity if 0, is increased by a factor of 1.6, Agree-
ment with experiment is now almost perfect. As
pointed out previously, the author feels that this
sort of comparison would be a good first use of the
theory described here. Given the drift velocity for
a given E and T, one can in fact uniquely calculate
the escape rate, provided only that P, can be as-
sumed constant in time (Sec. IV B). Since P, relates
directly to details of the ion-vortex interaction, it
is of fundamental importance, and the above method
will allow its determination in unexplored regions
of field and temperature.

The data for T = 1.30 'K are in a way more inter-
esting because v„ is now so large that the small-ring
effects can no longer be considered corrections —the
rings are almost always small! Considering the
phenomenological nature of our treatment of small
rings, the relatively close agreement with theory is
gratifying. The parameters for the theoretical
curve were determined in the same way as for the
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lower-temperature data, and the larger value of 0,
was used.

The portion of the drift-velocity curve for E near
E„is especially sensitive to our assumptions about
the physics of the bare ion and small rings. In par-
ticular, the results test the form (3. 1) for the nu-
cleation rate derived from the theory of DR.

The author would like to point out that the data
of Bruschi et al. , while providing an interesting il-
lustration of most of the physics discussed in this
paper, are not ideally suited for determining escape
rates because of the importance of the small-ring
effects which are only imperfectly known. Ideally,
one would like to begin with drift-velocity data from
regions where the drift velocities are somewhat
smaller and ring sizes larger. Then, having gath-
ered information regarding the escape rates, one
could use the theory, or similar theories, to in-
vestigate regions where v„ is large and thus obtain
an accurate insight into the behavior of small rings.

G. Persistence Current

One can also calculate other quantities of interest
such as the persistence current, reported by
Bruschi, Maraviglia, and Mazzoldi (BMM), which
is a consequence of the possibility of very large
rings arriving at d and then propagating a macro-
scopic distance y through a field-free region. Every
ion arrives at d, and once the ion is in the field-
free region there is little danger it will escape from its
ring. The crucial consideration is whether the ion
is bound in a ring large enough to propagate the ex-
tra distance X under its own power. With eE set
equal to zero, Eq. (4. 1) is easily integrated to give
the range

y= pI( P& Ap (4. 18)

for a ring with a large initial radius Rp. The per-
sistence current consists of all rings which arrive
at d in a ring with R ~Rp. Therefore, the quantity
to be substituted for Q„ in Eq. (4. 7) is

s (0), if R(d-x(t, ) —x(t~)- x(t~))-Ro-
(f1~ f2~ ' ' '

~ fN)
(N)

0, otherwise, (4. 19)

where i(0) is the total current ad d and R(x) is the inverse to the function x(R) defined in (4. 2). The per-
sistence current is therefore given by

P

~ g y I y (p) ~ t(d X(BQ)) t(d x(t&) - x(Rp) ) t(ff g(t~) ~ ~ g( tg g) -x(Rp)) (g)i(xj=ij0j P + ~
N'-

dt's p dt's ~ ~ ~

p
N' ~ gP PP '''s

x 8 (R (d) —R,), (4. 20)

where R, is related to y by (4. 18). If the times are relabeled as r, = f„, , for i = 2, 3, ~ ~ -, N and r,
= t(d —.x(t~) —~ ~ ~ —x(t„)) then (4. 20) assumes the simpler form

CQ

1(y) = f(0) f "'+ Z f d~, f,
'

dY2 f dr g I (r)) T~) ~ ~ ~ Tg)

x8(R(d) -Ro) (4 20 )

and (4. 20 ) can be further reduced as in (4. 11).
Equation (4. 20), like Eq. (4. 10) for the mean

drift time, is not useful if P, is large. We can,
however, argue in a similar fashion as previously.
Call parts of an ion history between consecutive
escapes "epochs. " The state of the ion at d will
be uncorrelated with its state at distant parts of
the history-that is, parts separated from d by,
on the average, many epochs. If the average total
number of epochs or escapes is large, then char-
acteristics of the beam emerging at d will be in-
dependent of d and will depend only on the sta-
tistical distribution of the different types of epochs.
What we are interested in in this case are the
epochs during which the ring exceeds the size Rp.
To get the persistence current, the probability

of each such epoch must be reduced by the actual
fraction of the epoch where R ~RO. Thus i(y) is
given by

x [x(t) —x(R )j/(x). (4. 21)

The appropriate fraction of the epoch is the frac-
tion of the distance because we are investigating
the beam at a fixed distance d.

