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The effects on scattering parameters of approximate cluster functions which appear in the
asymptotic boundary conditions are examined by a model calculation of the elastic electron-
hydrogen scattering. It is shown that (i) the resonance energies calculated with functions which
are orthogonal to the approximate open-channel functions could be spurious, (ii) the phase
shifts could deviate from the correct values as much as the relative error in the cluster func-
tions, and (iii) the threshold mismatch may cause an enhancement of phase shifts. An im-
proved pseudostate expansion is studied in which the prediagonalization of the cluster energy
matrix is emphasized. This is seen not only to improve the threshold energies and incorpo-
rate the effect of the continuum states, but also to optimize the input functions in a given calcu-
lation. An additional diagonalization of the closed-channel energy matrix provides a set of
quasistates far the resonance and distortion potentials.

I. INTRODUCTION

In a composite-system scattering involving many
particles, the asymptotic boundary conditions re-
quire an exact set of open-channel cluster functions,
which are often difficult to evaluate. Such bound-
state functions are either not available in many
cases except in very crude forms, or too cumber-
some to use in practice even if more accurate
forms are available. Although there have been
many theoretical attempts to estimate the atomic
and molecular cross sections using a variety of
crude functions, the extent to which approximate
cluster functions affect the resulting scattering
parameters is not very mell understood. Further-
more, many of the theoretical methods available
are formulated with the assumption that the asymp-
totic boundary conditions can be imposed on the
scattering function exactly. Therefore, it is of
considerable practical importance to obtain first
a more quantitative estimate of the effect before
elaborate calculations are to be carried out.

As the scattering parameters depend on the
cluster functions in a very complicated way, we
study the problem by an explicit model calculation
in the case of elastic scattering of electrons (and
positrons) by atomic hydrogen, for which many
useful parameter values are available for ready
comparison. The phase shifts in this case depend
strongly on the static potential and exchange ker-
nel, which are in turn very sensitive to the target
functions being used. As the ground-state function
is modified gradually from its exact form, we can
watch the way the phase shift deviates from its
correct value. The result of the calculation sum-
marized in Sec. II strongly suggests the obvious
fact that one cannot expect to obtain reliable ampli-
tudes without improving the cluster functions. In

particular, the existing theories can produce re-
sults which are totally unreliable. (See the posi-
tron solutions in Sec. II. )

In Sec. III, we consider an improved formulation
of the pseudostate expansion, in which the predi-
agonalization of the cluster energy matrix (PCEM)
is emphasized. ' When the exact bound-state func-
tions for the open channels are available, as in the
O'-H and e -H scattering, the procedure is merely
a convenient device to ease the computational prob-
lem. ' However, when such functions are avail-
able only in approximate forms, the above proce-
dure seems to be essential in order to obtain
physically reasonable amplitudes, as our study
will show. More importantly, the PCEM allows
one to optimize the calculation in the following
sense. When the open- and closed-channel com-
ponents are treated separately in deriving a set of
scattering equations, one is likely to waste un-
necessary calculational effort in treating one part
of the problem more accurately than the other with-
out knowing of course whether the result will im-
prove. The PCEM produces not only the set of
closed-charm="1 basis functions which are orthogonal
to all the open-channel functions, but also simulta-
neously improves the open-channel functions them-
selves, in accordance with the Hylleraas-Undheim
(HU) theorem. Aside from the known advantages
of the pseudostate expansion which allows us to in-
clude the effect of many excited and continuum
channels, the above feature is very essential in
improving the amplitudes.

A general procedure is outlined in Sec. III which
involves three main steps in the evaluation of scat-
tering amplitudes, and the various useful features
of each step are discussed in detail. Its application
to our model problem is carried out to illustrate
these points.
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TABLE I. Properties of the approximate target func-
tions gp& =Np e where Np =2a3 . The function with
a =1.0 is the exact Pp.

that

(2. 5)

0.7
0.8
0.9
1.0
1.1
1.2

—0.91
—0.96
—0.99
—l. 00
—0.99
—0.96

0.952
0.986
1.006
1.000
1.000
1.000

a(ap) Epg(R~) v (/pe/gp)r = +

0. 837
0.894
0.949
1.000
1.049
1.095

t (Epg Ep) f~ ~

0.30
0. 20
0. 10
0.00
0. 10
0. 20

Plt —(ot(rl)) ( (ot(r&)

Q&&= 6(rq —r&) —P, &,
(2. 6)

which, if it is model independent, could be a very
useful information for improving the theory, as
we wili discuss in Sec. III.

