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A variational Monte Carlo calculation of the ground-state energy of liquid He! has been per-
formed with a product wave function of a flexible analytic form using several different pro-
posed pair potentials. The calculated ground-state energy, particularly its density dependence,
depends sensitively on the form of the pair interaction potential used. The variational nature
of the calculations is used to set limits on the depth of some of the proposed forms of the pair

potential.

I. INTRODUCTION

Several recent variational calculations'™ of the
ground-state energy of liquid He* have been made
by assuming that the ground-state wave function
could be written as a product of pair functions and
then evaluating the ground-state energy by various
means. In this paper we will present the results
of a variational Monte Carlo calculation which
because of the use of a more general analytic form
of the wave function than previously®™* used gives
better results for the radial distribution function
and ground-state energy. The calculations have
been made for a number of different proposed
forms of the two-body interaction potential and we
have found, as before, *’° that the results, partic-
ularly the density dependence of the energy, are
sensitive to the form of the two-body interaction
used.

One method of constructing a semiempirical
two-body potential is, roughly speaking, to use
theoretical calculations (leading generally to an
exponential dependence on 7, the interparticle
separation) for the steep repulsion at small 7,
plus the correct asymptotic dependence, i.e.,

- Cg/7% - Cy/7®, for large 7, and to interpolate
between these two limits by fitting the potential

in the region near the minimum with a function
containing one or more adjustable parameters to
be determined from the second virial coefficient,
gas transport data, etc. Barker and co-workers®’
have by this method determined a very useful po-
tential for Ar with an uncertainty of about 1%.
Beck® and Bruch and McGee®!? have made system-
atic investigations using similar techniques for the
case of helium, which is more complicated because
of the dominant role of quantum effects. For ex-
ample, although the depth of the potential well and
the location of the minimum, which cannot be deter-
mined very precisely from virial coefficient and
transport data, could in principle be determined

|on

quite accurately for a classical substance by requir-
ing the potential to yield the correct cohesive energy
and lattice parameter of the solid at 0 °K in a quasi-
harmonic theory, this procedure is quite inapplica-
ble to a quantum solid such as helium. It is not
surprising, therefore, that Bruch and McGee quote
an uncertainty of about +5% in the well depth and
+1% in the location of the minimum in their poten-
tials. We find that the present calculations of the
ground state of liquid He®* because of their strict
variational nature, can be used to reduce the un-
certainty in the Bruch-McGee potentials by setting
limits on the well depth as a function of the location
of the minimum.

In the present work, we have considered for
simplicity only the Lennard-Jones (LJ), Beck, and
Bruch-McGee potentials since they are defined by
analytic expressions for all values of the inter-
particle separation.

II. FORMULATION

The Hamiltonian H for a system of N He* par-
ticles in volume V is

N ifa
= —* 2
H—hEl 5 vE+U , (1)

where U is the potential energy.
ten as

It may be writ-

UsUp+Ust+-- (2)
where
Up= 20 usi, §) (3)
i<j

U3= E uS(i’jy k) ’
i<i<kr

etc., (4)

and the quantities u,(i, j, #, ...) represent the
nonadditive interactions of » particles, so that

all of the u, approach zero if any of the n particles
is far from the other n —1 particles.
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The two-body potential is frequently taken to
be uy;, the LJ potential:

ur (2, 7) = 451,.![(0/7’5,-)12 - (0/7’{1)6 1, (5)

where 7;;= |F;-T;|, €,;/k=10,22°K, and o
=2.556 A. Although our calculations have been
done for a number of different proposed forms of
u,, we have found it convenient to measure en-
ergies in units of €, ; and distances in units of o.
We have assumed that all «, are negligible for
n> 3 and that the only important term in u5 is the
long-range triple-dipole dispersion interaction,
which is
v(1 + 3cosb, cosb,cosbs)
Vi T T

u3(i’ j, k)= ) (6)
where the angles 6; are the interior angles of the
triangle formed by the particles at positions F;,
T,,T,, and the coefficient v is given by Leonard’s
value®! of 2.1005%x107% erg cm®.