If P„-P„ then the bare-ion stage must be counted
in each epoch. The average extent of the epoch is
increased to (x)+ (X) and this term then replaces
the denominator in (4. 21).

Equation (4. 21) is useful only at relatively low
temperatures (& 1 'K) because, if there are many
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escapes, a given ring is unlike}y to survive long
enough to gain sufficient energy to propagate a,

macroscopic distance. (At low temperatures it
is possible to apply fields much larger than the
drag forces and so create a "persistent" ring in
a short distance. )

~
8—

H. Persistence Current Characteristics

It is inconvenient experimentally to vary the
range X with E and T held fixed. Rather one
would like to measure a current-field character-
istic for fixed temperature and range. Some re-
sults of calculations with (4. 20) and (4. 21) are
shown in Fig. V. Pictured are persistence char-
acteristics for positive ions for T near 0.85 'K.
The escape rates are taken from the fit to Cade's
data (Sec. IV 8) and d is 1 cm. A persistence cur-
rent first appears when R(d) «Ro and comprises
ions which have suffered no escapes. If the escape
probability is substantial, as in this case, such
ions are very few, however. The persistence cur-
rent appears gradually as the field is increased to
the point where a substantial number of ions suffer-
ering multiple escayes are nevertheless able to
achieve a size ~ Ro during the final ring stage.
Bigger rings go slower, however, and the ion tends
to spend more time in the higher field. This effect,
combined with the increase in P, with field, even-
tually overcomes the effect of the gain in ring size
and the persistence current falls toward zero.

Figure 8 is a similar plot for negative ions with
T-1.2 K. The escape rates were obtained from
the crude estimate of Sec. IV B. The quantity
P, f (d) is relatively small and the threshold be-
havior is pronounced. Because the fields are
larger, P, now increases more rapidly with the
same fractional increase m field and there is at
best only a slight increase in current before the
effect of escapes wipes out the persistence current.

3—
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FIG. 8. Persistence currents for the negative ion for
several ranges, and T near l.2'K.

The larger-range persistence currents decrease
with field from the outset.

Let us note here two more novel features of the
persistence current. Suppose the same potential is
applied over two distances d& &d2 and let the cor-
responding persistence currents (for a given range)
be i z and i &. The dissipative losses are smaller
for the smaller distance and, because the available
energy is the same, larger rings are produced.
Therefore, provided P, is not strongly field deyen-
dent, the persistence currents will satisfy the
inequalityi, &i2. (Of course if P, increases rap-
idly with field, escapes will cancel the dynamical
gains and the inequality will be reversed. ) More
remarkably, even if the same field is applied over
the two distances, it can happen that once again
the larger current is observed for the smaller dis-
tance. This happens, for example, if R(dz) is not
muchlarger thenRO, if P,t(d~)-l, andif P,[(da)» 1.
%hen d =d&, the fraction of zero-escape histories
is e = exp[ —P,t (d~)], and because of the first con-
dition i~= ei(0). For d=d2, the fraction q is, be-
cause of the third condition, very nearly the frac-
tion of epochs with an extent exceeding d&. However the
location of the beginning of the last epoch is uncorre-
lated with the location x = d~ and, as we argued before,
only a fraction 5 of these epochs contribute to the per-
sistence current. Hence ia=e5i(0) =5i~ Becaus.eof
the second condition, &-5-8-, so the effect can
be fairly pronounced.

J. Stopping Fields

500 l000 1500
E {v/cm)

2000

FIG. V. Persistence currents for the positive ion for
three ranges X, and T near 0. 85'K.

If the electric field in the persistence region
is not zero but finite, and opposes the motion of
the ions, then the persistence current will be re-
duced. The reduction is effected by two mecha-
nisms: energy loss from work done against the
field, and escape of the ion from the ring.