For the sake of simplifying the notation, we de-
fine the approximate projection operators as

II. MODEL STUDY—EFFECT OF APPROXIMATE
CLUSTER FUNCTIONS

P, =P„+Pot P, ~P-o~, [Plt Pot I= 0

Q~ = Qi~ Qo~
(2. 7)

In order to study the effects of approximate tar-
get functions on the scattering parameters and to
improve the theory of complex system scattering,
we explicitly consider as a model the elastic scat-
tering of electrons (and positrons) by atomic hydro-
gen, where the resonance structure and phase shifts
are well known to great accuracy in the case of
zero total partial-wave and singlet spin state.
Thus, by solving the scattering problem with the
slightly modified ground-state function tIIo, of hydro-
gen, we should be able to estimate the variation in
the scattering parameters as go, is changed. We
limit the calculations to a necessary minimum by
taking into account the excited states with only the
zero relative angular momentum l = 0 (= l, = lo); the
states with /&0 are not interesting for our purpose
because they are automatically orthogonal to the
correct target function Po.

for the full two-electron space. They are to be
compared with the exact operators P, , Q, , P, and

Q defined in an analogous way.

B. Resonance Energies and Distortion Potentials

As stated earlier, the model includes only the
l = 0 states in the Q space for distortions. Then,
the closed-channel Hamiltonian QHQ supports one
resonance state below the first excitation threshold'
at the energy —0. 2527 Hy. However, with our
crude functions, we do not expect to produce this
state, so that, in the foQowing, we simply assume
that such a state does not exist. (Certainly, we

will find a state with much lower energy as a is
varied from a=1.0. Also, we do not find any
states when a = 1.0 is taken. )

With the states in the Q space defined as

QHQ C„=E„QQ, n= 1, 2, . . . (2. 8)
A. Properties of Approximate Target Function

We start the model study by intentionally modify-
ing the target function go in the form

tl'ot(r) = 2a e (4o~ to~) = 1 (2. 1)

where the nonlinear scaling parameter a will be
varied around the exact value a = 1.0 for go(r).
Here, we employ the units such that m = 8= e = ao= 1
and the energy is in rydbergs. The ground-state
energy Eo, corresponding to (2. 1) is given simply
by

Eot = —a(2 —a) = (tot h (ot)

and the overlap of Po, and |IIo is

~=(to to~)=«"'( +a) '
~

(2. 2)

(2. 3)

Table I shows the values of Eo, , y, and Po, at sev-
eral sample points in x for the various choices of
a. As expected, we have, with kg„=E„g„,

where the notation - implies the same order of mag-
nitudes. On the other hand, the overlap y is such

we have, for all n (except the state we mentioned
above),

E„'-E, (l=o) . (2. 0)

Alternatively, by simultaneously diagonalizing the
matrices H~„and A~„defined by

H ~ =(Q@~~ QHQC'. g),

x.„'=(Qo„, , Qc„,),
(2. 10)

@&E@&E (2. 11)

However, if the operator Q is not known and the
approximate Q, of (2. 7) is used instead, then the
inequalities (2. 11) need no longer be valid in gen-
eral. The interesting question is then to what ex-
tent (2. 11) will be violated as we replace the opera-
tor Q by Q&. To study this problem, we choose the
trial functions of the form

Q«y„, (r, )=e o&"~ —d„e "~, i=1 and 2 (2. 12a)

we have, from the Hylleraas-Undheim theorem, the
resulting eigenvalues E„, satisfying the inequalities
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TABLE II. One-term resonance energies corresponding to QtHQt are given, together with the properties of the
trial functions which are made orthogonal to the approximate target functions got. Note the inequality Eit &Ei = —0. 25

Ry for some sets of parameters, and also the spurious resonance at a=0. 7, b =0.3.

