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The frame-transformation theory is applied to a calculation of electron scattering from H2

in the energy range of 1-10 eV. Results are presented for differential as well as integrated
cross sections for pure vibrational and rotational-vibrational excitation processes. Our cal-
culations are in very satisfactory agreement with experiment and are subject to easy interpre-
tation.

I. INTRODUCTION

The theory of frame transformation and its appli-
cation to electron-molecule scattering have been

discussed by Chang and Fano' (CF). In this paper,
we adapt it to calculate rotational-vibrational cross
sections in Hz by electron impact, in the energy
range 1-10 eV. We choose H2 as the target mole-
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cule for a number of reasons besides its obvious
simplicity. For example, from an experimental
point of view, its unusually large rotational spacing
permits electron beam measurements of both ro-
tational and vibrational excitation cross sections.
In fact, Linder' has measured differential cross
sections for various excitation processes in H2 at
energies in the desired range. From the theoreti-
cal point of view, it is desirable to deal with homo-
nuclear molecules, since the absence of coupling
between electronic states of even and odd angular
momentum / maximizes the effect of the centrifugal
barrier. Consequently, for sufficiently low energies
where the nonpenetrating states (d and higher partial
waves) are unimportant (& 10 eV), the remaining
penetrating states s and P are automatically un-

coupled. Thus l may be regarded as a good quan-
tum number outside the core of H~ (approximately
given by the size of the molecule).

Another important consideration is the existence
of a close-coupling calculation by Henry. This
allows direct comparison of results from the two
theories which we will now review.

The close-couplingtheory, used by Henry, utiliz-
es a set of base functions, defined in the laboratory
frame, and labeled by the observed channels cor-
responding to various rotational (j) and vibrational

(~) states of the molecule. However, as an alter-
native approach, one may use a different set of base
functions, defined in the molecular frame, and

characterized by the projection A of t on the inter-
nuclear axis and by the parametrically fixed inter-
nuclear distance s (the Born-Oppenheimer approxi-
mation). These two sets are related by transfor-
mations described in CF. In principle, one may

expand the wave function of the joint electron-mole-
cule system in either set of base functions and ob-
tain complete and equivalent solutions. However,

in practice, one is forced to truncate the expansion
to a very limited subset, and this is where choice
of approach may dictate the validity of the results.

The cogent point is that when the electron is far
away from the molecule, the electron-molecule
interaction is weaker than the rotational and vibra-
tional Hamiltonians, and the system is conveniently
described by the quantum numbers j and v (labora-
tory frame). On the other hand, when the electron
is close in, the opposite situation obtains, and the

system is more appropriately described by the
quantum numbers A and s. The regions, referred
to as B and A, respectively, ' can be determined by
examination of the appropriate matrix elements.
In general, region A. is somewhat larger for the
rotation problem than for the vibration. For ex-
ample, for Hp the region extends to approximately
1000 and 5a0, respectively, where aa is the radius
of the first Bohr orbit. However, for incident
energies exceeding 1 eV, most of the phase-shift

accumulation arises from within 5a0. Thus, the
molecular frame is the appropriate one for calcu-
lation of phase shifts. Not only is truncation ex-
pected to have little effect, but also we may neglect
coupling terms because they correspond to nondi-
agonal matrix elements of the rotational and vibra-
tional Hamiltonians which are small in region A. .
The results of this calculation may then be trans-
formed into the laboratory frame, yielding the
appropriate rotational- vibrational cross sections.

This method, in the case of H2, has the advan-

tage of circumventing coujled equations, and also
of effectively including all rotational and vibrational
"intermediate" states. The adverse effect of ne-
glecting intermediate states in the truncation of
close coupling calculations in electron-atom scat-
tering has been shown to result in a systematic
overestimation of excitation cross sections. Thus,
comparison of our results with those of Henry
should reveal the significance of this effect in elec-
tron- molecule scattering.

Our calculation requires the electron-H2 inter-
action potential and its variation with the internu-
clear distance. We include static field, an effec-
tive polarization potential, and electron exchange
effects. These terms are essentially the same as
used by Henry and are discussed further in Sec.
II. A review of the frame transformation theory
is given in Sec. III. In Sec. IV we present results
for various rotational-vibrational differential and

integrated cross sections, and discuss our results
in relation to those of Henry and to experiment.
Finally, we give our conclusions in Sec. V.

