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Self-diffusion by a particle-vacancy exchange mechanism is investigated in solid hydrogen
and deuterium. The calculations are based on our quantum-crystal formalism published pre-
viously. The self-diffusion coefficient is calculated as a function of temperature, and the re-
sults compared with values inferred from nuclear-magnetic-resonance measurements; agree-
ment of theory and experiment appears to be satisfactory. The effect of pressure on diffusion
is also considered.

I. INTRODUCTION

The distinguishing feature of quantum crystals
such as helium and hydrogen is the large-zero-
point motion of molecules in the ground state. '
Wave functions of molecules on neighboring lattice
sites overlap appreciably, allowing the particles
to exchange positions and thus providing a possible
mechanism for self-diffusion by quantum- mechani-
cal tunneling. The tunneling frequency and the self-
diffusion coefficient D may be estimated from the
exchange interaction J in solid hydrogen. We have
previously presented a calculation of J in bcc
He'; using the same formalism, we find that J
=10 ' K in hcp H3 at a molar volume V = 22. 5 cm',
corresponding to I' —0. This leads to a value of
D- 10 ' cm2/sec which is very small; nevertheless,
particle exchange is probably the dominant mech-
anism for diffusion at very small temperature T.

At finite temperatures, there will be vacancies
present in the crystal, and diffusion may also pro-
ceed by vacancy motion or vacancy-molecule ex-
change. This is a well-known process in classical
solids, where a molecule on a site j adjacent to
a vacancy site i is able to move into the site i by
thermal excitation over the intervening potential
barrier. In solid hydrogen, this mechanism con-
tributes to D; in addition, because the molecular
mass is small and the potential barrier is not very
large, there is also a finite probability for quantum-
mechanical tunneling of the molecule from site j
to site i. This is the same idea as in the molecular-
exchange process described above; however, when
only one of the two sites is occupied, the exchange
proceeds at a much faster rate. For this case, the
analog of the exchange interaction is the energy
splitting of the two lowest states in the double-well
potential on sites i and j . It is some ten orders of
magnitude larger than the exchange interaction,
indicating that this "quantum-diffusion" process
should dominate at temperatures low enough that
thermal excitation over the barrier is frozen out,
but high enough that sufficient vacancies are still
present to make vacancy-diffusion important.

The model we use is that of localized vacancies.
In solid hydrogen this description is probably valid;
in solid helium it is not valid because the potential
barrier between a vacancy and neighboring atoms
is very small (- 5 K), leading to rapid vacancy
motion. In the latter material it is necessary to
treat the vacancies as nonlocalized, leading to an
energy band of vacancy excitations. Hetherington'
has given a description of nonlocalized vacancies
in bcc He'.

The remainder of this paper is organized as
follows: In Sec. II, we develop an expression for
D using the ideas outlined here; Sec. III contains
a description of the formalism used to calculate the
appropriate energy levels and wave functions in a
crystal containing a single vacancy. Finally, in
Sec. IV, the numerical results for hcp H2 and D2
are presented and comparison is made with experi-
ment.

II. DIFFUSION COEFFICIENT

Following Glyde, ' we write the coefficient of self-
diffusion as

D=~a fP„Z„k„
where P„is the probability that a given lattice site
is vacant, a is the nearest-neighbor distance, and

f is a correlation factor that characterizes the ex-
tent to which jumps are not random. The jumping
rate 4 has been generalized to a sum over several
rates k„corresponding to different jumping mech-
anisms described below. The factor~~ is geometri-
cal in origin and applies if the jumps are random in
directions; this is not necessarily true in the sys-
tems we are considering, but the expression will
be correct to within a factor of 2. Similarly, f
depends on the crystal structure but is generally
of order one. We shall simply set f= l.

The probability that a given site is vacant is
s~ -h„l2'

(2)

where 8„is the thermal-entropy change of the crys-
tal accompanying vacancy formation and h„is the
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corresponding enthalpy change h„=e„+Pdv. Here,
&„and Dv are, respectively, the energy required
to produce the vacancy and the concurrent change
in crystal volume. For a Schottky defect, 5v is
approximately the inverse of the molecular number
density in the crystal. At the temperatures of in-
terest here, s„may be disregarded. ~

To find the jumping rates k„wesuppose that
there is a vacancy on site i, located at R, and con-
sider the mechanisms by which a molecule on a
neighboring site j at R& can move to R, . This is
essentially the problem of a quantum-mechanical
particle in a symmetric double-mell potential; the
particle can cross the barrier between the two wells
either by tunneling through it or by being thermally
excited over it.