b =0.3

b=0. 6

0.7
0.8
0.9
1.0
1.1
1.2

0.7
0.8
0.9
1.0
1.1
1.2

-3.880
—4. 973
—5. 647
—5.962
—6.023
—5.930

0.0000
0. 0005
0.0041
0.0145
0.0350
0.0671

14.22
21.48
28. 65
35.34
41.36
46. 68

0.0004
0.0048
0.0178
0.0415
0.0757
0.1187

—0. 2728
—0.2315
—0. 1971
—0.1687
—0.1456
—0. 1270

—0.0401
0.0961
0. 2278
0.3499
0.4623
0.5654

—1.045
—1.208
—1.324
—1.407
—l.470
—l. 518

—0.0058
—0.0148
—0.0199
—0.0185
—0.0105

0.0032

3.771
4. 635
5.353
5.944
6.431
6.832

0.0204
0.0694
0.1334
0.2037
0. 2751
0.3445

—0. 2772
—0.2606
—0. 2473
—0. 2368
—0. 2285
—0. 2222

—0. 2833
—0. 2132
—0. 1492
—0.0910
—0.0383

0. 0094

where

d„=8a (a+ b) 3 (d„-d,„ in Table VI)

Qg+. ~= @i~ V.~(1) Q2~ W.~(2) . (2. 12b)

The calculation of the corresponding matrix ele-
ments H „Qt and S,Qt is straightforward, and the
resulting E„tQt ' are given in Tables II and III for
the parameter values

a = 0. V, 0. 8, 0. 9, 1.0, 1.1, and 1.2,
b1=0. 3, b2

——0. 6, and b3
——1.5 .

(2. iS)

The superscript (N) denotes the order of the ma-
trices being diagonalized. It is obvious that Eit@t
with b= b, and b& for a= 0. 8 and 0. 7, for example,
have already violated the inequalities (2. 11) with

Ei t & Ei = —0. 25 Ry. (2. i4)

This contradicts (2. 9), which we know is true, and
thus these states are spurious and nonphysical. For
some of these cases, we also have from Table II
that

E1t E1 (2. 15)

as a direct consequence of the way we constructed
the trial functions Q«y„, . Evidently, both features
(2. 14) and (2. 15) are closely related, as they are
caused by the approximate ttlo, . If the correct Po is
used, we know that neither (2. 14) nor (2. 15) can
happen. This particular observation will be the ba-
sis of an improved theory discussed in Sec. III.

Incidentally, we have searched for the best three-
function set that gives the lowest EitQ' ' for the
case a=0. 8, and have found

Eit t' = - 0. 2538

for the parameters b=0. 3, 0. 6, and 1.0. This in-

TABLE III. The resonance energies obtained by 2 x2
and 3 x 3 matrix diagonalizations. More spurious states
are found, but E«Q( ) seem to converge to values close
~to Ei as N increases.

P, =0.3 and b2=0. 6)

E Q(2) E Q()
it 2!

(bi ——0.3, b2 ——0.6, and b3= 1.5)

E Q(3)it E Q(3)
2t E Q(3)

3t

0.7
0.8
0.9
1.0
1.1
1.2

—0. 2781
—0. 2517
—0. 2350
—0. 2240
—0. 2169
—0. 2126

0. 2073
0.3508
0.5025
0.6470
0.7822
0.9078

—0.2781
—0. 2527
—0. 2378
—0. 2288
—0. 2235
—0. 2208

0.0796
0.1664
0.2625
0.3493
0.4269
0.4953

3.8821
4.3582
4. 8478
5.3360
5.8225
6.3021

dicates that, although Po, is not exact and the state
with E«Qt' '& E1 is spurious, the value for E„ t

seems to converge to a definite limit other than Fo
as N is increased. Such a pheonomenon, also ob-
served earlier by Temkin and Bhatia, was difficult
to understand, because the Q, space contains a
small component of (0 and thus Q,HQ, should have
a part of the continuum corresponding to the I'
space. We give in the Appendix a simplified argu-
ment for such a convergence behavior. We also
show that the simple orthogonalization procedure
adopted here would give a reasonable estimate of
the resonance energy E&~ if

l(Ei'-E~)t'(Ei-Eo) I-" ~ (2. 18)

We make one final remark on the way E1, violates
the inequality E„o& E,o. As is clear from Tables
II and III, the deviation of (0, from the exact tt 0 does
not always imply that the spurious state should ap-
pear. For example, E„~' ' of Table III is above
E, at a = 1.2 but below it for a= 0. 8, a,lthough (o,
in both cases are probably of the same accuracy.
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TABLE IV. Static phase shifts for the electric-hydro-
gen scattering with L =$=0, and for the positron-hydro-
gen scattering with L =0, all at k(ap) =0 4 LhSp is the
energy mismatch because of Ept &Ep and the corrected
wave number k'.

