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Previous Monte Carlo computations of ground-state properties of solid helium using a cor-
related trial wave function are extended in several directions. A generalized wave function
which includes a simple model for "phonon" correlations is tested; no significant lowering of
ground-state energies is obtained. Detailed results for bcc He and hcp He are tabulated in
the low-density region. The extension of the variational computations to considerably higher
densities (10cm /mole) stresses the need for inclusion of short-range correlations over a wide
density range and clearly reveals the inadequacy of the commonly used Lennard-Jones 12-6 po-
tential with the de Boer parameters. Various other recently proposed interaction potentials
are investigated in conjunction with known three-body forces. Reasonable agreement with ex-
perimental energies, pressures, and compressibilities follows from the use of a potential due
to Beck, The relation between the melting properties of helium and two "hard-core" models
is discussed and the possibility of Bose-Einstein condensation in the solid is investigated in
conjunction with a theorem due to Reatto.

I. INTRODUCTION

The low-temperature properties of solid helium,
the most characteristic of quantum crystals, have
received a considerable amount of attention both
from theorists and experimentalists, mostly during
the last decade. The ground-state problem espe-
cially has been thoroughly studied by an apparently
wide variety of theoretical approaches. However
most published calculations are essentially varia-
tional and generally make use of a "correlated"
trial wave function, the product of a Jastrow func-
tion' by a "phonon" wave function, as first suggested
by Nosanow. ~ In such a trial function the Jastrow

factors take into account the short-range correla-
tions which are a consequence of the large zero-
point motion of helium atoms and the strongly re-
pulsive interactions for small separations, and the
phonon part describes the long-range order of the
solid. In order to compute matrix elements be-
tween correlated states, Nosanow was led to use a
cluster expansion introduced earlier by Van Kam-
pen. This expansion has since been widely used
both in the ground-state calculations of Nosanow
and co-workers and in the so-called "self-con-
sistent phonon theory" (SCP) of Koehler and collab-
orators, ' which explicitly includes long-range (or
phonon) correlations in the trial wave function.



J. P. HANSEN AND E. L. POLLOCK

Similar cluster expansions have been proposed by
Brueckner and collaborators and more recently by
Massey and Woo. A slightly different expansion,
based on the treatment of a hierarchy of quasihar-
monic model Hamiltonians, has been introduced by
Guyer who has also written a review paper covering
most of the above-mentioned work. Recently a
perturbation theory of quantum crystals has been
formulated by Horner, ' resulting in a Bethe-Gold-
stone equation for the short-range correlation func-
tion, similar to Guyer's two-body equation. Both
Horner's theory and the various cluster-expansion
approaches are essentially two-body approximations
with respect to the short-range correlations, al-
though occasionally three-body correlations have
been considered. Nevertheless binding energies
and pressures in reasonable agreement with experi-
mental data have been calculated in this approxima-
tion, at least for molar volumes close to the melting
volume, which is unusually large for solid helium.
However, a major drawback of the c1uster-expan-
sion technique lies in the fact that it seems to con-
verge rapidly only for a rather limited set of Jas-
trow tria) functions, and even within this set the
fast convergence breaks down when solid hei. ium
is compressed, i.e. , when the nearest-neighbor
distance contracts.

One way of treating the short-range correlations
more accurately is to compute the matrix elements
between correlated states "exactly" by a Monte
Carlo method introduced first in the theory of clas-
sical fluids by Metropol. is et al. " This technique
was successfully applied to the study of l.iquid He4

by MacMillan, '~ liquid He4 and Hes by Schiff and
Verlet, '3 and solid He4 and He' by Hansen and Le-
vesque' (this paper will hereafter be referred to
as I) for an fcc lattice. Subsequent work by Han-
sen" was extended to hcp and bcc lattices which
are the actual symmetries observed for sal. id he-
i.ium at low temperatures (this work will later be
referred to as II). The previous work used a sim-
ple two-parameter variational function described
by Eqs. (1)-(3) in Sec.II, and because no further
approximations were made in the computation of
the energy expectation value except the use of a
finite system in the Monte Carlo work (of the or-
der of 1000 atoms), the results quoted in I and II
can be considered an upper bound to the ground-
state energies computed with a given two-body po-
tential. The agreement with experimental data
obtained in I and II is the best obtained so far
by any ground-state theory of solid helium, al-
though the density dependence of the energy and
pressure both for solid He and He is unsatis-
factory. The major success of these variational
results was the very reasonable "preduction" of
melting properties and the bcc-hcp transition in

solid Res. Moreover one of us has recently pointed

out' that the bad variation of ground-state proper-
ties with density might be due essentially to the use
of an inadequate interatomic potential which, in
practically all the previously mentioned calcul. a-
tions, was the Lennard-Jones 12-6 potential:

with parameters c = 10.22 'K and o = 2. 556 A as de-
termined by de Boer and Michels. "

The purpose of the present work is to extend the
results of I and II in various directions. In Sec.
II we investigate the effect on the variational re-
sults when a more general phonon wave function is
used, introducing a simpl. ified picture of "phonon
correlations. " The main conclusion of that section
is that no significant improvement is obtained by
using the more complicated trial wave function.
Section III gives a detailed account of the varia-
tional results for hcp He4 quoted only briefly in the
earlier work (II). An apparently new formula for
the compressibility in the ground state is derived
in that section but it turns out to be difficult to
handle in a variational calculation. In Sec. IV we
extend our variational calculations to higher densi-
ties covering the molar volume down to 9 cm'/mol. e.
The importance of this work is enhanced by the fact
that the cluster expansion breaks down already for
considerably larger mol. ar volumes.

The influence of the interatomic two-body po-
tential is systematically investigated in Sec. V,
over the whole density range covered in Sec. IV.
A few remarks on the melting transition of He3 and
He4 and on the possibility of Bose-Einstein con-
densation in solid He are presented in Sec. VI.