We consider the tunneling mechanism first. The
relevant states of the particle in the well are those
which have energy eigenvalues below the top of the
barrier. Energies will be measured relative to
the bottom of the double well; the top of the barrier
is designated e, . The energy levels below ~~ occur
in nearly degenerate pairs, the lower member of
the nth pair In, s) has even parity along the line
between i and j, while the upper member ln, a)
has odd parity. Now, in order that the particle be
initially on one side of the barrier, the two states
(n, a) and ) n, s) must be populated with equal am-
plitude. As time increases, the relative phase of
the two states changes because they are not exactly
degenerate, and this produces oscillation of the
particle back and forth across the barrier. Direct
evaluation of the quantum-mechanical probability
current in the nth pair of levels shows that j„-P„
xsind„t, where J„=&'„—&„'is the splitting of the lev-
els and P„is the probability that this pair is occu-
pied in the first place; we shall take P„proportional
to the Boltzmann factor P„-e'», where c„=—s(e„'
+ e„')= e„'=e'„. From the expression for j„,we
see that the particle crosses the barrier in a time
s.„=g/J„, and so we have 0„=(J„/~)P„for the jump-
ing rate in the nth pair of levels.

This approach is valid so long as c„'-=e„'so that
(1/vY)(~ns)+

~
na) ) does describe a state well local-

ized on one side of the barrier.
For states above the barrier, a different approach

must be used. Particles in these states are so high-
ly excited that motion across the barrier is very
rapid, and the picture of discrete energy levels in
a rigid double well breaks down. Consequently,
we shall adopt the classical description for diffusion
over the barrier, writing k„=((v) /a) P», where
P~-e ~ is the probability that a molecule will be
thermally excited above the barrier, and (v) is a
typical velocity of such an excitation vm (c»/m)'
where m is the molecular mass.

Assembling the various pieces, we find the fol-
lowing expression for D:

z»&/r P„P„/m)e +(e»/ma )' e"
—~08 Z

where Z=g„e'» +e»/ . The sum on n is over all
pairs of states such that e„&e~. Note that we have
given the states above the barrier the statistical
weight of a single state which probably underesti-
mates their importance.

III. CALCULATION SCHEME

The evaluation of D from Eq. (3) requires the
energy levels and splittings &„andJ„aswell as
the barrier height &, . These energies can be found
if the shape of the double-well potential is known.
We find this potential function assuming a single
vacancy at site i by modifying the formalism devel-
oped earlier for perfect quantum crystals. The
principal alteration deals with the distortion of the
single-particle wave functions $&(1) for particles
on sites j close to the vacancy. As in Ref. 8, the
equation for Q, is

(4)

where e is the lowest energy eigenvalue in the sin-
gle particle effective field u/(1) given by

u/ (1)=Z» JV(1, 2) P» (2)g/»(1, 2)dsrs . (5)

Here, V is the interparticle potential, and X» is
the two-particle correlation function for particles
on sites j and k in the presence of a vacancy on
site i; the sum over k omits the terms k =i, j.

In the present work, we ignore the dependence
of X on the existence of a vacancy at site i and use
correlation functions found previously for hcp H~.

In the case of D~, we use correlation functions found

by the same technique as in Ref. 9. The effective
field is found in the harmonic approximation by ex-
panding the right-hand side of Eq. (5) around 5&.
The minimum of u&(l) will shift away from 5& slight-
ly because of the absence of the k =i term in the
sum. If we choose axes such that the z direction
is parallel to R,.&

—=R, —R&, then the effective field
becomes a constant plus three harmonic-oscillator
potentials along the three axes, and in this approxi-
mation g&(1) is just the product of three one-dimen-
sional harmonic -oscillator wave functions:

s (~ )1/s
y, (1)= Q '„, exp[(- ,'a„s(~„—R/» —5—„)'],

F
(5)

where the subscript k denotes a particular Cartesian
component and 5& is the displacement of the mini-
mum of u/(1) from 5/. Relative to the perfect crys-
tal, the change in the effective force constant is
principally along the z direction, and we shall take
the force constants along the other two directions the
same as in the perfect crystal. W'ith these simpli-
fications, it is not difficult to solve Eqs. (4) and
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n=Z $

Kb= ll9 K

8& =95.4 K

and &b = 119 K. The double-well and energy-level
structure for excitations along the direction of 5,&

are shown in Fig. 1. In principle, states describing
excitations along the other two axes also contribute
to diffusion, however, for energies below &„these
states have negligible influence and are not included
here. The result for D is

D= 2x10 '(1+34 "~ 300 "~
)

"' cm /sec

(8)
where T is in degrees Kelvin. At high T, the last
term dominates and gives

D=6x10 e ' ~ cm /sec.

This is the classical limit in which particles dif-
fuse by thermal excitation across the barrier. At
low T, the first term dominates and gives

D=2x10 e cm /sec

0.5
r/a

I.O 1.3

FIG. 1. Double well and energy levels for molecules
adjacent to a vacancy in hcp H2 at P= 0; rla is given
relative to the vacancy site.

(5) self-consistently from which one finds the har-
monic effective field and single-particle wave func-
tions. In this approximation and assuming spheri-
cal symmetry around i, the energy &„required to
create a vacancy by removing a molecule to the
surface of the crystal is

3 (5o„')a'

which corresponds to diffusion by tunneling in the
lowest pair of states in the double well. The tem-
perature at which the transition between these lim-
iting cases occurs is about 14. 7 K.