0 H(L
a I ~ g&(~, =0)

O=S, 1 =0) e'HL = 0)
(~ &0) l5 (~ = 0) l5 (~0 & 0)

0.7 0. 26

0.8 0.35
0.9 0.39
1.0 0.40
1.1 0.39
1.2 0.35

1.401
1.318
1.245
1.237
1.280
1.342

l. 827
1.455
1.274
1.237
1.313
1.484

—0.605
—0.303
—0.255
—0.218
—0.189
—0.165

—0.345
—0.268
—O. 248
—0. 218
-0.183
—0. 144

The effect of )I)o, on the phase shifts for a compo-
site-system scattering is much more difficult to
estimate, as go, is involved in a highly nonlinear
way. We study the problem here by solving the
model, first in the exchange-static approximation
(ESA) at k = 0. 4, and later adding the distortion
terms corresponding to the Q, space.

In the ESA, the effect of Po, appears at two points;
first, the static potential and the exchange kernel
are modified when a&1.0, and, second, the ap-
proximate target energy Epg + —1 0 causes a thresh-
old mismatch, with

It seems that if )1)„happens to have a larger curva-
ture (a = 1.2 case), then the resulting orthogonal
function y„& will have a larger kinetic energy con-
tribution and thus a higher E&,~.

C. Scattering Phase Shifts

6, o- 6~ for E„~& E . (2. 20)

e 2'"
4Np 4Npd+2+od

(2 )
(2 r+2)+(

I, ) (2 )

EoI, =No (E Est ' ) ~

Table IV contains the result of the phase-shift cal-
culation in the ESA, either with ~E0 retained or
with DE 0 arbitrarily set equal to zero. Although
~Ep= 0 seems to be physically more reasonable,
its real effect has never been estimated. In the
e -H case, ~E0= 0 seems to improve the phase
shifts, but this turned out to be accidental, as is
clear from the O'-H case shown also in the Table
IV. However, the phase shifts calculated with AE0
40 are consistently higher than that with bEp= 0 for
k = 0. 4. We note that, in this region of k, the cor-
rect phase shift decreases as a function of k, so
that the above behavior is expected. In the region
where the phase shift increases with k, as for ex-
ample at very small k in many cases, the above
trend will probably reverse. The absolute devia-
tions of 5 from that of 6 (a= l. 0) are large, of the
order of q' ' but the relative fluctuations are even
larger when 5 are small, as in the O'-H case.

The effect of distortions caused by the coupling
of the P, component to the Q, channels is shown by
the phase shifts 6, in Table V, again for both cases
with ~E0=0 and &Ep&0 and for 5, and b&. We have
included in this calculation just one (nonlocal, sep-
arable) term to obtain only a crude estimate. As
expected, we have the rigorous bound property at
a=1.0:

by

DEp= Epg Ep= a(a —2) + 1 (2. 17)

d2 I Po+ Voo(r) Eo + &Eo uo~ (r)dr

= —4a e '" dse "[(2a—2)(r+s)
0

—(3a + Eo —2a —AE) sr+ 2rs/r&] up, (s), (2. 18)

The equation we have to solve in the ESA is given

For the cases considered here, E«~ always lie
above E, so that (2. 20) seems to be satisfied in
every case, but the differences 6, —6 vary ap-
preciably as the values for a are changed. This further
indicates the fact that the difficulty with )C)o, is cer-
tainly not localized to the static part alone, but also
persists in the effect of the Q space. For E«&E„
we more or less expect that (2. 20) will be valid for
some values of a near 1.0, but as a deviates from
the correct value and as the number of terms in the

with

Vpo ———2e "(a+1/r), E —E-E
and the distortion term is added to the right-hand
side of (2. 18) to give 5„which is of the form

—2f (r) (f, u„)/Eo~, (2. 19)

TABLE V. The "improved" phase shifts in which the
distortion effect of the Q& space is included by a one-term
trial function in the $ = 0 state. We have here g~&gp
rigorously if all the other parameters (a, b, AEp) are the
same, because we have Eft &E.

where

f (r) = (e '" —de '") r I'(r),

rF(r) = No (2a —2) y (
1 d

(a+ b)' (2a)'

e-(b+c &r

—2&p, )o [(a+&)r+2]ja+ 5

0.7
0.8
0.9
1.0
1.1
1.2

1.691
1.399
1.250
l. 241
1.319
l.451

2. 104
1.524
1.279
1.241
1.349
1.574

l.558
1.325
1.251
1.256
1.303
1.373

0.3 0. 3 0.6
a g (DEp=0) Q (AEp &0) 6 (AEp=0)

0.6
6 (AEp «)

1.902
1.458
l. 282
l. 256
1.332
1.501
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diagonalization increase, some of the E„& will go
down below the threshold E1 and become spurious,
and (2. 20) will be violated as E increases.