II. ELECTRON-82 POTENTIALS

We consider electron impact energies below the

electronic excitation threshold of H2. Thus, the

Hamiltonian of the electron-molecule system may
be represented by an effective one-electron Hamil-

tonian

H = —(h2/2m) V~+ HR(s)+H~(s)+ V(r, 0; s, s),
(2. 1)

where m is the reduced mass of the electron-H2
system, the first term is the kinetic energy of the

electron, &~ and II~ are the rotational and vibra-
tional Hamiltonians of the molecule, respectively,
and V is the interaction potential with the mole-
cule in the 'Z,' ground state $0. As in electron-atom
scattering, V contains short-range direct and ex-
change potentials and a long-range polarization po-
tential. In addition, we now have potentials due to
the molecule's permanent electric multipoles. In

general, these potentials have spherically symmet-
ric components as well as anisotropic ones. We

use rydberg units for the remainder of the paper.
For the short-range potential, we use the wave

function given by Wang to represent the ground
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state $0 of Hz. If we ignore the cross terms in
in calculating the electron-molecule inter-

action potential, we may write

( 2&+ 1)J, U(y )P~ (t)dt (X even)
v, (r, s)=

0 (& odd )

(2. 2)
where t is the distance of the electron from the
center of the molecule, s is the internuclear sepa-
ration,

y= (r +s /4+rs)'

~(y)= ly '+s(s)1 e """, (2. 3)

(2. 4',

and && is a Legendre polynomial of order &. The
effective nuclear charge s(s) has been calculated
by Rosen for various internuclear separations. A

fit to Rosen's results yields

z(s)= 1+ (0. 863 —0. 319s) e (2. 5)

Asymptotically our choice of molecular wave
function results in exponential behavior for the
static potential contributions to vo and v~. In order
to have the correct asymptotic behavior for the
interaction potential we add long-range electron-
quadrupole and polarization interactions to the
short-range portions. These long-range potentials
have been calculated by Lane and Geltman and
Lane and Henry, ' respectively, at the equilibrium
internuclear separation. Following Henry, we
assume that the long-range interactions are of the
form

G~(s)g~(r) for r ~R, (s)
v~ (r, s)=

0 for &rR(s) (2. 6)

where g, (r) is calculated at the equilibrium inter-
nuclear separation and factors G, (s) for the quad-
rupole moment and polarizabilities have been cal-
culated by Kolos and Wolniewicz"'" and are given
in Table I. We note that only even values of ~ are
nonvanishing owing to symmetry under permuta-
tion of the nuclei.

We have introduced here a cutoff radius R, for
the long-range potentials, a procedure analogous
to that used in electron-atom scattering. Param-
eter R, is determined by the size of the molecule
which in turn is dependent on the internuclear sepa-
ration s. The reason for its introduction is that
for x &R, the incident electron is moving at speeds
comparable to those of the bound electrons, thus
causing the adiabatic picture to break down. Fur-
ther, since the perturbing effect of the nearby
electron on the molecule is large, the present
treatment becomes inadequate. However, these
potentials are not expected to be important in this
region since exchange effects tend to exclude the
incident electron and, if it should enter, it moves

through very rapidly.
In Henry's calculation R, is chosen to be zero for

all values of s. Consequently, the maximum ab-
solute value of his attractive potential occurs at
the same ~ for any value of s. However, the value
of r at which maximum attraction occurs should

increase as s is increased. To account for this
we choose R, (s) so that

(2 &)

with x nonzero. Thus, the cutoff radius is a mea-
sure of the "percentage size" of the molecule for
a given internuclear separation. In the last column
of Table I we give R,(s) for x= '3. 25.

Electron exchange effects are included in the
manner given by Henry and Lane, who used a
five-term single-center function to describe the H,
molecule. We neglect the dependence of the molec-
ular function on s and so the exchange term reduces
to that given in Ref. 10, Eq. (24).

