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Two mutual friction numbers are derived for superfluid helium which can describe the on-
set of turbulence in counterf lowing helium. The numbers are M„——Ap, p„(V„)~d2/q„(V„) and

M, =Ap, p„(V„)dt/g„(V, ), where M„predicts the onset of turbulence in the normal fluid and

Ms predicts the onset of turbulence in the superfluid. Staas, Taconis, and van Alphen's
Reynolds number is found to apply only to flow conditions for which V„:V,.

INTRODUCTION

For many years, now, considerable attention
has been given to the heat transport properties of
superfluid helium. For this liquid, total isothermal
Quid flow in the presence of small heat currents
can be described in terms of a two-fluid model in
which a counterflow of two-fluid components,
normal fluid, and superfluid can be envisioned.
As a consequence, the heat transport properties
of He I are intimately related to its hydrodynamic
flow properties. The same might also be true for
larger heat currents where the two-fluid model
breaks down and nonlinear relationships develop
between the heat current and temperature gradient
as well as the heat current and pressure gradient. ~'3

The nonlinearities have been described in terms
of an empirical mutual friction force I' originally
proposed by Gorter and Mellink and are known to
accompany a developed tangled mass of vorticity
and/or turbulence within the fluid. ' Although several
experimental investigations have been made into
the nature of the tangled mass of vorticity, ~
very little is known about the onset of turbulence
in superfluid helium. By deriving a set of dimen-
sionless numbers similar to the Reynolds number'
of classical hydrodynamics, a possible explanation
for this phenomenon will follow.

CRITICAL-HEAT PROBLEM

The generally accepted equations of motion for
the steady-state flow of liquid helium are
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p V, VV, = —VI, —F,„
for the superfluid and

p„V„' &V„=—&P, +g„V V„+F,„
for the normal fluid. By definition

VP. =- (p./p)» pP—V T,

VP„= (p„/—p)VP+ pPV T,

(3)

(4)

To this can be added the equations for one-dimen-
sional counterQow,

&nVn + psVs = O~

and the net heat flux q away from a heat source,

q = pSTV „=—p, ST(V, —g„).

From these equations temperature gradients for
limiting cases of heat current can be derived.
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FIG. 1. Temperature dependence of the critical
superfluid velocity (Chase). Circles: points obtained
directly or by the Vinen delay time technique (Vs«d);
squares; locus of the break in the V'T-vs-q curves
(Vs,2d). Lines are a best fit of the mutual friction num-
bers to the data.

where p„p„, and p are the superfluid, normal
fluid, and total fluid densities, V, and V„are the
superfluid and normal Quid velocities, VI' and
V'T are the pressure and temperature gradients,
g„ is the normal fluid viscosity, and S is the en-
tropy per unit mass of the total fluid. By neglecting
the inertial terms of Eqs. (1) and (2), substituting
in Eqs. (3) and (4), eliminating VP, and solving for
V'T, it can be shown that

+3
+ tff (5)

For small heat currents, the mutual friction
term of Eq. (5) is negligible and by substituting
Eq. (I) into Eq. (5), it can be shown that for a
right cylindrical pipe of diameter d, a tempera-
ture gradient of

V T = —(32'„/p~S'Td') q

will develop across the length of the pipe as it
carries a heat flux of q. Measurementss'» of
q„based on this equation have yielded values agree-
ing well with other experiments. Equation (8)
therefore describes a flow regime of superfluid
helium which is analogous to the laminar-flow re-
gime of classical hydrodynamics.

For larger heat currents, the viscous term of
Eq. (5) becomes negligible and by substituting
Eq. (7) into Eq. (5), the temperature gradient
becomes

(.~ )
where m =3"and

F,„=~p, p„~ V, -V„~'(V, -V„).
Although many investigators'" "have recently
questioned the value of 3 for m, in the work which
follows the value is retained since only then are the
units of the mutual friction constant fixed for all
bath temperatures and are suitable fits provided to
all the data. Since vorticity and/or turbulence
accompanies the mutual friction force, it must
be assumed that Eq. (9) describes a flow regime
of superfluid helium which is roughly analogous
to the turbulent flow regime of classical hydro-
dynamics.