The diffusion constant can be determined experi-
mentally from nuclear -magnetic-resonance experi-
ments. According to the Kubo- Tomita formula,
in the temperature range where the self-diffusion
of the molecules becomes important, and the trans-
verse relaxation time T& is much longer than the
correlation time r which is also much longer than
the inverse Larmor frequency & ', the longitudinal
and transverse relaxation times T, and T~ are given
by

T, = ~(31n2)(Ts ) tc I'

where the sum is over all shells of molecules sur-
rounding the vacancy; g is the number of molecules
in shell s, while 5u, and 5n, ~ are, respectively,
the changes in the effective-field minimum and in

ae in this shell.
The energy levels q'„"' in the double well on sites

i and j are found by maintaining the harmonic ap-
proximation along directions perpendicular to 5,&

and by using Eg. (5) without expanding to find the
potential along K,&. A typical result is shown in
Fig. 1. The barrier height &, is directly determined
from this calculation while the energy levels e„'"'
are found by solving numerically for the single-
particle energy eigenstates in the double well.
This provides a check, incidentally, on the harmon-
ic approximation used in finding P& and &„,since
the wave function of of the lowest state in the double
well should be nearly identical with (I/v 2 )(Q&+ Q, ).
This is in fact the case.

IV. NUMERICAL RESULTS AND DISCUSSION

For hcp H~ at zero pressure, we find &„=112 K

T, = (2 In2)(T,")'/r (10)

I'= a /12D

one finds D= (2x10 s)e '~~r cms/sec. We remind
the reader that diffusion coefficients determined
in this manner are always subject to an uncertainty
of about a factor of 2, principally because Eq. (12)
is not exact.

Comparison of this result with Eg. (8) indicates
that the "classical" diffusion process is being ob-
served. The calculated activation energy of 197 K
is quite close to the observed F.,= 190 K. The tem-
peratures at which this process dominates extend

where (T,") ' is the linewidth for the rigid lattice.
The experimental data of Bloom" on Tz in solid

hydrogen at P=O were analyzed by Moriya and
Motizuki, ' and 1 was found to have the behavior

r=r e '~
0

for 11 ~ T~ 14K; E,=380 cal/mole and I's='I x10 '
sec. From this information and the relation
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At high T,
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ferent lattice sites are therefore not equivalent, be-
cause the o-Ha-p-Ha interaction is not quite the
same as the o-H2-o-H~ interaction. In our calcula-
tions, on the other hand, we have assumed equiva, -
lence of all sites. The difference between the in-
teractions should produce a small correction to the
activation energy (5q, & 5 K) at the low pressures we
have treated here. This expectation is supported by
the NMB work of Hass, Poulis, and Borleffs, 15 who
find that the o-Ha concentration has almost no effect
on q,, at P=0. They find that (T~") is proportional
to the concentration of orthohydrogen in agreement
with Van Vleck's theory. The result shows that
Do is independent of the concentration of orthohydro-
gen at low pressures as we expect. As the pressure
becomes larger (P-104 atm), however, the correc-
tions increase in relative importance and should
be taken into account. This involves a fairly large
amount of numerical work and is currently under

investigation in the broader context of the effect
of anisotropic interactions in solid H~.

In summary, we have given a first principles
calculation of the self-diffusion constarlt in solid
hcp D~ a.nd H2, where diffusion proceeds by a, va-
cancy-molecule interchange mechanism. The cal-
culated activation energy for thermal diffusion is
in quite good agreement with experiment in both
materials. In addition, we find that at low tempera-
tures diffusion should proceed by a tunneling mech-
anism with a lower activation energy, suggesting
that analyses of experimental data may be improved
by using a sum of two exponential terms.
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Recently, several authors have contended that the pair-correlation function for a simpl. e liq-
uid asympototically goes to zero in a way proportional to the two-particle potential. We critical-
ly examine the basis of their assertion and find that the conclusion is unfounded. Existing x-ray
and neutron-diffraction data on liquids are inconclusive insofar as the asymptotic form of the
pair correlation is concerned. We propose an experiment which may shed some light upon the
large~ behavior of this important quantity.

There have recently appeared in the literature
several papers' ' in which the assertion is made
that the radial distribution function g2(r) approaches
unity, its limiting value at large x, in the following
way:

g,(~) —1=P(~) for large r
Here Q(x) is the two-body potential. Unfortunately,
the validity of Eq. (1) for liquids is rather muddled.
This is because of the methods used in arriving at

the conclusion embodied in Eq. (1). In this article
we seek to clarify the logical position of Eq. (1)
relative to the theory of the liquid state, and we
suggest an experiment which might provide insight
as to how g2(r) —1 approaches zero as r becomes
large.

Equation (1) has been obtained ' ~ from model
,equations such as the Percus- Yevick equation.
Olle starts w1th a Dlodel statenlent relating the
direct correlation c(r), the potential Q(r), and the