II. GENERALIZED TRIAL %AVE FUNCTION

In previous Monte Carlo studies of solid helium-
4 and -3 (see I and 11) a variational ground-state
wave function of the following type has been used:

4=@ f(rig)II p(r), r =y -r ~, (2)

where the indices i and j run from 1 to N (total
number of atoms), f(r, ~) is a spherically symmet-
ric two-body correlation function, and y, is a one-
particle wave function centered at lattice site 8,.
In I and II, the function f (r) was taken to have the
analytic form of the %KB solution for tunneling into
an t coreq

where B is a variational parameter. The p, are
Gaussians used to localize the particles at the lat-
tice sites,

q, =exp[ ——,'A(r, —R,)'],
where A is another variational parameter.

In the trial ground-state wave function assumed
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in the SCP theory, ' the single-particle Gaussian
used above, corresponding crudely speaking to an
Einstein model of the crystal, is replaced by a cor-
rel.ated Gaussian corresponding to some harmonic
model of the crystal. Specifica1ly,

II f (ri J) charm
i&)

(5)

=exp[ ——,
' Q (r; -5,) ~ G, q

~ (r~-R,)], (6)

where 5, is the equilibrium (lattice) position of the
ith atom. The matrix G, &-is determined varia-
tionally and in all SCP calculations a restricted
class of f (r) introduced by Nosanow has been used
to ensure the fast convergence of the cluster ex-
pansion which is almost always truncated after the
two-body term. In a purely harmonic crystal the

f(r) is just a constant, and theforce-constantma-
trix4 is related to the 6 matrix appearing in the
correlated Gaussian by C = (h~/m) G~.

To determine the effect on the ground-state ener-

gy of replacing the single-particle Gaussian used
in I and II by a correl. ated Gaussian we have recal-
culated some of the ground-state properties of the
bcc l.attice using a simple correlated Gaussian mo-
del together with the Jastrow factors (3).

The 6,&
chosen has the form

A+ q
x 14(A"+ 2A ) = 0, (9)

and for the Lennard-Jones potential. (1),

The number 14 which appears in (9) is just the num-

ber of particles in the first two shells for a bcc
lattice. This relation is simil. ar to that obtained

by imposing Eq. (8) on the force constants for a
purely harmonic crystal. With the sum rule (9)
the number of independent variational parameters
in the trial wave function is reduced to three (e. g. ,
A", A, and B).

We may remark that a calculation of the disper-
sion curves for a, harmonic crystal with force-con-
stant matrix corresponding to the G of Eq. (7) gives
results typical of most Bravais lattices except for
very small k, where owing to the finite-range prop-
erty of G in Eq. (7), an & linear in k is not ob-
tained. This suggests that this l.imited form for C
is sufficient to introduce some phonon correlations.

With this wave function the energy expectation
value is

~g 8 (g 8(gA + (6~g- (ge(ge)A
g-2

(7)

where

g, 4'„=0 for ail s. (8)

Our trial. wave function is an eigenstate of some
"fictitious" Hamil. tonian which can be obtained by
applying the kinetic energy operator to Eq. (5).
The potential. of this fictitious Hamiltonian contains
the harmonic potential appropriate to g, plus
various terms arising from the Jastrow factors.
By demanding that this fictitious Hamiltonian be
translationally invariant we are able to derive the
fol.l.owing restriction on A, A", and A:

with the additional restriction that for the bcc crys-
tal considered here, 6,&

is nonzero only for the
pair ij nearest or next-nearest neighbors. A, A",
and A are determined variationally. This form
allows the transverse and longitudinal correlations
to be treated independently and has the singl. e-
particle Gaussian as a limiting case. With this
G and f (r) from Eq. (3), Eq. (5) gives the explicit
form of our trial wave function.

In a harmonic crystal the force-constant matrix
@ must satisfy certain requirements owing to the
symmetry of the crystal. In particular, transla-
tional invariance requires that

Here the brackets denote normalized averages
weighted by the square of the trial. wave function
[see Eqs. (9) and (10) in I].

As pointed out in I, the simple trial function (5)
allows a straightforward scaling procedure [Eq.
(16) of I] which makes it possible to perform a
complete variational cal.culation at a fixed density,
the expectation values for different densities being
simply related to those computed at the fixed den-
sity. This results of course in a, considerable
saving of computer time. We carried through a
complete variational. calculation for bcc Hes for a
250-particle system enclosed in a cubic box with
periodic boundary conditions. Around 150000
configurations were generated on each run, requir-
ing about 5 min of computer time on the CDC 6600
of the Courant Institute for Mathematical Sciences
(New York). Our results for a number of densities
close to melting are summarized in Table I. They
are compared to the previous bcc results using an
"Einstein"-type wave function (2) which were briefly
reported earlier in II. These previous results had
been obtained for a larger system (686 atoms) and
a larger number of configurations had been gen-
erated (around 400000). Accordingly the statis-
tical error on the expectation val. ues, which was
roughly 0. 2 K on the total energy, is l.arger on
the new resul. ts, but does not exceed 0.5'K. It
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TABLE I. bbc He results with LJl potential. For each density the results on the upper line are computed with the
wave function defined by Eq, (5); the lower line corresponds to Eq. (2). (V), (I), E, and E ~ are the calculated poten-
tial, kinetic, and total energy per atom and the experimental energy, respectively (in 'K) p" ~~ p "'~ and p~t are
the pressures calculated from Eq. (11), Eq. (12), and experiment (in atm. ). S is the rms displacement and S(O~D) is an
"experimental" estimate of this quantity using Eq. (13) and the measured Debye temperature. K and K~ are the calcu-
ated and experimental compressibilities (in atm ). This notation is maintained in all other tables.