For still larger heat currents, a third flow
regime develops as m in Eq. (9) slightly increase=
and the temperature gradient continues to rise as
q . This phenomenon is unlike anything in class-
ical hydrodynamics and suggests that the three
flow regimes are related to a development of tur-
bulence in first one and then both components of
the superfluid ' or the development of turbulence
in first one and then instability in both of the super-
fluid components. If Q„and Q, 3 (Q„&Q, 2 by
definition) are the "critical" heat currents separat-
ing the three flow regimes, then Q, ~ and Q, 2 are
both fairly sharply defined for some bath tempera-
tures while they tend to merge or smear out to one
for other bath temperatures'~""9 (see Figs. 1 and
2). Under different experimental conditions, the
onset of the smearing effect can be observed for
different bath temperatures after which, for in-
creasing bath temperature, the effect is displayed
on up to a temperature near the & point. The data
close to the ~ temperature is somewhat more ob-
scured. 3' To date, there has not been a totally
successful attempt in predicting Q„or Q, 2, but
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FIG. 2. Temperature dependence of the critical
superfluid velocity (Cornelissen and Kramers). Circles:
points obtained directly (Vs,&d}; squares: locus of the
break in the V&-vs-q curves (V~,&d'). Lines are the best
fit of the mutual friction numbers to the data. M„=1621
uses Vinen's mutual friction constant in the calculations,
and M„=2300 uses a modified mutual friction constant
(see text).

the superfluid velocities V~& and V~2 correspond-
ing to Q, ~ and Q, ~ are the quantities of interest in
the discussion which follows.

Finally for constant bath temperature and in-
creasing heat current, the temperature difference
which develops between the heater and the helium-
bath free surface can increase until at Q,3 the re-
lationship (sat denotes saturation)

is satisfied. ~ (BT/Bp)„, is related to the latent
heat of vaporization through the Clausius-Clapeyron
equation, and g is the magnitude of the acceleration
due to gravity. At Q,3, local saturation phenomena,
such as the development of cavitation at constric-
tions in channels33 or the development of vapor
films near heaters, 34'~' is always observed. For
this reason, Q, s should never be experimentally
mistaken for Q„or Q, z since the effect of the
former is to isolate the heater from the bulk
helium bath while the effect of the latter is to in-
crease the temperature gradient in the liquid away
from the heater. The discussion which follows is
concerned only with Q„and Q, z and not Q„.

In classical hydrodynamics, the discussion of
turbulence generally involves a discussion of di-
mensionless numbers, such as the Reynolds num-

ber, which are first derived from the Navier-
Stokes equation ' and later used to describe the
onset of turbulence in the fluid. Although similar
numbers have beenderived for superfluid helium,
the numbers have either been found incapable of

describing the V, counterflow data over an extended
range of temperature or have been found incapable
of predicting the onset of two types of turbulence.
Yo further clarify this situation, a new emphasis
is now being placed on the description which Eqs.
(1) and (2) provide to dynamically similar counter-
flow patterns (i.e. , counterflow patterns in which
the fluid has identical flow directions and passes
through two geometrically similar bodies in such
a manner as to have geometrically similar stream-
lines ) from which a new set of dimensionless
numbers will emerge that wiB describe the onset
of turbulence in superfluid helium.

In terms of Eqs. (1) and (2), dynamic similarity
is assured if with a suitable choice of units in
length, time, and force the equations can be trans-
formed into identical dimensionless forms while
describing two geometrically similar but different
bodies. For instance, if d (the hydrodynamic diam-
eter, four times the ratio of the area to the perim-
eter of the channel in which the flow takes place),
I. (the length of the channel)„( V, ) (the mean super-
fluid velocity averaged over the length of the
channel), (V„) (the mean normal-fluid velocity
averaged over the length of the channel), (V„)
= ( i V, —V„ I) (the mean relative fluid velocity
averaged over the length of the channel), Ap, and

Ap„(the respective effective pressure differences
developed across the length of the channel) are
chosen as the. reference magnitudes for length,
velocity, and pressure, respectively, then the di-
mensionless quantities '