III. BODY-FRAME TREATMENT AND FRAME
TRANSFORMATION

We review the essentials of the laboratory-frame
and body-frame approaches as discussed in CF.
Since the total wave function is always a doublet
spin state and the target remains in a singlet state,
we may completely disregard spin. In other words,
we may describe the eigenfunctions of Pin Eq. (2. 1)
as if for a "spinless" electron, provided we properly
account for exchange as part of the potential.
Hence, in the laboratory-frame treatment we may
represent the total wave function for e —Ha by the
expansion

4'~„(r, s)= Z r ' F,q„(r) 4 ~„(i",s) Z„(s), (3. 1)
ljv

where E is a radial function. The vibrational wave
function Z„ is an eigenfunction of 0„, and 4 is ob-
tained by coupling an eigenfunction of Hz to the
electron's orbital angular momentums, conserv-
ing total angular momentum J and its projection
M. Substituting {3.I ) into the Schrodinger equa-
tion with H given by (2. 1) and integrating over s,
we obtain the infinite set of coupled equations given

by Eq. (10) of Henry. The close-coupling approxi-
mation results from truncating the set to a manage-
able number of equations, and solving for the appro-
priate scattering matrices which can then be re-
lated to cross sections.

In the body-frame approach we may expand the
total wave function as follows:

4 „(r', s)= Qr ' G, ' (r, s)X' '(P, s), (3. 2)
/A

where G is a radial function parametric in s. The
body-frame function X is characterized by A, the
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XZ~N ——QJ @IN UJA

and its inverse is
lJ V lA+ lJ+AX Jk UAf

(s. sa)

(s. sb)

while vibration transforms eigenfunctions depend-
ing on v to functions parametric in s by

Gi'~(r, &)= ~ Fi'g. (r) Z.(&) U4'
Vg

and its inverse is

(S.4a)

F»„(r)= +~f ds G,~ (r, s) Z„(s) U~~' . (3.4b)

We observe that Eq. (3. 1) transforms into Eq.
(3. 2) after using Eqs. (3. sb) and (3. 4b) and the

following closure relations:

lJ+ l J+
Uy~ =&~~

Q„Z„(s)Z„(s,) =5(s —s, )

(S.5a',

(s. 5b)

The same transformation reduces the laboratory-
frame equations of Henry to the following molecu-
lar-f rame equations:

d l (l+1), +, —E Gi~(r s)
dy' y

~~ I
V~ IX~s )G~ ~(r, s)

+~ (Xzs
I
If&

I X~u ) Gi«(r, s)

+ Z Hr (s ) Z„(s ) f ds, G ~~(r, s, ) Z„(s,)

=E f dr|&(lA, I'A'; 418
I r„r; s)G, ~, (r|, s)

)Ipt

where the direct potential is given by

V, (r, s)= Z [V,(r, s)+ V, (r, s)]P,(cost. s)
)t= even

and K is an exchange kernel given by

&(lA, l'A'; JM Ir„r; s)

(3. '7)

= fN'f drp X'z„*(f',s) Pp (r„rp, s)

x(I/Ir —r, I) Qp(r, r, , s) XJ„(k|,s) . (3.6)

projection of I (or J) on the molecular axis, and

the sign + indicates the eigenvalue of reflection in
a plane containing this axis. The prime on x in-
dicates electron coordinates in the molecular frame.
As explained in CF, the base functions in Eqs.
(8. 1) and (3. 2) are related through the following
successive unitary transf ormations. Rotation
transforms eigenfunctions of j to those of A by

sign will couple. Note that the term involving H~
couples non-Z states of one parity to the Z state,
while similar states of the opposite parity are not
coupled to a Z state, thus giving rise to A-doubling.
In the next term involving H&, closure given by
(3.5b) can no longer be carried out; thus, both
the summation over v and integration over s, re-
main. This term represents the coupling of Born-
Oppenheimer states with different internuclear
separations or vibronic coupling.