(atom/e )

t (p)
(cm~/mole) ('K) ('K)

EOXPt

( K) ('K)'
Pvir p

thermo

(atm) (atm)
S S(~,)

(A) (A)

10K
(atm ~)

10 E'

(atm-')'

0.4

0.42

0.48

0. 5

25. 14

23, 94

22. 85

21.86

20. 95

20. 11

21~ 2
—22, 0

22' 7
—220 7
—24. 3
—23. 5
-25. 3
-24, 5
-26.3
—25. 7
-26, 25
—26, 95

21, 55
22. 4
23.55
23.6
25. 75
25. 0
27. 35
26. 6
29
28. 4
29. 85
30, 75

0.35
0.4
Q. 85
0.9
l. 45
1.5
2. 05
2. 1
2. 7
2. 7
2. 6
2, 8

—1.03

—0. 50

0.15

0. 90

1.82

32

36
47
52
64
72
82

115
96

31
36
37
39
46
45
58
55
75
71
98
94

l. 17
1.14
1.11
1.11
1, 08
1, 05
1.05
0. 99
1.02
0. 95
0. 99
0. 92

1.35

1.28

1.22

1.16

0. 81

0.46
0, 55
0.31
0.33
0.21
0.22
0. 15
0, 15

0.46

0.37

0, 29

0.23

0. 18

~Reference 18. Reference 19. Reference 20.

dE 1
V dP/dv (12)

In practice a simple polynomial is fitted to the en-
ergy-vs-volume curve and differentiation then
yields the pressures with an estimated error of
5% and the compressibilities with an error of about
10%. It is a remarkable feature of all our results
presented in this and the following sections that
the difference. between the pressures computed

, through formulas (11) and (12) is always within the
quoted uncertainties and, moreover, this differ-

should however be stressed that this fairly small
statistical error on the ground-state energy, com-
bined with the slow variation of this extremum
quantity as a function of the variational parameters,
at least in the vicinity of the minima, causes a con-
siderably larger uncertainty (not a statistical er-
ror) on the potential and kinetic energies separate-
ly, because these are not extremum functions of
the variational parameters. The same remark
holds for the pressure calcul. ated by the virial
theorem:

I =p[-,'(T) —(I/2g)g, (r, V,. y)].
The "variational uncertainty" is estimated to be less
than 10% of the quoted potential and kinetic ener-
gy values and roughly 15% on the virial pressure
values. These uncertainties turn out to be largest
at Low densities and tend to become less important
when the solid is compressed (see the results quoted
in Sec. IV).

Another way of computing the pressure P and the
compressibility K at T = 0 'K consists in differentiat-
ing numerically the energies as a function of molar
volume:

ence appears to be nonsystematic and tends to be
zero on the average.

Returning to Table I we clearly see that the
ground-state energies per atom, computed with
wave functions (2) and (5), respectively, are very
close, the differences being welL within the statis-
tical errors. The theoretical values lie less than
2 K above the experimental data of Pand'orf and
Edwards. " As to the kinetic and potential ener-
gies, their differences are also within the above-
mentioned uncertainties. The pressures also agree
very closely, especiaLly the more accurate esti-
mates from formula (12) ("thermodynamic" pres-
sures), and they lie very close to the experimental
values of Ref. 18. The compressibilities also agree
within the quoted uncertainties, but appear to be
generally higher than the experimental values.
Another interesting quantity is the rms displace-
ment of the atoms from their equilibrium posi-
tions; again the values computed with both wave
functions agree within statistical errors (of the
order of 5%) although as expected the values ob-
tained from the "correlated Gaussian" wave func-
tion appear to be systematically slightLy Larger
than those from the Einstein-type wave function.
An "experimental" estimate of the rms displace-
ment can be obtained from the measurements of
the Debye temperature OD at very low temperatures
through the Debye formula

$2 9 k
4 mkOD '

where S~ denotes the square of the rms displace-
ment . Precise measurements of 8LI are available
both for He~ '9 and He . ' The rms estimates from
(13) are also given in Table I; they turn out to be
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in reasonable agreement with the theoretical values.
Our conclusion from the comparison made in

Table I between correlated and uncorrelated Gaus-
sian results is that no significant change of ground-
state properties follows from the use of a more
general phonon wave function and, in particular,
the ground-state energy is not lowered significantly
despite the presence of an additionaI. variational
parameter, at least in the relatively restricted den-
sity range considered here. This lends strong
support to our feeling that short-range correla-
tions are dominant in solid helium for these den-
sities and that a correct treatment of these cor-
relations is crucial if quantitatively reasonable
data are to be computed. In the remainder of the
present work we restrict ourselves to the simpler
form of the wave function, formula (3).

As regards the special choice of the short-range
correlation function we feel that there is no basic
physical reason why it should be very different
from the l,iquid-helium case. For liquid helium
the choice of Eq. (3) appears to be close to opti-
mal. ' In the case of the solid two other choices
(including the Nosanow form) have been considered
in Ref. 14, where it was shown that those Jastrow
factors gave significantly higher energies when
used in conjunction with Monte Carlo computations.
However a more complicated form than (3) might
very mell allow a further slight lowering of energy
expectation values; the price to be paid would then
be the loss of the simple scaling relations which
greatly reduce the amount of computations.

III. HELIUM-4 RESULTS

We present here in some detail the earlier re-
sults obtained by one of us for hcp He4, mhich had
been briefly quoted in Q. These results were ob-
tained with the two-parameter trial wave function
defined by formulas (2)-(4) for an 800-atom sys-
tem in a nearly cubical box with periodic boundary
conditions; 400000 configurations were generated
on the average for each run; the statistical error
(standard deviation) on the ground-state energy is
estimated to be 0.2'K and the other error esti-

mates have been mentioned earl. ier (Sec. 11). The
variational results in the molar volume range be-
tween 17 cms/mole and melting are shown in Table
II together with available experimental data. %e
are able to draw conclusions quite similar to those
of Sec. II: The ground-state energy is everywhere
within 1.5 K of experimental values, the difference
between theory and experiment decreasing with in-
creasing density; the "thermodynamic" and virial
pressures are very close, well within the above-
mentioned uncertainties and are systematically
lower than experimental values. The calculated
compressibilities on the other hand are reasonably
close to experimental values but systematically
larger. The calculated rms displacement values
are again fairly close to their experimental "esti-
mate" from formula (13). As expected the varia-
tional parameter A. of the Gaussian single-parti-
cle wave function (4) increases with increasing den-
sity, resulting in an increasing localization of the
atoms around their equilibrium positions as ilt.us-
trated by the rapidly decreasing rms displacement
values. However, the parameter B in the Jastrow
factors (3) varies very little with density and re-
mains everywhere very close and slightly below
the WEB value B= 1.1350.