V+:—dV or V+= I V,

V,*=-VJ(V,), V„+==V„/(V„), V„+==V„/(V„), (12)

P,*=-P,/bP, p ~ = p /gp

can be formed. After substituting Eqs. (10) and

(12) into Eqs. (1) and (2), dividing both equations
by g„(V„)/d~ (a combined operation being required
if the addition of. the two equations is to remain
meaningful in describing the total fluid), and ap-
plying the condition of zero mass flow [Eq. (6)],
the result is
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for the superfluid and

(g* ~ V+)V~+ — ~ V*P*+ ~P» ' «
~

V*
~

V*+V*2V'g„" " Lq„(V„) "
q„(V„)

implies the coefficients of friction &, and &„are
constant. The coefficients of the IV„* I V„* terms
are special only to the superfluid helium problem
and will hence be called mutual friction numbers.
The mutual friction numbers are similar to Mes-
ervey's Gorter number in that they involve the
mutual friction force, but there are two mutual
friction numbers while there is only one Gorter
number, and the mutual friction numbers are a
ratio of forces while the Gorter number is a ratio
of entropy production rates. The fact that the
mutual friction numbers are a ratio of forces is
in keeping with the basic fundamentals of classical
hydrodynamics while the high degree of symmetry
between Eqs. (13) and (14) is in keeping with char-
acteristics of superfluid hydrodynamics.

Counterflow experiments conducted with slits, 3

TABLE I. A summary of the dimensionless numbers
which might be found useful in the analysis of the criti-
cal-heat data for superfluid helium.

Name Symbol Number

Normal-fluid
equation:

Ratio

Reynolds
number

2. Coefficient
of friction

3. Mutual
friction
number

p„Vn d
)n

d~n
LpnVn

Ap pnV d
&nVn

Inertial to viscous forces

Pressure to inertial forces

Mutual friction to viscous
forces

Superf luid
equation:

for the normal fluid. Dynamic similarity is as-
sured if each of the coefficients of the equations
as listed in Table l are constant. The coefficients,
except for the coefficients of the jV„* ( V„* terms,
have their counterparts in classical hydrodynam-
ics ' provided one realizes that

d bP„d&P„..~
".~') =-""'

d bPs &~Ps
Lg„(Vg ' Lp,(V,)'

l

channels, and wires are all examples of experi-
ments containing dynamically similar flow patterns.
However, only the critical-heat data of Brewer and
Edwards, ~' Chase'3 (Fig. 1), and Cornelissen and
Kramers' (Fig. 2) for channels are complete enough
to contribute to the present discussion of turbulence.
Concerning these data, both London and Zilsel and
Tough~~ have observed that values of R„given by

Q,, versus T are many times smaller than the 2300
which is typically expected for Reynolds numbers
describing flows in channels of circular cross sec-
tions in classical hydrodynamics, and that R„=const
is incapable of describing the temperature depen-
dence of the data. Since R„and R, are related
through Eg. (6) for counterflow, the observations
apply as well to R,. Attempts to modify the num-

bers, say, by replacing p„with p in R„have met
only limited success ' ' since even though the

newly formed R describes the Q„data well at
lower bath temperatures, it is quite unsatisfac-
tory for higher bath temperatures. Chase's37

attempt to reconcile the difficulty by considering
"eddy" viscosities seems dubious since turbulence
develops from laminar flow in which eddies do not
exist. Consequently, it appears the Reynolds num-
bers cannot relate the counterflow critical-heat
data of superfluid helium to the development of tur-
bulence.

From classical hydrodynamics, the Euler num-
bers X„and N, might also be expected to play a neg-
ligible role in describing the critical-heat data.
This expectation is affirmed by the pressure data
of Brewer and Edwards, ~ which indicates a negli-
gible development of pressure across a channel
for laminar counterflow, and by a direct calcula-
tion of N„and X, in which the main contribution to
VP„and VP, is assumed to be the London term con-
taining a temperature gradient in keeping with

Eq. (8). Hence, the mutual friction numbers are
the only remaining numbers which can successfully
describe the data.

