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It was recently shown that the kinetic-kinetic part of the Kubo integrands for shear vis-
cosity and heat conductivity behaves as t~ (d =dimensionality) for t ~. We generalize this
result to the complete (kinetic-kinetic+kinetic-potential+potential-potential) Kubo integrands
for bulk and shear viscosity and heat conductivity and find explicitly the leading-order term
for these autocorrelation functions for t ~. The method is very similar to that used in the
Landau-Placzeck calculation of the light-scattering cross section of simple fluids. This t~
behavior has two consequences that are examined: In two-dimensional fluids it leads to a
divergence of Kubo integrals and in three dimensions it yields a nonanalytical low-frequency
behavior of the frequency-dependent transport coefficients.

I. INTRODUCTION

Since the discovery' of a "long tail" in the long-
time behavior of the velocity autocorrelation func-
tion (v, (0) v &(t)) in a fluid of hard discs, a num-
ber of investigators & have studied the asymptotic
behavior of autocorrelation functions in a fluid.

As explained in Sec. II, one may study this prob-
lem according to the ideas of Landau and Placzeck
on the hydrodynamical regression of fluctuations.
Consider an autocorrelation function of the form
(X(r, 0)Y(t)), where X(r, 0) depends on the initial
dynamical state of the many-body system around
r and Y(t) on the dynamical state of the system at
time t. The system may be divided into large
cells that are statistically independent, so that
X(r, 0) only depends on the initial situation in a
given cell One .may replace Y(t) by its average
value over a nonequilibrium ensemble initially in
a given nonequilibrium situation around r and at
equilibrium at large distances from r. Assuming
now that, for long times, this nonequilibrium en-
semble goes to equilibrium according to the laws
of hydrodynamics, we replace Y(t) in this limit by
its value over the corresponding local-equilibrium
ensemble.

As explained in Sec. III, this gives means of
computing the asymptotic value of the Green-Kubo
integrands for shear viscosity, heat conductivity,
and bulk viscosity. These autocorrelation func-
tions behave as f '~~ (d= dimensionality) for large
times.

This leads to a divergence of the Green-Kubo
integrals in two-dimensional fluids and corroborates
a previous result, which proceeds from an analysis
of the renormalized virial expansion for the colli-
sion operator. This divergence is examined in
Sec. IV.

In Secs. V-VII, we examine the situation of
three-dimensional fluids. We deduce from the
t decay of the Green-Kubo integrands that the

first term in the low-frequency expansion of trans-
port coeff icients is of order v . This result is
extended at the low-frequency long-aoavelength ex-
pansion of transport coefficients and leads to a
P'~ term in the long-wavelength dependence of fre-
quencies of hydrodynamical modes (P= wave num-

ber). We deduce from this long-wavelength expan-
sion a first-perturbation value of the Green func-
tion for these modes beyond their usual Navier-
Stokes value.

In Sec. VII it is shown that after the t ' term
appears a t term in the asymptotic expansion
of Green-Kubo integrands, which seems to be the
second term of an infinite expansion of general or-
der f ' (n is an integer & 1).

II. LANDAU AND PLACZECK METHOD

The method of Landau and Placzeck4 is well
known and provides a powerful tool in the analysis
of autocorrelation functions. However, its appli-
cation to the Green-Kubo integrands has been
criticized and it is useful to recall its main fea-
tures.

Let A„be a point in phase space of a classica, l
system of N identical particles of mass m:

(2. 1)

Let further Q*„(t, Q„) be the point of phase space
reached at time t by the system starting from
O„at t = 0. An autocorrelation function is defined
by

( (f) = 1/V (Q, X,(Q'„)Q,x, (Q"„(f,Q„'))), (2. 2)

where V is the volume of the box containing the
particles, or the volume of a, large part of an in-
finite system (in this case the sum g, is restricted
by the condition r, cV) and X;(Q„) is a function of
O„and depends in a particular way on dynamical
variables of the particle j. Furthermore, X, de-
fines a fluctuating quantity such that the equilibrium
fluctuation p(f = 0) remains constant in the thermo-
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dynamical limit. In (2. 2) the average is performed
over an equilibrium ensemble. The choice of this
ensemble will be examined further. Restricting
now our study to those functions X, that do not de-
pend on the location of the system with respect to
the origin of coordinates, we may replace the
definition (2. 2) by

g (t) = (Q, 5 (r —r, ) X,(Q„)Z& X& (QP (t, Q„)] ) .
(2. 3)

The equivalence of (2. 2) and (2. 3) is checked by
noticing that the right-hand side of (2.3) does not
depend on r and then integrating this quantity over
r (in finite systems this translational invariance
is rigorous for periodic systems only; however,
we may admit that it remains valid almost every-
where in any large system).

Starting from (2. 3) we shall explain how to com-
pute the asymptotic value of 4(t) by means of the
method of Landau and Placzeck (of course, that
explanation does not pretend to be original). Let
us divide the box containing the system into cells
with a size much larger than any correlation length
and small with respect to the size of the box. Let
&V be the cell including r and let (hV') be the other
cells. The equilibrium ensemble filling the box
may be considered as a superposition of statistically
ggdepe~de~t grand canonical ensembles lying in each
cell (these ensembles are independent since we may
neglect interactions between cells when their size
becomes large enough). Another important as-
sumption is that /&X&(Q„) 5(r r&) o—nly depends on
the set of positions and momenta of particles lying
in &V . This set will be denoted Q„~ &V.

