
USE OF GROUND-STATE ENERGY CAI CULATIONS. ~ ~

culated density dependence (and hence the calcu-
lated pressure) to the location of the minimum of
the potential, is potentially even more useful in
that the second virial coefficient depends more on
the shape of the bowl than on its location. How-
ever, we feel that this feature of the calculations
will be useful only when more definitive calcula-
tions have been done, because the possibility that
all the variational calculations (including the pres-
ent one) have a wrong density dependence (even
if the correct potential were used) cannot be ruled
out. It is certainly true, for example, that dif-
ferent calculations, e. g. , that of Massey and
Woo and the present one, both using the LJ po-

tential, produce rather different density depen-
dence, and we do not feel that the density depen-
dence of the calculations done to date is sufficient
to warrant any statement as to which of the po-
tentials is most accurate.
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The problem of the growth of the He3 phase from a free surface of a nearly saturated solution
of He in superfluid He at zero temperature is considered. Using a Fermi-liquid theory modi-
fied to account for the finite thickness of the He phase by introducing a distortion of the Fermi
surface, we find that the number of He layers Nz in the Hes phase increases as the He chemi-
cal potential p3 approaches its bulk value p3 as NI - {p3-p3) ~ . This prediction is in agree-
ment with recent experimental results of Guo, Edwards, Sarwinski, and Tough.

I. INTRODUCTION

Here we consider the problem of the growth, at
zero temperatures, of He3 layers from a free,
plane surface of a nearly saturated solution of He3

in superfluid He . In order to understand the na-
ture of this problem, it is useful to look qualita-
tively at what happens as He3 atoms are added to a
bath of superfluid He which has a free, plane sur-
face, and which initially contains no He . Both ex-
perimental' 3 and theoretical evidence indicate the
existence of bound states for the He atoms on the
He surface. As shown by Guo, Edwards, Sarwin-
ski, and Tough, 3 as the Hes atoms are added at

O'K they first fill up the surface states until ap-
proximately one layer of He is deposited on the
He surface, Subsequently, added He3 atoms spill
over into the bulk He, increasing the bulk He~ con-
centration from zero toward its limiting value of
6. 6% at the phase-separation curve. Now, the
point on the phase-separation curve at T = O'K is
the point at which the He3 chemical potential p, 3 is
equal to its value p, 3 in pure bulk He . As p, 3 ap-
proaches p.3, then, some of the He atoms being
added begin to build a second layer of He' on the
surface, followed by a third, and so on. A phase
of pure He grows on the surface of the solution,
the number of layers NI. in this phase approaching
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infinity as p, 3- p,3. And, as N~-~, X3 in the
substrate approaches 6. 6%%uq. There is no possibility
of a metastable solution with Xs&6. 6/o being formed
in the substrate since the initial He3 layer on the
surface acts as a nucleus for the growth of the He3

phase.
We will use this picture, drawn by the experi-

mentalists, as a starting point for our theory. Our
goal is a somewhat limited one: We want to deter-
mine the asymptotic behavior of N~ as p, 3- p, 3. For
very small Nz, (N~«1) the zero temperature ver-
sion of Andreev's noninteracting two-dimensional
Fermi-gas theory seems to be quite adequate for
determining N~ as a function of p, 3. For slightly
larger NI„Fermi-liquid corrections become im-
portant and could perhaps be discussed in terms of
an effective-potential theory. ' The treatment of
small values of Nz, (roughly N~-'10) is not at-
tempted here.