RESULTS

The mutual friction numbers in terms of the
average superfluid velocity are

1, Reynolds
number

2. Coefficient of
friction

3, Mutual
friction
number

psVsd
)n

d AP,
LpsV2s

A p~„V„d
&nVs

Inertial to viscous forces

Pressure to inertial forces

Mutual friction to viscous
forces

M, =Ap, p'(V, )2da/p~q„,

M„=Ap (V,) d /p„7l„.

Figures 1 and 2 compare the V„d versus tem-
perature data of Chase~ and Cornelissen and
Kramers with calculated results obtained from
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FIG. 3. Temperature dependence of the mutual fric-
tion constant. Solid line: Vinen's data; dashed line:
derived from a fit of to Cornelissen and Kramers's
V„~d data; dotted line: tnt =5, 46+0. 704 Inpgp (see
text).

Mn Mecrit and Ms™scripty Mncrit and Mscr«being
constants. The calculations were performed for
bath temperatures between 1.2 and 2. 1 'K, the tern-
perature range covered by Vinen's mutual friction
constant (see Fig. 3), and used the values of vis-
cosity obtained by Brewer and Edwards. " Table
II lists the critical mutual friction numbers found
to best represent each set of data along with esti-
mated standard deviations and uncertainties (the
standard deviation divided by the square root of
the number of data points). From these results
the following conclusions can be drawn.

(i) Except for the older and smaller channel data
of Brewer and Edwards, the critical mutual fric-
tion numbers are of the right order of magnitude
to describe the onset of turbulence in superfluid
helium.

(ii) For lower bath temperatures, V, is best
fitted by M, = M„,«while V z is best fitted by
M„=M„„«. For higher bath temperatures, the
data is best fitted by M„=M„„«as the curve for
M, = M„,«becomes smeared.

(iii) M„„«and M„,«can be assigned unequal
individual values to account for the different tem-
peratures at which the smearing effect of Q,s is
observed within the different experiments.

(iv) Constant mutual friction numbers imply an
inverse dependence of V on d in agreement with

TABLE II. A summary of the values of the mutual
friction numbers found to best fit the various data.

Number

M

Author

Chase

Cornelissen
and Kramers

Channel
size

(p)

800

1060

Standard
Value deviation Uncertainty

3200 + 326 + 64

1998 + 127 + 40

A1s

Me

Brewer
and Edwards

Brewer
and Edwards

Chase

Come lissen
and Kramers

108

52

800

1060

215

150

1160

1620

+74

+69

+ 1180

+28

*26

+22

the critical-heat data summaries provided by
Wilkes and Keller and Hammel for large channels.

Concerning the poor fit of M„=M„„« to the V~&
data of Cornelissen and Kramers, the difficulty may
be due to the leveling off of the mutual friction con-
stant as reported by these authors when they re-
ported their data. This leveling-off effect was
observed only when V 2 was approached. In an
effort to take account of this effect, M„was re-
calculated by using the larger of either Vinen's
value for or 37 cm sec/g for the mutual friction
constant. When this revised M„was refitted to
the data, M„„«was found to be 2300 and the curve
for M„=M„„«was found a somewhat better fit
(see Fig. 2). It might be concluded, therefore,
that Cornelissen and Kramers not only directly
observed strange variations in the mutual friction
constant, but also inadvertently recorded these
variations in their critical-heat data. The reasons
for these variations, however, are not understood
since, first of all, the mutual friction force is it-
self not completely understood and, second, Chase
did not observe the effects in his data.

Concerning the data of Cha.se, it is possible to
divide the data up into four flow regimes with each
of the flow regimes representing different macro-
scopic flow characteristics of the liquid. For
example, consider the four flow regimes as in-
dicated in Fig. 1. Previous discussions indicate
that flow regime I must be characterized by laminar
counterflow of the total fluid and that flow regimes
II, III, and IV must be characterized by turbulent
flow of one or more of the fluid components. Since
M, is a coefficient of the superfluid equation of
motion and M„ is a coefficient of the normal-fluid
equation of motion, it is reasonable to expect that
the superfluid component is turbulent in flow re-
gimes II and III and the normal-fluid component is
turbulent in flow regimes III and IV. This inter-
pretation agrees experimentally with the "no clear
evidence" for the development of turbulence in
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A ~ P~p2/p'w, (17)

where P and & are constants. In fact p2A/p„at
2. 10 K is 3.16&&10 cm sec/g while at 0. 70'K, it
is 6. 55&& 108 cm sec/g. When Fig. 3 is fitted by a
linear least-squares fit to an equation of the form