III. IMPROVED THEORY OF MANY-PARTICLE
SCATTERING

where O' is a proper symmetrizer. As noted earli-
er, we have made the optimum use of all (It)«, i
= 0, 1, 2, . . . , N, in generating the improved set

This then implies that in the original Ham-
iltonian H we are replacing h by

We consider in this section an improved proce-
dure which could eliminate some of the difficulties
discussed in Sec. II in terms of our model. The
approach is essentially that given earlier in con-
nection with the single-particle formulation of the
electron-atom scattering. We give here in more
detail the various steps involved in the calculation
of scattering amplitudes.

A. General Formahsm

The theory involves essentially three steps, which
we discuss in terms of our model for simplicity.
The Hamiltonian for the e -H system is given by

h(1)-h, (1)= Z y.,)E.,'(y. ,
@=0

In the notation of Sec. II, we write
N

D ~ D
&f;=P1~Eo~ + ~ E.~ P1 .~

where

P„„,= q«(I)) (q„,(I'), n ~ 0 .

2. Resonances and Distortion Potentials

We may rewrite 4, in the form

+~=&~+~+ @~ +~

(3. 5)

(3.8)

(3.7)

H= h(1)+h(2)+ V(z, h(1) = —V, —2/r(, (3. 1)

and we now consider the elastic scattering (single
channel).

for the open- and closed-channel components.
Again, we construct the matrices in the full particle
space as

1. Prediagonalization of Cluster Energy Matrix
H „o=(Qte„„HQte„t),

(3.8)

htt=((t'lti hAt) and ntt=((t)tti tt)tt) ~ (3. 2)

A simultaneous diagonalization of h, &
and n&& gives

an orthonormal set of functions ((C)„t}and t(E„t },
where

N

~t= ~ at ())tt w't" (4t 0 t)=&
4=0

(3. 3)

and where a„; are the elements of the matrix which
diagonalizes h and n.

The set j(t t} has the following useful properties:
(a) By the HU theorem, we have E„, ~ E„for all
n~ 0. (b) Both E«and (t„t are improved, compared
to the original (();t. (c) The continuum states of h
are now properly included. (d) If any of the (t)«are
exact eigenfunctions of h, then a&& = 0 for that i and
joi (e) The d. iagonalization above simplifies the
coupled-channel calculation as was noted by Per-
kins and by Burke et al. in the pseudostate ex-
pansions. (f) The set fg„t}essentially defines the
extent of the entire calculation, as we are to write

As shown in detail in Sec. II, a mere orthogonal-
ization of the Q-space trial functions to an approxi-
mate target function is not sufficient to prevent the
spurious resonance states from occurring below
the E1 threshold. One obvious method to avoid this
difficulty is to apply the HU theorem and diagonalize
the energy matrix for h. Thus, for an arbitrary
set of trial functions y«which are square integra-
ble, we construct the matrices

where

Qt e„t= 8 y„t(1)v„t(2) . (3 8')

A simultaneous diagonalization of H „@ and N „~
then gives the eigenvalues and eigenfunctions

Q(N) ~d Q C, Q(N)

where Qt O„to ' are linear combinations of the
original Q, C„t. From the scattering e(luation for
4', we can show that

Q @ Q Q C, Q(N)(Q e, Q(N) HP @ )/(E E Q(N))

(3.9)
where E, is the adjusted total energy given by E,

Eo~ +Eo ~ that is ~Eo= 0
Obviously, some of the E„,@'"' may correspond

to resonance states when they lie below the E1,
threshold. (In our model, with I = 0, we expect
none. ) However, this identification cannot be made
in a unique way since we are unable to prove rig-
orously that E„,~ ' thus obtained here provide up-
per bounds on the correct eigenstates of QHQ, i. e.,
E„~. However, the calculation to be given at the
end of Sec. III C strongly suggests that these E„,
are much more reliable. (The possibility that some
E„to'"' are spurious is not entirely ruled out. ) As
in the method by Gailitis, the rest of the terms in
(3. 9), other than the resonances near E, provide
a smoother distortion potential.