Among the other published theoretical results
for hcp He Horner's' come closest to ours; his
energies l.ie roughly 2 'K above our energy values.
Horner attributes the discrepancy between his re-
sults and experiment to the absence of phonon cor-
relations in his mean-field treatment. In the light
of our results of the Sec. II the discrepancy might
also be due to the neglect of higher-order terms
in Horner's treatment of short-range correlations.
In Sec. IV, we extend our variational results to
smaller molar volumes, essentially the region be-
tween 9 and 18 cm~/mole, which has been much
l.ess explored both by theoretists and experimen-
tal. ists. But before that we discuss briefly the
problem of the computation of the compressibility
in the ground state of a quantum system. The com-
pressibility is usually computed by numerically
differentiating twice the energy-vs-molar-volume

TABLE II. hcp He4 results with LJl potential. All experimental data are taken from Ref. 20.

v &V&

(cm3/mole) ('K)
@OXP

('K)
pvix p thermo

(atm) (atm)

pexPt 104' 104gexP

(atm) (atm ~) (atm ~)

$(8D)
(A)

21.5
20. 87
20.28
19.69
19,12
18.59
18.06
17.56

-26.35
2 7 ~ 72

—28. 3
-29.61
-31.23
—31.97
-32.69
-33.95

21.68
23.22
24. 0
25. 61
27. 55
28.64
29. 77
31,55

—4. 67
—4. 5
-4.3
—4
—3, 68

3 + 33
-2.92
-2.39

—6. 08
—5 9
—5. 7
—5.39
—5
-4.6
-3.97
-3,35

20
26
33
40
49
59
71
84

19
26
34
42
51
61
73
88

28
36
47
60
74
92

ill

41.9
38.9
37.2
34. 7
30. 7
26. 0
21.1
17.0

31.4
26. 1
21.8
18.2
15.1
13.0

0. 963
0. 935
0, 91
0. 877
0. 843
0.815
0. 787
0. 76

1.02
0. 98
0. 94
0, 91
0. 88
0. 85
0, 815
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s I()
@) ) (15)

with ~ P) the ground-state wave function and the
prime meaning that differentiation with respect to
volume does not include the contribution coming
from the scaling of the particle coordinates with
volume. To the best of the authors's knowledge the
formula had not been previously derived. Some
details of the derivationof formula (14) are given
in Appendix A. The first term on the right-hand
side of (14) is the ideal-gas contribution (which is
the same for fermions, bosons, or particles that
obey Boltzmann statistics) and the second term is
a fluctuation term arising only for systems of in-
teracting particles. Unfortunately relation (14) is
difficult to use in our variational calculations be-
cause the differentiation (15) introduces the deriva
tives of the optimum variational parameters with

respect to volume, which are not known very ac-
curately because of statistical uncertainties.
Moreover thefluctuationterm in formula (14) can-
not be calculatedwith sufficient accuracy for our
choice of the wave function by the Monte Carlo
method; consequently formula (14) is of little use
in the present context, but might proVe more use-
ful to test the consistency of other approximate
ground- state calculations.

IV. EXTENSION TO HIGHER DENSITIES

As pointed out earlier, theoretical results for
the ground-state propertiesof solid helium are
scarce at molar volumes less than about 18 cm'/
mole. This is due partly to the breakdown of the
truncated cluster expansions at smaller molar vol-
umes. Horner's perturbation results extend to
about 12 cm~/mole. Morely and Kliewer2' have
computed self-consistent phonon spectra without

including short-range correlations at l0 and 12

function. This always results in some loss of ac-
curacy; especially if the ground-state energies are
computed for relatively few molar volumes. For
this reason we have tried to derive a formula for
the compressibility in the ground state in a way
similar to the derivation of the virial formula for
the pressure. Incidentally the same virial formula
holds both for classical and quantum systems but
the classical relation giving the compressibility as
the k -0 limit of the structure factor does not hold
for a quantum system. By differentiating both sides
of the SchrMinger equation twice with respect to
volume, we are able to derive the following simple
relation for the inverse compressibility:

(14)

where P is theyressure (from the virial formula),
W= V+ —,'g; r; ~ V; V, with V the potential part of
the Hamiltonian, and C' is defined by

cm'/mole. The results presented in this section
seem to indicate on the contrary that short-range
correlations are still crucial at such high densities.
On the other hand the increasing discrepancies be-
tween variational results and experiment at high

density must almost certainly be traced back to an
inadequate interatomic pair potential.

Our high-density variational calculations were
based on the trial wave function described by Eqs.
(2)-(4) for a system of 256 atoms on an fcc lattice;
this close-packed crystal structure is sufficiently
close to the physical hcp structure that Monte Carlo
computations with their inherent statistical uncer-
tainties cannot distinguish between them; the fcc
structure was chosen for convenience. The com-
putations were done at the single reduced density
p= 0. 65 atom/o 3 (15.47 cm3/mole) and the results
scaled to higher and lower densities as outlined
earlier. A few technical details describing our
numerical procedure are given in Appendix B. The
parameters A and B [Eq. (3) and (4)] were varied
over sufficiently large intervals to cover, after
scaling, the molar-volumerange between 9.5and
18 cm~/mole. In the low-density region the new

results overlap within statistical uncertainties the
previous hcp data obtained with the 800-atom sys-
tem. This confirms the generally accepted inde-
pendence of computer -"experiment" results on the
size of the system, as already»served for various
classical systems, at least for reasonably short-
range interactions (in our case essentially an in-
verse fifth-power law). The results for fcc He'
and He4 are summarized in TablesIIIandIV, re-
spectively. Experimental data are indicated when-
ever available. Horner's energy results, as read
off from his figure, ' are added for comparison.
From our rms displacement values we have com-
puted estimates of the Debye temperatures through
formula (13); they agree reasonably well with ex-
isting experimental data. For this reason we have
also indicated the corresponding estimates for the
average sound velocity of solid He' and He' as a
function of molar volume.