Ink = C+n lnp„/p, (18)

C is found tobe equal to 5. 46+0. 16 and nis found
to be equal to 0. V04+ 0. 04. Comparisons between
Eqs. (17) and (18) indicate significant differences
in the results.

the normal fluid as reported by Vicentini-Missoni
and Cunsolo for flow regime II in the presence
of superfluid vorticity, and the observations of
Allen, Griffith, and Osborne on first the ap-
pearance of neither circulation nor bob agitation
in flow regime I, then the appearance of circula-
tion with no bob agitation in flow regime II, and

then just bob agitation in flow regime III. In addi-
tion, characteristics of various bubble states as
observed by this author4 around supercritically
heated wires in He II are in qualitative agreement
with the interpretation.

On the other hand, other interpretations indicate
that the superfluid component should be turbulent
in flow regimes III and IV and the normal-fluid
component should be turbulent in flow regimes II
and III. This follows from the fact that j V, j & j V„}
is satisfied near T, and }V„}& IV, } is satisfied near
1.2 'K, and that for a given laminar counterflow
situation the fluid component with the largest
velocity component should be the first component
to become turbulent. Unfortunately, this inter-
pretation does not involve mutual friction and does
not account for the above cited experimental evi-
dence. When mutual friction is included, conclu-
sions similar to those arrived at in the preceding
paragraph ca be obtained. 43

Cornelissen and Kramers' have reported addi-
tional data on V, d down to 0. 6 'K. Assuming that
all these data can be fitted with the same value of

M„,«as that found to fit the V, d data above
l. 2 'K, the mutual friction constant can be ex-
tended down to 0. 6 K. Using the experimentally
determined viscosity data of Cornelissen and

Kramers, "the results as recorded in Fig. 3 can
be obtained. The value for A of about l. 0 cm sec/g
at T = 0. 76'K is in agreement with the correspond-
ing value for A reported by Cornelissen and Kra-
mers and the dip in the curve at 1.2'K is probably
due to spurious effects related to a reported change
of techniques in the original collection of data. It
is observed that the drop in A for lower bath tem-
peratures is not as rapid as p„as might be ex-
pected from the formula of Vinen

ADDITIONAL CONSIDERATIONS

Discussions so far have concerned only counter-
flow measurements in large channels with diameters
exceeding approximately 10 cm. When these
restrictions are removed, additional variables
must be included in the derivation of the mutual
friction numbers. For instance, when the counter-
flow requirement is removed, the mutual friction
numbers must be modified to include the net mo-
mentum density flux j of the Quid,

(20)

By considering various types of flow patterns, it
can be demonstrated that this form of the numbers
has limited application.

First, consider flows for which the velocity of
the normal fluid is essentially zero and j = p,V,.
For these flows M, and M„are undefined and the
hydrodynamic properties of the fluid are dominated
by the fountain pressure. The Euler numbers may
possibly play an important role in the discussion
of the data, but reference should be made to the
observations made by Kojima et al. on related
data. One thing for certain, the mutual friction
numbers are unsuccessful.

Second, consider flows for which V„=V, = V
and j = pV; V is the total fluid velocity. For these
flows, M, and M„are zero while Staas, Taconis,
and van Alphen3 have found success with

(21)

8 is the Reynolds number for the total fluid when

j = pV. From this it can be concluded that some
of the data need mutual friction numbers while
others need ReynoMs numbers to describe the on-
set of turbulence in superfluid helium and that the
choice of numbers depends on the type of flow pat-
tern involved. The critical-heat data must be
corrected for the fountain pressure and the net
momentum transfer before the mutual friction
numbers can be successfully applied. Further-
more, combined effects arising from mutual

friction, Reynolds numbers, and London pressure
may all contribute in the same experiment to make
the flow characteristics of the helium appear very
complicated.