It seems reasonable to expect that the properties
of a very thick surface He~ film (N~» 1) will be
describable in terms of a quasiparticle picture not
very different from that used for pure bulk He, and
it is on this idea that our calculation is based. We
argue that the dominant effect of the finite thickness
of the He film is to produce a slight distortion of
the Fermi surface of bulk He3. This distortion is
characterized by introducing transverse (for mo-
tion parallel to the surface) and longitudinal effec-
tive masses differing from the bulk effective mass
m~3 by terms of order N~. This idea, coupled with
the assumption that the important He3 quasiparticle
states in the system are, for large NI, completely
separable into bulk and surface states, leads to the
result that N~- (p, s —p, a)' for p. s very close to p, l.
The proportionality constant is a measure of the
distortion of the Fermi surface in the film. This
asymptotic behavior for Ni is in agreement with
recent experimental results of Guo, Edwards,
Sarwinski, and Tough. 3

II. THEORY

Defining the density of states at the Fermi surface
by

and writing

8& ) 8$ t BN3

BP, 3 BN3 8 P.3

we may easily put (1) in the form

BN3
( 1 QBFl 86,

86
~ BN3

(4)

When NI, is very large, we assume that we may
separate the set ( if of quasiparticle states into one
set of states associated with the pure He' phase and
another associated with the He -He4 mixture sub-
strate. Then an equation like (4) holds separately
for the number N, of particles in the He3 phase as
well as for the number of He' atoms in the sub-
strate. We then have

(5)

Here, and in the following, the sum over states
refers to states in the He~ phase only. v, (p~) is
the density of these states at the Fermi surface.
To specify N~ we define it in terms of the bulk He
number density n30 by

N, =-A n,o' N»
where A is the area. Then, in terms of NI. , a
new density of states

(6)

lZ(= e(pa —'() .
The &, are the quasiparticle energies, and the de-
rivatives are taken at zero pressure, zero tem-
perature, and constant surface area A. R(x) is de-
fined by

We commence the development of our theory with
the assumption that a Fermi-liquid theory for the
He atoms is valid for all N~. Such a theory in-
volves, in principle, no more assumptions than
those used in the theory of finite Fermi systems
applied to nuclear matter. Adding He' atoms to
the system is then equivalent to adding quasipar-
ticles to states (enumerated by index l) on the
Fermi surface. Hence, if N3 is the total number
of He3 atoms,

v~(p, )
= v(p. ,)/An,'-()'

and an average of Be,/BN„

"(s')(sn')= s'sx'
over the Fermi surface, (5) may be put into the
form

'=s(Ss) (1+s(S)( '))

(8)

(9)

sX, 'ss, 'ss, rss. ,
&)»3 r»3 i B~i E»3

using the usual expression for the quasiparticle
distribution function N, =An30d . (10)

Note that in (9) the term v~(p3)(ae, /SN, ) plays the
role of a Fermi-liquid factor.

Before proceeding further, we introduce the
thickness d of the surface He3 film. by
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From (6), Nz and d are related by

+1/3
NL=n3p d .

With these preliminaries out of the way, we can
now introduce our model for a thick He3 film. For
a thick film, we expect the important states l to
be rather like the quksiparticle states in bulk He,
but that the effective mass m~ for motion parallel
to the surface differs from that for motion perpen-
dicular to the surface mL, and that both differ by
a term of order I/N~ from the bulk HeP effective
mass m~. We write

mr = m" (1+ar/NI, ),
ml, ——m* (1+al, /NI ), (12)

The term qp represents a sort of quasiparticle
mean-field energy. We expect that its dependence
on d- NL is determined predominately by potential
energy effects, and that as a consequence it deoends

.r'

on NL as

ep= happ (1 —b/Nl), (16)

where b is a constant and &0B is the bulk value for
&p The argument for this dependence is the one
given by Landau and Lifshitz. ' The effects of this
NL dependence of &p are small compared to those
due to our assumed NL dependences of the effec-
tive masses t Eg. (12)], and we neglect them hence-
forth. The momenta pL and p& depend upon the
size of the film according to

2mkl 2gIE 2m@i'
PL d N -1/P t PT

L83

where l and l' are integers. Hence,

where a& and a2 are constants having order of mag-
nitude 1. A quasiparticle state located near the
Fermi surface will have energy

~L Pr&=&0+2 ~ +2 ~ o

mL

&0 is just the difference between p. 3 and the Fermi
temperature,

ep= p3 —kB T~,
and when pL+ p~ is on the Fermi surface,

p2 ( p2

3 Pr PL
8&, SN, (2')' ~ ' ' 2m* 2m+

The integral may be done in a. straightforward
fashion, and we find

Bn, &&, V (2mr) (2m~) (kp Tz)
8~, 8NL 3NL

m* al, m*ar (21)