Inspection of Tables III and IV calls for the fol-
lowing remarks: As the molar volume decreases,
the ground-state energies drop below their experi-
mental values; for He4 the calculated energy is
roughly 15'K lower than experiment around 9 cms/
mole. This situation will be discussed in more de-
tail in Sec. V. As a consequence of this behavior
it is not surprising that the computed pressures
lie considerably below experimental values over
the whole volume range considered here, The esti-
mated relative error of the virial. pressure de-
creases with increasing density and it is the more
remarkable that the virial. predictions agree so
well with the "thermodynamic" pressures. On the
other hand, the statistical uncertainties of the en-
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ergy values are inflated by the scaling procedure
and the estimated error on the ground-state ener-
gy is about 1 'K at the highest densities considered
here. The calculated compressibility is every-
where higher than experiment. Another remark-
able feature of our results is that the optimum value
of the B parameter [Eq. (3)j stays practically con-
stant over the whole density range, both for Hea

(B=1. 07 o) and He4 (B=1.09o). Thus there is no
indication of any decrease in importance of the
short-range correlations. As B=0 corresponds to
a noncorrelated trial wave function, we would ex-
pect at least a decrease in the optimum value of 8
if short-range correlations became less and less
important. Moreover the Jastrow factors contrib-
ute roughly half of the kinetic energy up to the
highest densities considered here.

Another important remark to be made is that by
the time the potential energy goes through its low-
est value, i. e. , around 12 cma/mole, which cor-
responds roughly to nearest neighbors sitting at
the position of the potential minimum, the kinetic
energy is about twice as large in absolute value,
contrary to the situation near melting where both
energies are of the same order. Thus in a certain
sense solid helium is even more extremely "an-
harmonic" at roughly half the melting volume than
it is near melting. This explains why, even at the
lowest molar volume studied here, the predictions
of harmonic theory ' are so strikingly different,
from the present variational results. The result
also sheds some doubt on the validity of SCP re-
sults without short-range correlations in this vol-
ume range.

V. INFLUENCE OF TWO-BODY POTENTIALS ON GROUND-

STATE PROPERTIES

As emphasized by Tables I-IV, the assumed two-
body potential, i. e. , the Lennard-Jones potential
with de Boer parameters, defined by Eq. (1) and
labeled by LJ1, seems inadequate for the descrip-
tion of solid helium. The fact that the variational
ground-state energies, which constitute an upper
bound for a given two-body potential, drop below
experimental values at small molar volumes can
only be due to the inadequacy of that pair potential.
It might be argued that many-body forces are re-
sponsible for the discrepancy, but it seems quite
unlikely that they could make up the total difference
in the case of helium which has a very weak elec-
tronic polarizability. The best known triplet in-
teraction is the triple-dipole or Axilrod-Teller
interaction~~ resulting from the three-body poten-
tial:

pa(~ia ria raa)

V
3 3 3 (1 + 3 cos8, cos8, cos83) p (16)

'Yg p/g3J'23

ea = 0. 1 (p/p, )' 'K, (17)

where p is the reduced density and po is the reduced
equilibrium density of liquid He, pa= 0. 364 atom/
o . The resulting contributions are consequently
quite small at low density. At the highest density
considered here, i. e. , p=1. 05 atom/aa (V=9. 57
cma/mole), formula (17) predicts a contribution of
2. 4 K per atom, which is considerably less than
the difference between experiment and our theoret-
ical ground-state energy using the LJ1 potential.
It is generally believed that the triple-dipole forces
are the dominant three-body interactions, and we
conclude that triplet forces cannot account com-
pletely for the low theoretical values of the energy.
Moreover an estimate of the contribution of triplet
forces to the pressure is obtained by differentiating
(17) with respect to volume:

pa = 2. 4 p (p/pa)' atm. (18)

This results in a correction of only 2% of the to-
tal pressure around 10 cma/mole, again much less
than the difference between experimental and theo-
retical pressures. A similar remark holds for the
compressibility results.

For these reasons we have investigated the in-
fluence of two-body potentials on the ground-state
properties of solid helium. The low-density re-
sults for He' have been reported earlier" and we
concentrate here on the density range studied in
Sec. IV. As pointed out in Ref. 16, the spherical-
ized radial functions, defined by Eq. (11) of I and
computed with wave function (2) for various values
of the parameters A and B, can readily be reused
to calculate potential energy expectation values
for various interatomic potentials without any new
lengthy computations, according to formula (13) of
I. Adding to the potential energy the unchanged
kinetic energy, one can then minimize anew the
total energy with respect to the variational param-
eters on which g(r) depends. We investigated in
this way the two-body potentials already used in
Ref. 16 plus another potential recently proposed
by Beck. ~' This potential has the correct theoreti-
cal long-range dependence on the separation (van
der Waals dispersion forces) as well as a short-
range repulsive part fitted to theoretical potential

where the 8, are the interior angles of the triangle
formed by the three vectors r,~, r», r~„and v

=0.324 'K for helium if the distances are expressed
in units of o. The contribution of these forces to
the ground-state energy of liquid and solid helium
has been estimated in II and also by Murphy and
Barker. ' These estimates yield a contribution of
roughly 1%%d of the total potential energy near the
melting density. A simple lattice-sum gives the
following estimate for the triple-dipole contribu-
tion to the ground-state energy~:
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TABLE V. Ground-state energies per atom ('K) as computed with various potentials for solid Hes and He4. The
experimental data for Table V—VII are taken from the same sources as the data in Table III.

V

(cm3/mole)

18,38
17.49
16.76
16, 09
15.47
14.9
14, 36
13.87
13.41
12, 97
12.57
12„19
11.83
11.49
ll. 17
10, 87
10.58
10.31
10.05
9. 81
9.57

5. 8
7.4
8. 8

10.9
13.3
16
18.6
21.25
24. 4
27. 9
32.45
36.85
42. 1
49. 25
52. 5
58.4
65. 05
72. 5
80. 7
88.95
97.3

LJ2

4.4
6.3
8.5

10.8
13.1
15.8
18.9
22, 6
27 ~ 25
31.85
36.6
41.6
47. 56
54. 1
61.65
69.45
77.2
85. 85
95.45

106.
117.6

V. 25.
9.35

12
14. 8
17,4
20. 5
24. 3
28. 7
33.55
38.55
44. 25
50.4
56. 75
63. 8
71.65
80. 2

89.4
99.4

109.5
119.95
131.3

6.65
8.35

10,45
13.1
16.15
18.6
21.6
25. 15
29.35
34. 15
38. 8
44. 1
50. 1
56. 05
62. 55
69.V5

77. 7
86.25
95.5

105.35
114.9

Hes
Morse Beck et.