~-+t= ~ & (('.t(I) u.(2), (3.4)
Scc ttexing AmPlitudes

The last step in our procedure is to solve for
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P, 4, and obtain the scattering parameters from the
equations'

or, using (3. 9),

Pt(a+ Wt -E,)Ptet=o,
where

(3.11)

For E, &E«@ "', we have obviously

Wq&0 .

(3. 12)

(3.13)

We may solve in general the coupled set of equa-
tions (3. 11) by two different methods. As in the
closed-coupling method, (3. 11) can be solved ex-
actly numerically. However, for a crude P„Q„
and W„ it is not again clear whether such an effort
is necessary. Since the complicated part of the
scattering is already contained in W„ it may some-
times be more convenient to solve (3. 11) by a vari-
ational procedure of the Kohn or Harris type.
We have already considered such a procedure in
the form of the quasiminimum principle, ' and it can
be extended here to the case when P and Q are not
known exactly.

As with E«~' ', it is not clear whether the solu-
tion of (3. 11) would provide rigorous bounds on
phase shifts; we are unable to give a formal proof
here. However, the calculation to be described be-
low indicates that if $0t is "accurate enough" com-
pared with the Q, 4, , we may expect to have at
least an approximate bound property.

This completes the discussion of the formal prop-
erties. Incidentally, in connection with the bound
properties, we note that the Kato identity can be
written as

(X —Xt) ($0„$0)= (4, (H —E)g t), (3. 14)

where

First of all, we have seen in Sec. II that, at least
in our model, the overlap can be very small. Now,
we further assume that Eo, =Eo for an accurate
$01; then both terms in the right-hand side of (3.15)
are finite. Under these circumstances, the mini-
mum principle' follows just as before if we strictly

&= -2115 ah jm, a=initial amplitude, b=Ka,

where K is the reaction matrix. The right-hand side
may be written as

impose the equalities ($0, $0t) = 1 and Eo, :E—o
throughout the calculation. (Otherwise the bound
property breaks down because the coefficients
multiplying the difference Eo, —Eo are often infinite. )

We can now compare the procedure outlined
above with those of others. The possible advantage
of the prediagonalization of the cluster matrix has
been known for sometime'2 in connnection with the
continuum shell model. As a modified procedure
of the variational bound formulation, the pseudo-
state expansion has been considered by Perkins
and also by Burke, Gallaher, and Geltman. Al-
though they also diagonalized the matrix to obtain
the set P„„ its effect in the case when the open-
channel functions are not available in exact forms
has never been investigated. On the other hand,
the calculation carried out by Burke, Cooper, and
Ormonde' for the electron-helium scattering in
the close-coupling approximation comes closest to
the present procedure in that the open- and closed-
channel functions used there are calculated exactly
from one single equation in the ESA'4; thus they are
mutually orthogonal and its energy matrix is diag-
onal. However, some of the higher excited states
are not included in their calculation.

B. Improved Model Calculation

We now apply the above procedure to our model.
As a first step, we diagonalize the hydrogen ener-
gy matrix formed by a set of trial functions

+0(1)= e '", a = 0. V- l. 2,
91,.(t)=e ot", b, =0.3, ho=0. 6

(3. 16)

which gives an orthonormal set Qr„t ) and the ener-
gies E„, , where the superscript D denotes the
diagonalized quantities. Thus we have, for example,
with N=1,

40t U00PQ U019 1 UOO(9 0 col) i

40t U10'PO+ U119 1 U11(O 1 dD PO)

The values of dD are listed in Table VI, and are
to be compared with d„,„. The resulting E„, for
a 2&&2 matrix diagonalization are given in Table
VI. Unlike in the case of simple orthogonalization
of (1t to tIpo both EOt and E1t are improved and
satisfy E„, & E„, as expected, while we saw in Sec.
II that these inequalities are not always valid for
E„,. The choice b = 0. 3 seems to improve E„D more,
while b=0. 6 contributes more to EO, . Since $0 is
extremely simple in our model, we have a good im-
provement by a 2&&2 diagonalization, but we expect
this to be more or less the case with other problems
as well.