The general utilization of frame transformation
theory is discussed in CF but here we need only
observe that in (3.6) for rS 5ap, the matrix ele-
ments of HR and H& are generally small in com-
parison with other terms. We have also found
that most phase accumulation occurs inside this
region in the energy range considered, or, in
other words, the important interaction region is
x~ 5ao. Hence we can make a reliable approxima-
tion by deleting these small terms, thus simplify-
ing Eq. (3.6). In fact, considering only the pene-
trating s and P orbitals and recalling that ) takes
on only even values, Eq. (3. 6) reduces to three
uncoupled equations for s, P„and P, electrons,
respec tively:

da
+ k —vp(r' s)

I
Gpp(r' s) = exchange terms,

)

(
dp 2 (3 9)
„p ——p+k' —vp(r; s) —

p (3A' —2)v, (r; s)

x G,~(r; s)

= exchange terms for A = 0, 1 .

The exchange terms have been discussed in Sec.
II. The equations depend parametrically on the

internuclear separation s, but are not dependent
on either the total angular momentum J, or on the

sign +. In fact these equations become essentially
the fixed-nuclei approximation equations.

In principle, we should integrate Eqs. (3.9) to
r= 5ao, transform to the close-coupling equations
of Henry by (3.4a), and then integrate to infinity.
However, almost all phase accumulation occurs
inside 5ao for the energy region considered, and

so integrating further has little effect on the eigen-
phases. Thus, we only solve Eqs. (3.9) subject
to the boundary conditions

Gt~(0i )=0
(3. 10)

G,~ (r; s) - sin(kr ——,
' lm)+R«(s) cos(kr ——,

' lw),

where the R matrix is simply tan5, ~(s), and is
related to a t matrix through

In Eq. (3.6) we have suppressed the sign + with
the understanding that only functions of the same

t,~(s) =R,„(s)[1—lR, ~(s) j '

= sin5„(s) e"«"'. (3. 11)
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In Eqs. (3.9) we have oversimplified the problem
by misrepresenting the potential inside the core.
In particular, at the position of the nuclei, a single-
center expansion about the molecular center is
inadequate. The only saving feature is that for s
waves, the exchange force tends to keep the inci-
dent electron out of the core by requiring its wave
function to have a node at the molecular mean ra-
dius, and for p and higher partial waves, the cen-
trifugal barrier also tends to keep the incident
electron outside the core. We may attempt to
amend this oversimplification in a single center
expansion by taking many terms in the summation
over l in Eq. (3.1). Such a calculation was per-
formed for an energy of 4. 5 eV at the internuclear
separation s = 1.4ap, with l = 1, 3, . . . , 9. The result
showed that the P, phase shift changes by about
5% over that obtained from Eqs. (3.9). This indi-
cates that errors introduced by using Eqs. (3.9)
are not serious, and that these simple equations
will yield meaningful semiquantitative results.

The t matrix in the body frame, as given in Eq.
(3.11), is related to that in the laboratory frame
by the transformation equations (3.3) and (3.4) .
Specifically, we have

obtained by using Numerov's method to integrate
the equations outwards and inwards, with subse-
quent matching to obtain a final solution. The
asymptotic method of Burke and Schey is used
to determine the R matrix from the radial function
G,~. Equations (3.9) are solved for internuclear
separations s=0. 8, 1.2, 1.4, 1.6, 2. 0, and 2. 4ap,
and then the cross sections are obtained from Eq.
(3.14).

Phase shifts obtained from a solution of the un-
coupled fixed-nuclei equations (3.9) with x= 0. 25
are given in Fig. 1 as a function of internuclear
separation s for energies E=1.0 and 4. 5 eV. The
vertical bar denotes the equilibrium separation
position sp= 1.4ap. On the plot of the P, phase
shift versus s, we have also given the product of
vibrational wave functions for v= 0 and v = 1. These
functions are closely approximated by harmonic
oscillator functions and are confined essentially to
1.0ap & s & 2. 0ap. Our results can be easily under-
stood if we expand t,~(s) about so for any values
of/and A, i. e. ,

2it(s) =(isin25(so) —I1 —cos25(so) ])

+ s sp 'E cos25 sp

T,(v'j', vj )=Q~U)~ 1 Z„(s) t,~(s) Z„. (s) ds U~), ,

(3. 12)
where A takes on values from —I to l. This pro-
cedure is equivalent to summing over + and-
states of reflection in the body frame. Finally,
the differential cross section may be obtained from
Eq. (3. 12) by the normal procedure, e. g. , as dis-
cussed by Henry. Further, a more transparent
result follows when we recouple angular momenta
to the angular momentum transfer j, and apply sum
rules which involve total angular momenta, as is
outlined in CF. Thus, we obtain'