4. 47
6. 17
8. 16

10.38
12.83
15, 60
18.85
22. 46
26. 53
31.13
35.97

7. 7
9.3

ll. 2
12.9
15.2
]7 2
20. 1

-3.05
PM'

-l.4
-0.16

1.2
2. 55
4, 1
6.17
8. 7

11,65
14.95
18.03
21, 5
25. 52
30.15
35.5
41.1
46. 55
52. 65
59.5
67. 1

LJ2

-4. 8
-3.95
-2. 85
—1.65
—G. 1

1.95
4. 5
7.3

10.15
13.25
17, 05
21
26. 7
31.65
37.1
43.3
50.35
58.3
67.2
77
88

1y 7
-0 1

1.8
3.95
6.55
9, 35

12.55
16.40
20, 10
24. 45
29.55
34.95
41.65
48. 2

55. 1
62. 55
70. 85
80. 05
90.05

1GG. 9

~Lee 2 7
—1 6- l. 15

1.2
2 ~ 75
4.75
7.4

10.15
13.15
16.7
20.35
24. 4
29. I
34.4
40. 2

46.45
52. 8
59.6
67. 1
75.4
84. 4

He4
Morse Beck Expt.

-4.1
-3.4

5
-2, 0
—1.0

l. 0
3.0
6. 0
9.0

12.2

15.7
19.5
24. 0
30.
35.5
41
48. 5
55. 7
60. 7
72. 1
81.6

Horner

—1 8

0. 8
2. 4
4. 2
6. 3
8. 2

10.2

13.1

compllted heyond 18. 28 Gm /mole f01' the vaF1011s
'new" potentials); on the other hand the high-density
experimental data of Stewart may not be very ac-
curate. The vRrious pressure dRta are pictured in
Figs. 2 and 3.

A similar situation hoMs for the compressibilities
(Tabl. e VII): The agreement with experimental val-

ues is best for the Beck potential. The I J2 values
are too high at low density and to low at higher den-
sities. The Morse compressibilities are systemat-
ically to low, with the exception of the invest Hes

densities, which might again be due to our numer-
ical differentiation procedure in that region. The
conclusion drawn from the detailed comparisons

TABLE VI. Ground-state pressures as computed vrith various potentials for solid He and He4 (in atm).

(om~/mole)

18.28
17.49
16.76
16.09
15.47
14.9
14.36
13.87
13.41
12.97
12.57
12.19
11.83
11.49
ll. 17
10.87
10.58
10.31
10.05
9.81
9.57

LJI

140
180
225
274
328

461
543
639
757
879

1024
1190
1374
1577

2047
2310
2595
2895
3220

LJ2

180
218
260
307
370
452
555
672
803
951

1108
1283
1478
1697
1944
2222
2545
2906
3320
3770
4305

Morse

208
250
295
353
429
521
632
755
894

1053
1225
1418
1634
1872
2133
2417
2732
3070
3432
3780
4236

Beck

168
210
260
318
386
464
555
655
770
902

1049
1217
1407
1619
1855
2111
2397
2702
3034
3379
3764

Expt.

156
204
247
305
372
455
551
657
770
910

1057

I Jl
75
94

1Io

189
240
309
384
469
566
672
791
925

1075

1435
1647
1880
2146
2420
2756

LJ2

89
111
141
181
240
316
406
501
604
716
837
977

1143
1342
1581
1862
2201
2589
3030
3500
4020

He'
Morse

118
152
196
253
322
400
491
591
706
841
989

1158
1351
1568
1812
2081
2386
2722
3082
3469
3905

Beck

105
130
161
202
257
324
405
496
599
VIV

845
990

1152
1334
1535
I756
2004
2272
2569
2881
3226

Expt.

84
117
155
205
249
329
411
494
590
715
846
986

1170
1380
1630
1860
2110
2400
2700
3050
3480
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TABLE VII. Ground-state compressibilities as computed vrith various potentials for solid He and He4: 10~E in atm ~.

V

tcm3/mole)

18.28
17.49
16.76
16.09
15.47
14.9
14.36
13.87
13.41
12.9V

12.57
12.19
11.83
11.49
11.17
10.87
10.58
10.31
10.05
9.81
9.57

LJl
140
105

88
77
66

46
39
32
27
22
19.6
16.9
14.7
12.9

10.3
9.3
8.5
V. 8
7.2

145
115
99
75
54
41
32
27
24
21
19.1
16.8
14.5
12.4
10.6
9.1
7.8
6.7
5.9
5.1
4.3

He3

Morse

135
105
81
60
46
37
30
26
22
19.4
17
14.9
13
11.5
10.1
9.1
8.0

6.5

Beck

118
94
76
63
52
44
37
32
27
23
19.7
17
14.7
12.8
11.2
10
8.9
8.1
7.3
6.7
6.2

Expt.

107.5

68
64
52.3
43.1
36
30.6
26
22.4
19.5
17

LJl

230
160
125
105
78
61
49
42
36
31
27

20. 7
17.9
15.5
13.5
11.9
10.5
9.3
8.4
7.6

LJ2

240
165
120

85
60
48
38
34
31
28
24
20
16.3
13.2
11
9.6
8.3
7.2
6.3
5.5
4.7

He4

Morse

160
110

82
64
53
43
36
31
26
23
19.6
16.8
14.4
12.4
10.8
9.6
8.4

6.7

5.6

190
150
115

82
63
50

35
30
26
22. 7
19.8
17.2
15
13.1
11.6
10.2
9.1
8.1
7.3
6.6

Expt.

165
129
110

75
61.5
49.6
42.5
35.5
30
25.3
21.5
17.5
16.5
14.6
12oV
11.1
9.8
8.V

7.8
7
6.4

xnade in Tables V-VII is that the Beck and I J2
potentials give considerably better agreement with

experimental values than the commonly used I Jl
potential. The Morse potential on the other hand
is not very satisfactory, except perhaps at low
densities. ' The best over-all agreement, with ex-

0

0
0'e

O

IO

P(atm )

IO'—
P(atm )

0
a

o

o

II o

IP2 l

9 IO II I2 I5 I4 I5

v (cm~/mole)-

l

l6 t7 18 l9

FIG. 2. Solid Hes equation of state. The pressures
are in atm (logarithmic scale) and the molar volumes in
cm3. The experimental points, Ref. 33, are represented
by circles, LJ1 potential by triangles, LJ2 potential by
squares, Morse potential by diamonds, and Beck poten-
tial by upside-down triangles.