If a trial wave function of the form

v=1II f(r;;)=exp[ - § 20 w(r;,)] (7)
i<f i<j

is assumed, then E;, the ground-state expectation
value of the Hamiltonian, is given by

Eo= [0 HYa v/ [ $2a® v

=L Np [ g us(r) + 7%/ 4m) V2w (v)|d®r

+1°_ Np? fgs(f‘l s Ta, Ty)ug(Fy, Fp, Ty) d¥rpd®r5 , (8)
where
gol|F1=Fo| )= NN =1) 072 [92d%5- - - d®ry/
Jw2atry - dry
&s(Fy, Ty, Tg) =N -1)(N - Z)P'3f¢2d37’4 e dry/
[w2d¥ry- - dry

and p=N/V is the particle density. The quantities
g, and g5 are the two- and three-particle distri-
bution functions; they are readily seen to be equal
to the two- and three-particle distribution func-
tions of the fictitious classical gas at density p and
temperature T* interacting via a pair potential
RT*w(r). We evaluated g,(7) by the “biased random
walk” Monte Carlo method familiar from classical
statistical mechanics. We considered a system
of 32 particles with periodic boundary conditions,
and averaged over the last 352000 configurations.
Although this leads to a statistical error of about
2 or 3% in any individual Monte Carlo run, we
used a fine mesh in the variational parameter and
smoothed the results, leading to an estimated un-
certainty in our results of less than 0. 5%.

For (Uy), we relied on a previous calculation'?
of the contribution of the triple-dipole term to the

(K3

binding energy of liquid helium. The result is,
to a very good approximation,

(Ug)=0. 014N €1;(p/pg)*=~0.14 N( p/p*°K ,  (9)

where pyo®=0. 364 is the equilibrium density of
liquid He*. The three-body forces are very small,
constituting only about 2% of the binding energy of
liquid He* at the equilibrium density. Although we
believe that (U,) is essentially independent of the
wave function used, in fact the liquid results were
evaluated for the same form of w(7) used in the
present work. Since they are small and essentially
independent of @, we have simply added them in
as a perturbation, a procedure which should be
satisfactory for most calculations. The effect of
the three-body terms is to raise the energies
slightly and lower the calculated equilibrium den-
sities slightly.

III. RESULTS

Previous calculations®* have used the functional
form w(r)=(a/7)°, with @ a variational parameter
that minimized the energy at a value of 1.1%70. One
of the essential features of this choice of w(7) is
that the resulting radial distribution function has
ascaling property, namely, g,(p, a, 7)=g,(0a3, r/a),
that permits one to reuse at any density calcu-
lations made for a range of a at a single den-
sity (in our calculation the equilibrium density) and
thereby obtain the density dependence of the energy.
We used in the present calculation a more flexible
form for w(») that retains this scaling property,
namely, w(7)=(a/7)"+(a/7)", with @ again a varia-
tional parameter. The exponents m and n were
used as variational parameters, but they were re-
stricted to be integers with m>#n> 3. The choice
that leads to the lowest energy for all potentials
considered and best agreement with the experi-
mental g(r) is w(r) = (@/7)®+ (a/7)*, although the
choice (a/7)%+ (a/7)! is very nearly as good. The
minimum of the energy occurred for a/o=1.017
+0.02, depending, as did previous calculations,*
on the potential.