When the small channel diameter requirement
is removed, corrections must be made to the
normal-fluid viscosity for hydrodynamic slip and
free molecular flow. 4 The need for these correc-
tions has already been demonstrated by Cornelissen
and Kramers' for phonons, but corrections for
rotons 7 have not yet been developed. Early in-
vestigations made by this author have indicated that
quantum boundary effects should contribute only
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to the smallest of the small channel data.
Finally the mutual friction numbers lose their

significance up near the ~ temperature where the
superfluid velocity approaches intrinsic transport
limits not related to the mutual friction force nor
the normal-fluid viscous force. These limits may
arise as a result of either Landau's criterion for
critical velocities of second sound, ' or the result
of the dynamic scaling laws for superfluid helium, 4~

or the dissipation due to homogeneous nucleation
of vortex rings. '

CONCLUSION

Success has been achieved in fitting the large
channel critical-heat data of superfluid helium with
dimensionless mutual friction numbers. The num-
bers are a ratio of the mutual friction force to the
viscous force, in agreement with expectations
that the mutual friction force should play a major
role in the description of the critical-heat data.
The fact that M, contains a viscous force for the
superfluid component is not in contradiction to
the two-fluid model since for counterflow, Eq. (6)
requires that the superfluid flow with an "effective"

viscosity of q„.
The critical mutual friction numbers play the

same role in predicting the onset of turbulence
in superfluid helium as the Reynolds number plays
in classical hydrodynamics. The mutual friction
numbers, however, do not replace the Reynolds
number since R describes data for V„=V, = V and

M„and M, describe data for V„= —p,V,/p„. Typical
values for M„,«and M„„«are scattered, but
they generally tend to be somewhat higher than
those found by Staas, Taconis, and van Alphen'
for R„«. Through the use of the mutual friction
numbers, the mutual friction constant was found
to significantly deviate from Vinen's theory down
near 0.65'K.
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When describing the behavior of a multimode laser, it sometimes is convenient to express
the cavity field in terms of an evolving wave packet that is reflected by the mirrors. We
consider here the general relation between the normal-mode description of the field, where
mode amplitudes and frequencies characterize the oscillations, and features of the
corresponding wave packet. It is shown that in this problem it is natural to represent a
packet as a linear superposition of monochromatic waves, integrating over wave number k.
Yo illustrate some of the concepts, an example is treated that relates packet parameters
to parameters of a theoretical model for the laser medium.

I. INTRODUCTION

This paper considers features of the electro-
magnetic field in the cavity of a multimode laser.
The optical field is expressed as a superposition
of normal-mode oscillations, the wavelength of
each standing-wave mode being equal to 2L/n, where
n is a large integer and I- is the spacing between
the end reflectors. It is shown that such a field
can always be described in terms of an evolving
wave packet that propagates back and forth be-
tween the mirrors. This latter representation is
of particular interest when the length of the packet
is less than that of the cavity. It is well known
that pulses of short duration are in fact obtained
when the modes oscillate with a nearly stationary
phase relationship. A number of approaches, both
of the "passive" and "active" type, have been em-
ployed to experimentally achieve the condition of
frequency locking. ~

A central purpose of the paper will be to estab-
lish the general relation between the normal-mode
representation, where the field is characterized by
the complex amplitudes and frequencies of the

oscillations, and properties of the corresponding
wave packet. Borrowing from the terminology of
classical mechanics, this portion of the treatment
will be of a kinematical nature rather than a dy-
namical one, in the sense that no reference will
be made to properties of the laser medium. As
such, the conclusions should find use in various
types of lasers.

In order to elucidate aspects of the physical con-
tent of the general results, an example then will
be considered wherein parameters of the wave
packet are related to actual parameters of a model
of a laser medium.

II. GENERAL THEORY

We shall suppose that an optical cavity of the
Fabry-Perot type is filled with a uniform active
medium that exhibits dispersion. Starting with the
formalism used by Lamb, we expand the cavity
field in longitudinal-mode eigenfunc tions

E(z, f) = Z„A„(t)sin(nvz/I, )

where the end reflectors are at z = 0 and z = L. The
mode amplitudes A„(t) are written