IPR I I I I 1 I l I

9 IO II IR I3 14 l5 I6

v (cm~/mole) ==—==-

O
0

I

l7 l8

FIG. 3. Solid He equation of state. The various points
correspond to the same potentials as in Fig. 2. Experi-
mental data from Refs. 20 and 32.
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=0,

Again the sphericalized radial distribution func-
tions obtained from our trial wave function (2),
or from Schiff and Verlet's liquid wave function,
can readily be reused to compute the ground-state
energy of a system of atoms interacting through
this truncated pair potential. The important re-
sult is that the liquid-solid transition volumes for
this artificial system turn out to be identical, with-
in statistical errors, with the corresponding values
for the more realistic system, interacting via the
full potential (1).

The second experiment compares the helium
melting properties with those of a rather crude
model which has frequently been used to discuss
qualitative features of condensed helium: the quan-
turn hard-sphere model. Obviously because the

TABLE VIII. Phase transitions of He3 and He4 at O'K.
The molar volumes are in cm3, the pressures in atm.

«pt. Theory Expt.Theory

&Soi

camel t
V~e-h p

&t c-b p

38. 2
24. 9
24
22
58

25. 8
24. 5
35
19.8

105

26. 5
22
15

23. 4
21.5
25

perimental data is obtained with the Beck potential
which we recommend to be used in any further
theoretical calcu', ations of low-temperature con-
densed-helium properties.

VI. REMARKS ON PHASE TRANSITIONS AND BOSE-

EINSTEIN CONDENSATION

We would like to make here two brief remarks
on the melting properties and on the possibility of
Bose-Einstein (BE) condensation in solid helium.
The melting and crystallization volumes and pres-
sures for He and He' obtained from our variational
results combined with Schiff and Verlet's'3 liquid-
heliurn results, and the pressure and volume at
which the bcc-hcp transition occurs in solid He',
have been quoted in II. They are summarized for
convenience in Table VIII together with experi-
mental values.

The melting mechanism of solid helium is prob-
ably a very complex one, but two somewhat academ-
ic "experiments" stronglyindicate that attractive
forces between helium atoms are not essential in
that mechanism. The first experiment consisted
in estimating the volumes of the coexisting phases
for model systems of particles having the same
mass as He' or He', but interacting only through
the repulsive part of the Lennard-Jones potential,
i. e. , through the truncated potential:

true He-He potential is soft, the "effective hard-
sphere diameter" should be smaller than the re-
pulsive core diameter of the more realistic poten-
tials, resulting in a smaller value of the reduced
density. This explains why the volumes of the co-
existing liquid and solid for the quantum hard-sphere
model, as estimated by Hansen, Levesque, and

Schiff, are larger, but still of the same order,
as those of helium. Both these experiments seem
to suggest that the crystallization of helium is due

essentially to geometrical (or packing) effects, a
situation quite similar to that encountered in clas-
sical systems.

A certain amount of speculation has recently been

going on about the possibility of superfluidity or
of Bose-Einstein condensation in solid He'. 3' We
shall only briefly consider the possibility of BE
condensation in conjunction with a theorem due to
Reatto. 36 Clearly the general structure of the
wave function (2) is quite unsatisfactory for two

reasons: First it is not symmetric as requested
by Bose statistics; this default probably does not
have an important effect on the computed ground-
state properties because of the localization of the
helium atoms around their lattice sites, but it is
crucial if the possibility of BE condensation is
examined. 7 Secondly the trial wave function is un-

satisfactory because it contains information not
present in the Schrodinger equation it is supposed
to solve, i.e. , the equilibrium positions of the
atoms. A more satisfactory trial wave function
would be a pure Jastrow wave function (completely
symmetric) as used by McMillan'a and Schiff and
Verlet' for liquid helium. Reatto's theorems
states that a Jastrow wave function always implies
the presence of a finite BE condensate. Hence if
it were possible to construct a Jastrow wave func-
tion which would yield reasonable ground-state
properties and long-range (crystalline) order, we

would have a strong argument in favor of BE con-
densation in solid He . The possibility of long-
range order resulting from a Jastrow-type wave
function is a direct consequence of the analogy with

classical systems of particles interacting through
a pair potential; the Boltzmann factor for these
systems is formally analogous to a Jastrow wave
function and, depending on density and temperature,
the systems described by this Boltzmann factor
will be fluid or crystalline. Consequently it is
reasonable to look for a Jastrow function yielding
long-range order in a certain density range. In fact
Levesque and Schiffss have looked for 'l.ocalized
states" (i.e. , states with crystalline order) using
the Jastrow factors (3). They found that at den-
sities close to the helium melting density alocalized
state could only be obtained with such a large value
of the parameter 8 that the corresponding total
energy was unreasonably high, which means that
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the Jastrow wave function gives a very poor de-
scription of the solid. A recent study by Hoover,
Gray, and Johnson, '9 who systematically investi-
gated, by Monte Carlo methods, classical systems
of particles interacting through various inverse
power laws, gives us a hint for the failure of pure
Jastrow functions to yield a good description of
solid helium. The clue lies in the rms displace-
ment of the atoms, computed by these authors at
the melting density for the various inverse power
potentials. The Lindemann ratio, i. e. , the ratio
of the rms displacement to the nearest-neighbor
distance, turns out to be practically constant for
all. power laws investigated, from the hard-sphere
limit (infinite power) to the Coulomb limit. Their
findings agree with Hansen's computer results for
the inverse-12 power l.aw and the Lennard- Jones
interaction. The Lindemann ratio found for these
various classical systems is always close to the
"magical ratio" f =+ =0.143. It is immediately
seen from Tables I and II that this ratio is con-
siderably larger for solid He' and He at melting;
the values are f~

= 0. 29 and f, = 0. 26, roughly twice
the practically constant value for classical systems.
In other words, near melting, the helium atoms
have considerably larger vibration amplitudes than
any of the investigated classical systems. It seems
quite doubtful. that there exists any pair interaction
which, in conjunction with classical statistical
mechanics, would yield a melting Lindemann ratio
as large as that calculated for solid helium. Hence
it appears impossible to construct a purely Jastrow
wave function allowing a large zero-point motion
of the atoms while conserving long-range crystal-
line order. Consequently Reatto's theorem cannot
be invoked to prove the existence of BE condensation
in solid He4.