If a ring of radius R' enters a region with a stop-
ping field E„ then we obtain the following equa-
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Here E = -E, —In(R/() and E' = —E, —In(R'/t') .
If a ring is to propagate the distance y in the

presence of the stopping field, it must enter the
persistence region with R ~ R„where R, is given by

x,(Rs, R,) = It (4. 28)

and Rq is the radius of the smallest allowed ring
(Sec. IIIC). The radius R, increases with E, and
the current will be completely stopped if R, exceeds
R(d). If escapes are important in the field E but
not in the field E„ then the persistence current is

i.(x) = i(x.), (4. 24)

where X, —= —,'((; pm R, and i is given by (4. 20) or

tions similar to (4. 2a) and (4. 2b) for the time and
distance as a function of R:

t,(R, R') = 2~p,zo( ( exp( —2E,) [Eq(2P) —Eq(2E')],

(4. 22a)

x,(R, R') = ,'~'Ao-( 'f)E, exp( E,-) [E,(F') E,-(E)]

—R+R') . (4. 22b)

i,(y) = —f dR' di/dR' exp[ P, ,t, (y-, R')] . (4. 26)

Thisformclearly reduces to (4. 24) if P, ,-O. Dif-
ferentiation of (4. 20') and (4. 2I.) and substitution
in (4. 26) leads to these final forms suitable for
numerical evaluation:

(4. 21). If escapes are important in both regions,
then

i,(X)= f„dR' n(R') exp[ —P, ,t,(It, R')] . (4. 25)

Here n(R') dR' is the fraction of rings arriving at
d with radius between R' and R'+ dR'. The function

t,(x, R'), obtained from (4. 22), is the time it takes
a ring of initial radius R' to propagate a distance
x in the stopping field. The parameter P, , is the
escape rate in the stopping field and R, is related
to y by (4. 23). The exponential factor is just the
probability there is no escape in the persistence
region; if there is even one escape the ion is re-
moved from the persistence current. Since i(It)
= Is n(R') dR', we can write n(RO) = —di /dR so
(4. 25) becomes

t (ft-x(&1) )
X

fdic'p

' '
0

(4. 27)

and if P,-, P, ,-~, then

i,(It)=i(0) f", dxexp[-P, , t,(It, R(x))

—P, t(x)]/(x) . (4. 28)

[The exyected limit of (4. 28) for P,;0 can be re-
covered after a partial integration. ]

K. Discussion of Experiments

Besides having intrinsic interest, experiments
testing the predicted current characteristics would

lend a degree of redundancy to the determination of
escape rates discussed in Sec. IV F. Unfortunate-
ly, the data of BMM are not quantitative and are
contaminated by other effects.

In this regard, experimenters should be warned
that unusual care must be taken to ensure that the
ion beam is well collimated and that the only losses
are due to escapes and drag forces as described
above. For example, in a retarding electric field
the vortex motion is unstable in that a small ini-
tial error in angle between the direction of propaga-
tion and the direction of the field tends to grow;

the ion beam spreads out and can even be reversed
in this fashion. Even in accelerating fields space
charge and defocussing effects at the grids can be
severe.

Nevertheless, Little has reported preliminary
persistence results which agree with the interpre-
tation presented here. In particular, Little's cur-
rents exhibit a cutoff which corresponds to the
sieving action of his grids on the very large rings
we have supposed to be responsible for the cur-
rent.

While it is difficult to draw any definite conclu-
sions from the data of BMM, it is interesting that
their current characteristic for negative ions near
0. 9 K somewhat resemble the initial part of our
curves (I'ig. '7) for the posi tive ion where the
escape probability is - 1 sec '. It is amusing to
note that this suggestion of an anomalously high
(the estimate in Sec. IV B gives P, & 10 ' sec ')
negative-ion escape rate has been echoed by Doug-
lass's3 reporting work on rotating He II.

BMM also conducted an investigation of second
sound attenuation, which should be proportional to
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the total length of vortex line present. This sort
of experiment is much less sensitive to errors as-
sociated with a messy beam. Their main result,
a linear field dependence of the attenuation (nor-
malized to the source current), is easily explained
by reference to the result (Sec. IV A) that for large
E the ring radius varies linearly with field.