(j'v', jv)=,' Z b"," b",". QlPIP; j, I.)
k)

with

xC(l/' L; 000)2 C(jj,j'; 000)2PI, (cosa), (3. 13)

b"," =+~(2l+1)i' ( —1)" C(flj, ; A —AO)

x J Z„(s) t,~(s) Z„(s)ds. (3. 14)

Note that for H2, l assumes the values 0 and 1,
L the values 0, 1, and 2, and for j„ the values 0
and 2.
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IV. RESULTS AND DISCUSSION

We calculate cross sections for simultaneous
rotational and vibrational excitation of molecular
hydrogen by electron impact by solving the set of
uncoupled equations (3.9) subject to the boundary
conditions (3.10). The numerical solution is

, l.OeV

1.5
0 I

2.00.50 1.0
s (ao)

FIG. 1. Phase shifts s~, p~, and p, as a function of
internuclear separation g for energies E = 1.0 and 4.5 eV.
Also, product of vibrational wavefunctions for g =0 and
'+=1 vs g.
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FIG. 2. Pure vibrational cross
section 0.(v=0 1) vs energy. Curve
A: body-frame approximation; curve
8: laboratory-frame approximation
(Ref. 4); 0, Linder(Ref. 2); C3, Lin-
der (Ref. 17).
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Now, because of orthogonality of the vibrational
wave functions, only the first curly bracket(} con-
tributes to 5, while only the second f}contributes
to b, '. Hence, Fig. 1 shows that all three orbitals
contribute significantly to the elastic processes
since their mean phase shifts 5,~(so) are far from
zero (or multiples of v). Qn the other hand, ex-
citation processes of the type v = 0-1 are dominated
by the P, orbital, since it is the only one with a
large derivative (d5/ds), , The physical inter-
pretation is that excitation of a vibrational quantum
occurs via a resonant (1scr~ 2Po„) Z„' Hz state, '6

where the incoming electron is trapped in a P, or-
bital by a combination of polarization, exchange,
static-field, and centrifugal-barrier effects.

In order to compare directly calculations per-
formed in the body-frame representation with those
in the laboratory frame, we choose x=0 for all s
in Eq. (2. 7). Both computations are made with
the same e-Ha interaction potential. Pure vibra-
tional cross sections as a function of energy are
given in Fig. 2 for E& 10 eV. Circles and squares
denote the experimental results of Linder, ' with
the squares representing the more accurate mea-
surements. Cross sections obtained in the fixed-
nuclei approximation, where we have retained con-
tributions from s„P„and P, phase shifts, are
given by curve A, while curve B represents cross
sections obtained by Henry in the close-coupling
approximation, i. e. , laboratory-frame representa-
tion. The fact that both theoretical curves lie above
the experimental results indicates that omission of
a cutoff in the polarization potential results in ex-
cessive attraction. Moreover, the energy range
where curves A and B differ significantly coincides

w ith the Z„' resonance at approximately 2-4 eV.
This discrepancy reflects the effect of truncation of
higher vibrational states in the close-coupling cal-
culations (curve B). As discussed in the analogous
situation of electron-atom scattering, the effect of
disallowing the system to occupy the truncated states
tends to pile up flux in the neighboring allowed states,
resulting in overestimation of excitation cross sec-
tions. Similarly, we see in Fig. 2 that curve B is
substantially higher than curve A or experiment.
The manifestation of the truncated effect in only the
resonance energy region can be explained by reex-
amining Fig. 1. Again, both the s, and P, orbitals
are very flat and have essentially no second or higher
derivatives at all energies. However, the p, orbit-
als possess large second and higher derivatives,
particularly in the resonance energy range (not ex-
plicitly shown), corresponding to transitions to
v = 2 or higher intermediate states. These effects
are implicitly included in the present method (curve
A).