The second step involves a diagonalization of the
Q, II@, matrices. Instead, we simply evaluated the
expectation value and calculated Etto using (1t
above for different combinations of a and b. Unlike
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TABLE VI. Improved target energies by the diagonalization procedure (denoted by superscript D) which satisfy
E„& &E„ in acdordance with the Hylleraas-Undheim theorem. The improved basis set is used to evaluate the resonance
energies E„&, which seem to satisfy E«~ &E„&Ei.

b =0.3

5=0.6

0.7
0.8
0. 9
1.0
1.1
1.2

0.7
0. 8
0.9
1.0
1.1
1.2

&oe
D

—0.9415
—0.9740
—0.9935
—1.0000
—0. 9937
—0.9753

—0.9817
—0.9922
—0. 9981
—0.0000
—0.9984
—0.9939

—0.2456
—0. 2466
—0. 2438
—0. 2368
—0. 2248
—0. 2069

—0.2114
—0. 1809
—0. 1410
—0.0910
—0.0300

0.0433

QD
it

—0. 2280
—0. 2160
—0.1969
—0. 1687
—0. 1284
—0.0709

—0.0206
0.0776
0. 2000
0. 3499
0.5318
0.7497

d orth

2. 75
3.08
3» 37
3.64
3.88
4. 09

1.25
1.50
1.73
1.95
2. 17
2. 37

2. 25
2. 65
3.10
3.64
4. 30
5.09

1.20
1.42
1.67
1.95
2. 27
2. 65

in the case with E„~'~' of Tables II and III, we
have found none of the cases with Ei] & Ei. This
is a big improvement over the simple orthogonaliza-
tion procedure of Sec. II. [The Q,@„u esd here
are simply cp„(1)y„(2).] However, we are not
able to show formally that E„&E, in a rigorous
sense. The comparison in Table VI between d„,„
of (2. 12) and dD of (3. IV) is also interesting. Using
the improved go, o, we have recalculated the phase
shifts in the ESA, denoted as 5 . Since (0, is
very much improved with b = b, = 0. 6, the corre-
sponding 6 turned out to be extremely accurate
for all values of the parameter a considered here.
The case with b= b, = 0. 3 also improved somewhat.
The result is given in Table IV. The one-term
distortion potential is then added to this and the
phase shifts are calculated, denoted here as 5, in
Table VII, and should be compared with 5, of Table
V. It is reasonable to assume that a three-term
diagonalization with b, and b2, as was done in
Sec. IIIA1, in addition to po, should produce very
good accuracy in our model.

As stressed in Sec. IIIA, we have chosen two
functions yo and y, as our basis set for the entire
calculation. Both functions are used to calculate
not only the improved target function go,

o and g„,
but also the E„and 6„which are closer to what
have been expected physically. We have thus
shown rather conclusively that the procedure de-
veloped here is optimal in so far as the input func-
tions are concerned.

ing the coupled scattering equations exactly numer-
ically (or variationally), then no additional require-
ments are necessary on ~ because they will be
effectively orthogonal, " and the step in Sec. IIIA2
is not needed. On the other hand, if the step in
Sec. IIIA 2 is to be carried out, there are two ways
of choosing the v„ functions of (3.8'). First, we
may pick for v„one of the single-particle orbitals
which is not contained in $0„ following the general
procedure outlined in Ref. 2. There will then be
generally some further configuration mixing, the
amount of which depends on the choice of the model
Hamiltonian used. The second and perhaps more
satisfactory way is to solve for the Green's function
G ' = P, (E, —H)P, ~ and construct a new operator~~
M, =H —E, +(H —E,)G ~(H E,). Noting-that M, is
already in the Q, space, we can effectively replace
(Q, HQ, —E,) by M, in the resonance-state calcula-
tion. The procedure to avoid the explicit use of
G ~ has been given, and an approximate variational
estimate of G ' may also be useful. Finally, a
more satisfactory procedure for the determination
of upper bounds on the resonance energies may be
given in terms of the minimax theorem, and this
will be reported on elsewhere.

TABLE VII. Improved target functions are used to
evaluate the static (exchange) shifts and the ones with
distortions in the l = 0 states. We have &~D &g, as
should be, but both &~D and g+D have no simple relations
to 5s and 6 of Table IV.

C. Many-Electron Case

Evidently, in the problems involving more than
two electrons, the steps in Secs. IIIA1 and IIIA3
of the improved procedure are unchanged while the
step in Sec. IIIA 2 requires further clarifications.
If u„of (3.4) are to be determined entirely by solv-

0.7
0.8
0.9
1.0

0.3

1.369
1.269
1.240
1 ~ 237

0.3

1.378
1.271
1.241
1.241.