It is most interesting that the best forms of
w(r) were a sum of two positive terms (correspond-
ing toa classical fluid interacting via a purely
repulsive potential) rather than a sum of one pos-
itive and one negative term (corresponding to a
classical fluid with a short-range repulsion and
long-range attraction) as one might have expected.
The explanation lies in the fact that in the former
case f() increases monotonically to unity rather
than having a maximum and decreasing mono-
tonically to unity as it does in the latter case;
forms having such a maximum, however, have
greater curvature and hence higher kinetic energy
and are thus less suitable for this variational cal-
culation. The same remarks apply to forms
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having larger values of m and n.
The use of this more flexible form of w(¥) led
to better results than previous Monte Carlo calcu-
lations.2* The improvement in the calculated g,(r)
can been seen from Fig. 1, where the experi-
mental g,(#) of Achter and Meyer®® is compared
with the present calculation and with the previous
calculation.? Both theoretical curves represent
calculations of g,(¥) for the equilibrium density
and for that value of the variational parameter
which minimizes the expectation value of the en-
ergy using the LJ potential. The present calcula-
tion reproduces more of the structure of the ex-
perimental g,(7), particularly in the neighborhood
of the first maximum. For most of the two-body
potentials considered, the computed E, was lower
and its density dependence in better agreement
with experiment than the previous calculation, *
as will be seen in detail for the various potentials.
a. LJ potential. The results of the present cal-
culation of the density dependence of Ey/N using
the LJ potential are contained in Fig. 2, where
they may be compared both with experiment and
with previous calculations.?™* The evaluation of
the experimental energies is as discussed in Ref.
4, except that we have here used the better value
for Ey(pg)/N of —7.14°K=-0.699 €,; Itisev-
ident that although the minimum, including three-
body terms, of the present calculation of the ground-
state energy (- 0. 568 €, ;) is about the same as
before® (- 0.572 €,;), the present calculated equi-
librium density is about 3% higher than before and
the density dependence of E/N is in better agree-
ment with experiment.

b. Beck potential. Our results calculated with
potential recently proposed by Beck® are contained
in Fig. 3. The minimum (including the three-body

terms) calculated energy, —0.550 €,;, is about
the same as the minimum energy calculated using
the LJ potential because the depth of Beck’s po-
tential is only about 1% greater than that of the

LJ potential; the calculated equilibrium density
is about 6% lower, and hence in worse agreement
with experiment, than that calculated with the LJ
potential, presumably because the minimum of
the Beck potential occurs for a 2% larger value of

| | 1 1 |
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FIG. 2. Density dependence of ground-state energy.
Curve 1: previous calculation, LJ potential. Curve 2:
present calculation, LJ potential. Curve 3: experimen-
tal.
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FIG. 3. Density dependence of ground-state energy.

Curve 1: MDD-2 potential. Curve 2: Beck potential.
Curve 3: highest values obtained with original Bruch-
McGee potentials, Curve 4: experimental. Curve 5:
lowest values obtained with original Bruch-McGee po-
tentials.

the interparticle separation.

¢. Bruch-McGee potentials. The original Bruch-
McGee potentials® consist of an exponential fit to the
the short-range repulsion, the correct long-range
behavior, — (Cg¢/7%+Cy/78), and three different
analytic forms near the minimum: the Frost-
Musulin (FDD - 1), Morse (MDD - 1), and Rydberg
(RYDD - 1) forms. These potentials are character-
ized by a depth € occurring at separation 7,,, as
follows:

€=(1.73+£0.11)x10"" erg, 7, =(2.981£0.022) A
for FDD -1,

€=(1.675+0.11)x10"% erg, 7,=(2.975+0.022) A
for MDD -1,

€=(1.80+0.10)x 10" erg, 7,=(2.97+0.020) A
for RYDD -1,

In a later paper, ° Bruch and McGee found better
agreement with virial coefficient data by using the
Morse form and the MDD — 2 parameters: €=1.484
X107 erg, 7,=3.0238 A.

We calculated Ey/N as a function of p for dif-
ferent values of the parameters € and 7,, for the
three original Bruch-McGee potentials. The re-
sults for Ey/N using some of the deeper of these
potentials lie below the experimental ground-state
energy, as may be seen in Fig. 3, where the en-

velope of Ey(p)/N is plotted. Curve 3 is obtained
using the MDD - 1 potential with € =1.565x10"%
erg and 7, = 2. 997 A; Curve 5 is obtained with the
RYDD — 1 potential with € =1.90x10°%° erg, 7, =
2.95 A.