The assumption that the long-range portion of the
potential can be separated into terms depending on

~ and s is probably too severe a constraint on the
potential, so we relax this assumption by introduc-
ing nonzero x. Total vibrational cross sections
o (v = 0- 1) are compared with experiment in Fig. 3
as a function of energy for E- 10 eV. The solid
curve represents the sum of pure vibrational and

simultaneous rotational- vibrational cross sections
obtained in the present calculation. We have chosen
the adjustable parameter x in Eq. (2. 7) so as to
give the best fit to experimental results of Linder, '
which are given by squares. The value we have
adopted is x= 25%, which is used throughout the rest
of this section. Linder used a crossed-beam tech-
nique to measure the energy dependence in the range
1.5 &E & 10. 8 eV and the angular dependence (20'—
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FIG. 4. Pure vibrational cross section and rotational-
vibrational cross section vs energy. Solid curves: un-
coupled adiabatic approximation with x =0.25; circles
and squares denote experimental results of Linder (Ref.
17). o.(v=0 1, bj=0), curve A andO; o(v=0 1, j=l

3, curve B and g.
FIG. 3. Total vibrational cross section o-(v=0 1) vs

energy. Solid curve: present results in uncoupled
adiabatic approximation with g = 0.25. Experimental re-
sults are given by G, Linder (Ref. 17); 0, Ehrhardt et
al. (Ref. 19); V', Trajmar et al. (Ref. 20); 6, Schulz
(Ref. 21); Q, Engelhardt and Phelps (Ref. 22); dashedline,
Grompton et al. (Bef. 23); dotted line, Burrow and Schulz
(ref. 24).

120') of the differential cross sections. By extrapo-
lating measurements and integrating over the angu-
lar range, Linder obtained relative total cross sec-
tions which are normalized to absolute total cross
sections of Golden et al. " Circles denote results
of Ehrhardt et al. , who also used a crossed-beam
technique to obtain relative cross sections which
are subsequently normalized in the same manner
as that used by Linder. ' Cross sections from
another scattering experiment by Trajmar et al. '
are given by inverted triangles. Electrostatic-
energy-analyzer studies of Schulz ' are presented
as triangles, and diamonds denote cross sections
deduced by Engelhardt and Phelps ' from analysis
of transport data. More accurate swarm experi-
ment measurements have been taken by Crompton,
Gibson, and Robertson and their deduced vibra-
tional cross sections are given by a dashed curve.
The dotted curve near threshold energies represents
the results of Burrow and Schulz, ' who used a trapped-
electron method to measure a slope of 4. 3 &&10 '
cm eV ' for the vibrational o(v= 0-1) cross sec-
tion. The present theoretical calculation is not
designed to clarify the conflicting experimental re-
sults near threshold. However at higher energies
the experiments of Schulz, ' Ehrhardt et al. ,
Trajmar et al. 2Q Crompton et al. 23 and Llnder16
are in agreement to within 25%.

Figure 4 depicts pure vibrational and simulta-
neous rotational-vibrational cross sections versus
energy for E ~ '7 eV. Experimental results of
Linder' are given by circles and squares, respec-
tively, for o(v=0-1, 6j =0) and o(v=0 1, j= 1 3).
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FIG. 5. Differential cross sections for v=0 1, Aj
=0 and v =0—1, j=l —3 vs scattering angle 0 for E=1.5
and 4. 5 eV. Gurves A and 8 and ~ and O as in Fig. 4.

Curves A and B are the corresponding results in

the present method with x= 0. 25. For E & l. 0 eV,
this approximation is invalid because phase accumu-
lation occurs for x &10ao, where neglected terms
in (3. 5) are comparable to those which have been
retained in Egs. (3. II).

Differential cross sections for v= 0-1, 4j = 0
vibrational excitation and v = 0 -1,j = 1-3 rotation-
al-vibrational excitation of molecular hydrogen by
electron impact are given as a function of angle at
E=1.5 and 4. 5 eV in Fig. 5. Theoretical curves
A and B are calculated by our method and represent
cross sections o'(v = 0-1, hj = 0) and o(v = 0-1,
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j= 1-3), respectively. Circles and squares denote
absolute cross sections obtained experimentally by
Linder' for the respective processes. Agreement
between theory and experiment is very satisfactory.