We must now treat the term k3 T„.Since, to order
1/Ng 'Ep = Epp &

we have

p3 V 3 kp Tg kpTg + 0 (I/Np) (24)

p, 3 and T~ a.e the bulk He chemical potential and
Fermi temperature. Hence,

0 q 3/2
(k T )"'=(k T')"' 1-B Ji B E k, T„'

(g 33)3/3
(y

I 3 333

)2kB 1'~P

Further, since

k, T,'=n'(sv'n„)"'/2m',
we may combine (22)-(26) to find

(25)

(26)

se, BNr, Nl, 2kp TJ; )
(2'I)

for large NL.
The density of states v~(pp) is easily determined

to be

m* p' 1
v~(pp)= p -p N~ 1+0

83P P L

We now want to expand the effective mass terms in
(21) in powers of 1/NzD, o. ing this and using V

Ad ANL s3p p
we obtain

Bn( BE( A(2m+)
( )pgp C

+3P
2 1/3@3 B g N2

L

(22)
where, for brevity, we have written

C= pa, (ar —-', a, ) .

0 ePs, Pz, (18) 3 1
0 NL 1+0 (28)

Combining (12), (18), and (18), we obtain

8 6 PL PL m aL pz m ay

It then follows that (here V=Ad)
(19)

Putting (27) and (28) in (9) and noting that

1 - en
eN =W "'~ 8 sN8 L &0 i ~~i X.

we arrive at

(29)
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sN~ 3N~ ( C 3(p~ —ps)
8 p'3 2'~ Tp ( Ng 2k~ T

(30)

keeping only the most divergent terms as N~- ~.
It is easily verified that (30) has the solution

3k~ T~C

III. DISCUSSION

The form of the result (31) is in agreement with
the experimental results of Guo, Edwards, Sarwin-
ski, and Tough when the constant C has the ap-
proximate value

Equation (31) is the result at which we were aim-
ing. The parameter C [see Eq. (23)j is a measure
of the deformation of the Fermi surface due to the
finite thickness d. The square-root divergence is
thus, in our model, a purely quantum effect. Had
we ignored the quantum character of the problem,
Eo would have served as our chemical potential, and
we would have gotten, directly from (16), a cube-
root divergence as do Landau and Lifshitz. 7

C = —,'a~ (ar ——,'aI, ) = 0. 3 . (32)
A rough check on the consistency of our theory

can be made by looking at the entropy per particle
S, of the Hes phase (the "surface" entropy). In our
theory, S, differs from the value S3o for bulk He
due to the Fermi-surface distortion. We easily
find

1
ate+2 al 1

S.=S3o 1+ +O -~-
I NI,

(33)

Experiment3 confirms the form of Eq. (33). It is,
however, not very meaningful to attempt to extract
a value for the coefficient a~+ —,

'
a~ froze the ex-

perimental data since our theory treats the surfaces
of the He' film in a very crude fashion. The de-
tails of these surfaces will certainly be important
in determining the coefficient of the I/N~ term in
the brackets in (33).
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The experimentally observed spectrum for superfluid liquid helium has properties which are
characteristic of a sound spectrum but in disagreement with the predictions of a naive use of
the single-particle-Green's-function approach. It is argued that the dynamical origins of the
spectrum are closely related to those which give rise to the sound propagation in normal
liquids, and therefore that the helium spectrum shouM be sought in structures and formalisms
that would be used to study sound in normal liquids.

I. THEORY VS EXPERIMENT

The condensate density is not a parameter which
we can vary independently, but we can judge its
relevance to the helium spectrum indirectly by con-
sidering the effects of increasing density or tem-

perature. In both cases the condensate density
may be presumed to decrease, since the kinetic
energy of the liquid is increasing. The relevant
observations are (a) The spectrum measured at
saturated vapor pressure by neutron scattering'
shows very little shift (but considerable broaden-