Since our calculation is a strict variational cal-
culation, it follows that there should not be values
of Ey(p)/N below experiment. Accordingly, we
were able to determine maximum values of the
well depth, which we denote by €,,,, as a func-
tion of 7, as those that yielded the minimum cal-
culated E, equal to the experimental ground-state
energy, —0.699 €.;. We found that at fixed 7, the
calculated equilibrium density was essentially in-
dependent of €, but that at fixed € the calculated
minimum ground-state energy varied considerably
with 7,,. Accordingly, the €_,, for the three po-
tentials varies considerably with 7,,, as can be
seen from Table II.

We also used the newer Bruch-McGee potential, °
MDD - 2, and the results are shown in Fig. 3. As
before, it yielded ground-state energies a bit
higher and equilibrium energies a bit lower than
the LJ potential.

IV. SUMMARY AND CONCLUSIONS

We have found that the best variational ground-
state wave function for liquid He* of the family
w)=(a/v)"+ (a/7)" is for m =5, n=4, with the
sign of both terms positive, and that this form
leads to an improved agreement between the cal-
culated and experimentally observed radial dis-
tribution functions. In addition, we have found a
considerable variation of, first, the calculated
energy and, second, its density dependence, with
the form of the potential used. Both of these two
features may be expected to be useful in determin-
ing the helium-helium interaction, and we have
used the first of them (plus the fact that our cal-
culation is a strict variational procedure) to set
limits on the well depth of some of the proposed
potentials.

The second feature, the sensitivity of the cal-

TABLE I. Maximum Depth of Bruch-McGee potentials
as a function of location of minimum.
Potential 7,(A) €max(10°% erg)
2.958 1.66
FDD-1 2.980 1.74
3.002 1.82
2,953 1.655
MDD-1 2.975 1.71
2,997 1.77
2.95 1.65
RYDD-1 2.97 1.71
2.99 1.79
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culated density dependence (and hence the calcu-
lated pressure) to the location of the minimum of
the potential, is potentially even more useful in
that the second virial coefficient depends more on
the shape of the bowl than on its location. How-
ever, we feel that this feature of the calculations
will be useful only when more definitive calcula-
tions have been done, because the possibility that
all the variational calculations (including the pres-
ent one) have a wrong density dependence (even

if the correct potential were used) cannot be ruled
out. It is certainly true, for example, that dif-
ferent calculations, e.g., that of Massey and
Woo! and the present one, both using the LJ po-

tential, produce rather different density depen-
dence, and we do not feel that the density depen-
dence of the calculations done to date is sufficient
to warrant any statement as to which of the po-
tentials is most accurate.
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The problem of the growth of the He® phase from a free surface of a nearly saturated solution
of He® in superfluid He? at zero temperature is considered. Using a Fermi-liquid theory modi-
fied to account for the finite thickness of the He® phase by introducing a distortion of the Fermi
surface, we find that the number of He® layers N. 1, in the He® phase increases as the He® chemi-

cal potential pu3 approaches its bulk value ug as Ny ~ (u) —#3)-1/ 2,

This prediction is in agree-

ment with recent experimental results of Guo, Edwards, Sarwinski, and Tough.

I. INTRODUCTION

Here we consider the problem of the growth, at
zero temperatures, of He® layers from a free,
plane surface of a nearly saturated solution of He?
in superfluid He*. In order to understand the na-
ture of this problem, it is useful to look qualita-
tively at what happens as He® atoms are added to a
bath of superfluid He* which has a free, plane sur-
face, and which initially contains no He®. Both ex-
perimental'~® and theoretical® evidence indicate the
existence of bound states for the He® atoms on the
He® surface. As shown by Guo, Edwards, Sarwin-
ski, and Tough, ® as the He® atoms are added at

0 °K they first fill up the surface states until ap-
proximately one layer of He? is deposited on the
He® surface, Subsequently, added He® atoms spill
over into the bulk He*, increasing the bulk He® con-
centration from zero toward its limiting value of
6. 6% at the phase-separation curve. Now, the
point on the phase-separation curve at T=0°K is
the point at which the He® chemical potential u, is
equal to its value uJ in pure bulk He®. As u; ap-
proaches ug, then, some of the He® atoms being
added begin to build a second layer of He® on the
surface, followed by a third, and so on. A phase
of pure He® grows on the surface of the solution,
the number of layers N, in this phase approaching