L. Summary of Definitions

Here a number of the functions introduced in this
section are summarized for the reader's conve-
nience:

time for a ring in an electric field E to grow to
a radius R starting with a small radius, t(R);

inverse of the above, the radius attained in the
time I, R(t);

distance needed to grow to a radius R, x(R);
radius attained in the distance x, R(x);
distance covered in time f, x(t);
time covered in distance, x, t(x);
time for a ring to shrink from radius R to R in

a stopping iield, t, (R, R');
distance covered while a ring shrinks from radius

R' to R in a stopping field, x,(R, R');
time required to go a distance x with initial ra-

dius R' in a stopping field, t, (x, R');
persistence current observed for a range X with

zero stopping field, f(y);
persistence current for a range y in a nonzero

stopping field, i,(x).
The integration of all differential equations not

explicitly integrated in this paper, the evaluation
of all integrals not explicitly evaluated, the solution
of various parametric equations, and the inversion
of some functions were carried out on an electronic
computer using standard methods. A rational ap-
proximation ' to the exponential integral was used.
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The emission spectrum of electron-bombarded superfluid helium has been measured as a
function ot' wavelength between 600 and 1100 A. The spectrum is characterized by a very in-
tense band of continuous emission peaking at approximately 800 A, along with a series of less
intense bands between the wavelengths oi 600 and 710 A. This continuum is interpreted in
terms of the radiative dissociation of neutral helium molecules in the reaction A 'Z'„- X'Z~.
The over-all intensity corresponds to about 5 x10 (photons/sec)/pA of 160-keV electron
beam excitation. The uv fluorescence of electron-bombarded superfluid helium is by far the
most intense emission of the excited liquid and may represent a useful source of uv light.

I. INTRODUCTION

Considerable experimental effort has been di-
rected toward the fast-particle bombardment of
liquid helium as a method of studying the micro-
scopic structure of simple liquids. The possible
existea4:e of identifiable neutral electronically ex-
cited slates of the liquid is of particular interest
since it is expected that such excitations could be
used to probe the liquid structure. The experimen-
tal results presented in this paper indicate that the
A 'Z„' state of the neutral helium molecule is the
neutral excitation that is most readily produced in

electron-bombarded superfluid helium.
The scintillation of liquid helium in the vacuum

ultravielet due to e-particle excitation was studied
by Mo'ss and Hereford almost a decade ago. ' On

the basis of an apparent inhibition of this scintilla-
tion below the A. temperature, these authors sug-
gested the possible existence of excited atomic and
perhaps even metastable states of the liquid. At
about the same time, Jortner et g/. provided addi-
tional evidence of neutral excitations in liquid
helium by observing the enhanced emission of oxy-
gen and nitrogen impurities in the liquid when sub-
jected to ~ -particle bombardment. These authors
proposed the existence of an efficient energy-trans-
fer mechanism to the colloidally suspended impuri-
ties. These suggestions have been supported by
the observations of Surko and Reif which established

the existence of long lived but as yet unidentified
neutral excitations in superfluid helium. The
question of identifying the nature of the electronic
excitations in liquid helium has been very difficult
due to a lack of sufficient intensity to allow spectro-
scopic measurements.

More recently, electron beams have been used
to excite liquid helium. This experimental method
has the advantage that the levels of particle bom-
bardment can be substantially greater than what is
attainable with a manageable radioactive source.
In addition the transient behavior of the excitations
produced in the liquid can be studied by pulsing the
source of electrons. The use of electron beams
has made possible the first direct spectroscopic
identification of electronically excited atomic and
molecular states in liquid helium. The local-
ized nature of the excitations is demonstrated by
the vibrational and rotational structure of the ob-
served helium molecular fluorescence. These ex-
periments have shown that large concentrations of
both the atomic 2 S and molecular a'Z„'metastable
states of helium are present in the excited liquid
and they have shown in addition that the lowest
bound A 'Z„' state of He~ is populated at a rapid
rate. ' ' The dynamical properties of the atomic
and molecular metastable states in liquid helium
have been studied recently through the time depen-
dence of the absorption and emission spectra; how-

ever, the present authors discuss this subject in a