0.6

1.236
l. 236
1.236
1.237



YUKAp HAHN

IV. DISCUSSION (p„„h9t t) =5„Eo, where hg„=E„P„,

We have seen that the prediagonalization of the
cluster energy matrix improves the threshold en-
ergies, incorporates the continuum contributions,
and gives physically more reasonable values for
resonance energies and scattering phase shifts.
The method presented in Sec. III is very effective
in treating the complex systems without the exact
bound-state functions, and optimizes the effect of
input functions. It could thus be a basis for the
formulation of a simpler theory of the atomic and
molecular collisions.

There are several important features of the re-
sult for which we have not been able to give rigor-
ous proofs; thus, it is not yet clear whether E„,
always provide bounds on E„. We do not know

precisely how much got should be improved before
we expect to have bounds on the phase shifts as in
the minimum principle, although we have seen some
indications for an answer to this problem. In the
absence of a more consistent theory, the quantita-
tive study of the model considered here would be
helpful in some future applications.

The qualitative conclusions we may draw from
the present study are that reliable scattering pa-
rameters can be obtained only if the open-channel
(P) part is treated considerably more accurately
than the distortion (Q) part, and that the prediago-
nalization of the cluster energy matrix may be a
more consistent approach to many-particle scatter-
ing problems.
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APPENDIX

We consider a bound system described by the
Hamiltonian A,, with the spectrum E„and assume
that some of the low-lying levels are discrete. In

order to calculate the energy of the first excited
state by the variational principle, either (a) the
trial functions P„t are to be orthogonalized to the
exact ground-state function $0 or (b) the Hylleraas-
Undheim theorem is applied when the exact $0 is not
available. These methods then ensure the conver-
gence of E„to the correct value E, from above.
Obviously, the first approach (a) is a special case
of (b) since when one of the 0&„t is identical to $0,
say p t = $0, then we immediately have

as y„„n&m, can be orthogonalized to $0.
We show by a simple argument that, if y„, are

orthogonalized to an approximate go„ the resulting
energy E„may converge to a value other than Ep.
E„may even be close to E„but, unlike in the
HU theorem, the inequality Ejg ~ Ey may not be valid
and E«deftends both on the accuracy of got and cp„t.

The convergence problem can be simply seen by
a three-level model. We can then write

tnt an040+ anton + an2~2 &

with the normalizations
2 2 2=

&n p + ~ny + an2 = 1,
and where we have

(&nt & &ot) = 0 ~

The corresponding energy is given by

En( = ~np Ep+ Qng E]+an2 E2 .2 2 2

(Al)

(A2)

(As)

Since we have Ep &E, &E2, it is clear that, for
given a„p, E„,will attain the minimum when a„2=0.
Thus, as more functions are added in a variational
calculation, we are essentially making a„2 =0 and

a„& minimum for the largest a„p, which is equiva-
lent to a two-level model with one function.

Thus, with yt =aogo+a, p, and (y„yt) =1, we have

« = ao'(Eo —Ex) + E, , (A4)

Therefore, if E,o is very close to E, and a02(E0 —E,)
is fairly large because either ap is large or the gap
(Eo —E,) is large, then the resulting E«o will be
physically unreliable and thus could be spurious.
This is supported by the result of Tables II and
III, where E«o at a& 1.0 can be compared with

Ejg at a = 1.0. Obviously, the actual size of ap de-
pends strongly on the accuracy of got. (However,
as we have seen in Sec. II, the overlap between $0

which implies the following: (i) We have Eo ~ E,
- E, and E, may converge to a value other than Ep
if ap &1, essentially due to the normalization condi-
tion. (ii) E, depends on both ao and a„so that the
identification E, = E, is only valid if ap is reasonably
small. (iii) For small ao, Et —E, depends also
on the size of the gap Ep Ey.

We now apply the same argument to the search
for resonance states in our model given in Sec. II.
Although the operator QHQ is more involved, the
essential convergence property is roughly the same,
so that E«o calculated with Q, C„, of (2. 12b) could
converge to a value lying below the E, threshold.
The above study also indicates that the identifica-
tion E„= E,~ would be reasonable only if

1«t'- Et)«~ I

-'
I
ao'(Eo —Et)/Eil .
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and (0, is usually much smaller than the relative
error in $0, . ) Therefore, it may not be surprising

if E„ thus calculated is rather close to its correct
value E,~ for ao reasonably small.
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