Figure 6 gives the ratio of the pure vibrational
o(v = 0-1, &j= 0) to the rotational-vibrational
o'(v= 0-1, j= 1-3)cross section for H2 as a func-
tion of scattering angle for E = 4. 5 eV. Circles
and squares represent measurements of Ehrhardt
and Linder ' and Linder, ' respectively. Curve A
denotes the result of Abram and Herzenberg,
which may be derived from Eq, (3. 13) by retaining
only the resonant P, orbital. Then it can be shown
that coefficients b&' cancel in the ratio of the indi-
cated cross section, and we obtain their result
based purely on angular momenta considerations.
Curve B depicts the close-coupling result of Henry,
and curve C gives the present result. Since curve
A contains only P waves, it is necessarily symmet-
ric about 90'. Our present calculation includes s
waves which, although not important for vibrational
excitation processes, produce a noticeable effect
in the angular distribution as shown in Fig. 6. It
should be noted that cr(v=0-1, hj= 2) is unaffected
by s waves. However, the interference of s waves
with P waves produces a rise in the forward direc-
tions (and an equal drop in the backward directions)
which accounts for the difference between curves
C and A. Clearly, the agreement of the present
result, curve C, with the more reliable data of
Linder'~ (squares), is very satisfactory.

V. CONCLUSION

The present calculation of electro'n-H, scattering
illustrates the power and usefulness of the frame

I

transformation theory. Under favorable circum-

TABLE I. Long-range-potential parameters as a function
of internuclear separation s.

0.8
1.2
1.4
1.6
2.0
2.4

0.1714
0.3536
0.4574
0.5646
0.7705
0.9330

0. (s)"
(a3p)

2.9231
4.3448
5.1786
6.0786
7.9954
9.8568

e&(s)"
(ap)

0.2812
0.8017
1.2019
1.7021
2.9690
4.4000

~,(s), x=0.25
(ap)

l. 06
1.19
1.29
1.38
1.55
1.72

~Reference 11. bReference 12.

stances, which are fulfilled in the present problem
in the specified energy range, the calculation is
particularly simple, requiring only the solutions of
uncoupled differential equations in the body frame.
Not only is the calculation simpler than that performed
in the laboratory frame, but also the result for
vibrational excitation is superior, as shown in Pig.
2. The reason is that the complete set is truncated
so that vibrational states v ~ 2 are excluded in the
laboratory-frame approach, whereas all states are
implicitly included in the body frame.

The primary result of our calculation is given in

Fig. 1, which shows s and P phase shifts as functions
of the internuclear distance s at different energies.
The main point of note is that the ~Z'„resonance is
associated with a rapid rise in the P, phase shift
around the equilibrium distance so= 1.4ao. To-
gether with Eqs. (3. 13) and (3. 14), these curves
enable us to calculate any differential or integrated
cross section from the initial state (j, v) to the
final state (j', v'). The subsequent graphs repre-
sent only a few selected results. Results not shown
are also in good agreement with experiment in the
energy range 1.0—10 eV.

At lower energies, the corresponding longer wave-
lengths would increase the range where the electron-
molecule interaction is important. In particular
this range would extend well into region 8, invali-
dating the approximations made in reducing Eq.
(3.6) to Eqs. (3. 9). In fact, for extremely low
energies, for example the threshold behavior of
pure rotational excitations, the range of important
interaction has shifted almost entirely into region
B. Hence the alternative approach utilizing the
laboratory frame becomes appropriate. "

At energies above 10 eV, d and higher partial
waves become important. In principle, each orbital
can be calculated by the "coupled wave approxima-
tion. " ' However, the deep penetration of the
electron into the core would probably invalidate the
single-center representation of the molecule, and
a two-center approach' would then be necessary.

Finally, the simplicity of this calculation and

the accuracy of our results encourage calculations
on more complex molecules using the frame trans-
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formation theory. However, practical simplifica-
tions as used in our calculation should be made with
caution. For example, the fixed internuclear dis-
tance assumption is poor in electron-O~ scattering
since the process is dominated by long-lived 02
intermediate states. '

Note added in Proof. F. H. M. Faisal and A.
Temkin, Phys. Rev. Letters (to be published) have
made an independent adiabatic-nuclei calculation

based on a Taylor series expansion of t(s), with re-
sults qualitatively similar to our own.
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