However our argument does not rule out com-
pletely the possibil. ity of BE condensation, because it
may be possible to construct a generalized Jastrow
function including multiple correlations, formally
equivalent to a classical Boltzmann factor for a
system with many-body interactions. Such a clas-
sical system might yield a Lindemann ratio com-
parable to that calculated for solid helium and Beat-
to's theorem can be extended to include such wave
functions. However a multiple correlation wave
function would be too complicated to handle in a
variational scheme, and as yet no computer experi-
ments have been made on classical systems includ-
ing many-body forces explicitly.

VII. CONCLUSION

We have presented a rather detailed calculation
of various ground-state properties of solid He
and He in the volume range between 9 cm /mole
and melting, using a simple two-parameter trial
wave function in conjunction with the Metropolis-

Monte Carlo method to compute normalized expecta-
tion values. The addition of a supplementary vari-
ational parameter to include "phonon correlations"
in the wave function does not change the results
significantly in the volume range close to melting.
Our extension of previous variational results to
higher densities clearly demonstrates the inade-
quacy of the usual Lennard- Jones potential with
de Boer parameters. Significant improvement
in the agreement with available experimental data
is obtained if the recently proposed Beck potential
is used instead of the Lennard-Jones potential.
The strongly anharmonic nature of solid helium
at less than half its melting volume is stressedby
the large kinetic- to potential-energy ratio in that
region. There is no indication that short-range
correlations become less important as the molar
volume decreases.

We have pointed out the predominance of repul-
sive forces in the melting process of solid helium,
but were unable to reach any definite conclusion
concerning the possibility of BE condensation.

Finally we remark that low-lying excited states
may be formulated by a variational approach pat-
terned after Feynman's theory of liquid helium.
Results of a Monte Carlo calculation of low-lying
energy levels using these states will be presented
in a subsequent publication.
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APPENDIX A

We give here a few details for the derivation of
formula (14). Following Cottrell and Paterson's
proof of the virial theorem in the quantum case, ~~

we define new, reduced, coordinates $, by

r, =a/; (i=1, ~ ~ ~, N),

where the scaling factor a= V'~3 (V =total volume
of the system}; in the reduced coordinates we de-
fine the wave function corresponding to the system
in a unit box by
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Differentiation with respect to a yields the bas ic
relation

In reduced coordinates, the Hamiltonian becomes

+ v(g, a„~ ~ ~, $„a) .
We differentiate twice the SchrMinger equation

with respect to a:

88 ... ~8 H($„~ ~, („,a) @(( ] )8a 1» '''
~

8+ 84 8 3@
+2 +M

8: "28. 8. "8:
We multiply this equation on the l.eft by 4'*and

integrate over the volume of the unit box. Next
we integrate certain terms by parts, keeping in
mind that C is a solution of the Schrodinger equa-
tion. Surface terms vanish for rigid boundary con-
ditions, as shown by Cottrell and Paterson. But
it is easily seen that the proof also holds for peri-
odic boundary conditions. After a certain amount
of rather tedious algebra we obtain, after return-
ing to the old coordinates

8'E 8 sE 4 (y~~s/sal g)
&a a Ba a (gt g)

(g) 9/Ba) g) BE 2E:
( g~g) Ba a

where m is defined by (15).
From this formula, (14) is immediately recovered

by switching to derivatives with respect to V and

using the vir jul theorem.

APPENDIX B

The standard Metropolis-Monte Carlo method is
described in detail by Wood in his excellent review
paper. 4' The long-range order of the solid and the
rapid decrease with distance of the Jastrow corre-
lations allows one major simplification in our solid-
helium computations: We replace the "nearest-
image" convention by letting each particle "interact"
with a fixed number of nearest-neighbor shells.
Generally five shells (i.e. , 58 atoms) were included
in the bcc computations and four shells (i.e. , 54
atoms) in fcc runs. No significant changes in the
computed averages occurred when more shells
were included, as expected, because the Jastrow

factors are practically equal to 1 beyond the third
shell, at least for the physically important values
of the parameter B. This procedure cuts dawn
considerably on the number of pairs to be considered
at each step of the random walk. A "step" of the
random walk consists in moving one atom; we chose
to move atoms in a definite order.

To illustrate our numerical results, we give
here the detailed data from one particular run on
the CDC 6600. All quantities are given in reduced
units (i. e. , o=e/0=1) for the density p=0. 65 atom/
0 and the following values of the variational param-
eters B=1.12 and 2=15.

The RANFNYU random-number generator of the
Courant Institute for Mathematical Sciences was
used with the initial argument set equal to 1. The
maximum displacement of each atom along the
three Cartesian coordinates was chosen equal to
Q. 175. Starting from a perfect-lattice initial con-

figuration, 25600 configurations were generated
before "equilibrium"; then all averages were again
initialized, and a total of 128256 more configura-
tions generated from that point. The final averages
per atom were

—g (1/~„.) -=(1/y') =-1.8516,
N )&)

(1/r') = 1.5141, and (1/~') = 0. 8700;

the rms displacement had a final value of 0. 241.
Of the 128256 configurations, 65493 had been "ac-
cepted" in the course of the random walk.

A small correction term has to be added to the
(1/r6) and (1/r') results, owing to neighbors be-
yond the fourth shell. For small rms displace-
ments a static lattice correction is accurate enough,
but for the larger rms displacements we calculated
slightly more accurate corrections by factorizing
the two-particle distribution function into a product
of two Gaussian one-particle distribution functions
of width determined by the rms displacement value.
For an inverse-n power law, the correction then
reduces to

~ ~n e —(8/4S')(r R„)' „-
A n-1

V V 0

where S~ is the square of the rms displacement,
A„ is the distance to the vth shell of neighbors, n„
is the number of atoms in that shell, and the sum
runs over all shells not included in the Monte Carlo
computation.
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