Since the cells are statistically independent, we

may perform independently the average over the
grand canonical ensembles occupying &V and the
other cells. Thus (2. 3) may be equivalently
written

q(t) =(Z, 5(F,. -F,') X,(Q„')

X (Q)Xq [QN(t, Q„)])»o,r»»)o„ro, (2. 4)

where ( )~ro and ( )»~„»» stand for the average
over the equilibrium ensemble located in &V and
(&V'}. The quantity ($&X, [Q*„(t,QoN)])»~v»» is the
value of g& Xz, at time t in a nonequilibrium en-
semble initially at equilibrium in LAV' ) and in a
given dynamical state in 4V .

Let us now assume that this nonequilibrium en-
semble evolves for long times according to the laws
of hydrodynamics. In this limit, we may then re-
place (LX,. [Q*„(t,Qo )])«r»'» by the value of Q X,,
in the local equilibrium ensemble describing this
hydrodynaxnical stage in the decay of the initial
fluctuation in t» V'. Let Z(t, Q„'0 &V') be this local
equilibrium value of gzXz. Then we have for large
times

»t»(t) = (Z, t»(F-r, ')X,(Q„')Z(t, Q„'A4V')) „o.
(2. 5)

This constitutes the Landau-Placzeck approxima-
tion for an autocorrelation function. The prob-
lem of the choice of the equilibrium ensemble
filling the box has disappeared and g(t) is obtained
for long times through a grand canonical average,
as a consequence of the theory. '

The local equilibrium ensemble, over which Z
is calculated, is defined by a set of (d+ 2) func-
tions of r, t and Q„A &V . This set of functions
will be called a hydrodynamical field and is de-
fined by

f(r, t) =- (S(F, t), p (r, t), u(F, t) ),
where S(r, t) is the local entropy per unit mass,
p(r, t) the local pressure, and u(r, t) the local fluid
velocity. Further, 6f (r, t) will be the perturba-
tion of f(r, t) defined by 5f(r, t)=f(r, t) -f, f being
the equilibrium value of f(r, t). We shall assume
that f(r, t) varies in space as smoothly as desired
and that its amplitude goes to zero for large times.
Then, in this limit, the r-dependent thermody-
namical quantities are related through the equi-
librium equations of state, which gives, for exam-
ple,

5p(F, t) = p 5S(F, t)+ p—5p(F, t), (2.5)

where 5p is the perturbation of the mass density.
Furthermore, since 5f(r, t); 0, the motion of

5f is described for long times by the linearized
equations of hydrodynamics. These equations take
a simple form if we use the Fourier transform of

5f defined by

5f(n, t) = Jdre'""-5f(r, t) .
Then, because of the translational invariance of the
laws of hydrodynamics,

5f(n, t) = y(n, t-t~) 5f(n, ti), (2.7)
g ~eO

when p is a (d + 2) x (d + 2) matrix and t & t», t» being
a large time such that when t &t», 5f(t) is small
enough to evolve according to the lineaxized equa-
tions of hydrodynamics. The matrix P(n, t -tq)
is known near n-. 0 from elementary hydrodynamics.
In this limit it is convenient to write 5f (n) as a
linear superposition of three modes': (1) the mode
of vorticity diffusion describing the motion of the
(d —1) independent components of ur = ( 1 —n n/
n ) u; (2) the two sound waves that propagate in
the direction of n and of (-n) and describe the
motion of the pressure field and of ul, =u -u»
and (3) the mode of entropy diffusion at constant
pressure or "heat diffusion. " The corresponding
elements of the matrix g are given in Table I.
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The second factor on the right-hand side oi
(2. 7) may also be computed near @=0from the
conservation laws. Let 6M, 6P, and 5E be the
fluctuations of mass, momentum, and energy
defined by 0„'~~V . From the usual conservations
rules

and

fdr 5p(r, t) = 5M,

f dr p(r, t) u(r, t) = 6P,

(2. 8)

(2.9a)

f dr 6&(r, t) = 6E .
g»oo

Using now (2.6) and a similar relation for 5e,
we deduce from the conservation relations

(2. 10b)

Vu( ot, ) = VP/p,
f~»ao

5S(0, tg) = (1/p T)(5E —h 5M),
»Io

(2. 1la)

(2. 11b)

5p(0, ti) = — 5E —— 5M, (2. 11c)9p ~E

„ eq ep
1 p P

where h is the equilibrium enthalpy per unit mass:

& = (&+p)/p .
From (2.7) and (2.11) we have an explicit value of
5f (2, t) in the limit n- 0, t- ~. This knowledge
of 6f will be sufficient for our purpose. Recall
that we are looking for the local equilibrium value
of g;X&, namely, Z(t, 0„fl &Vo), which is a, func-
tion of 5f. In the original work of Landau and

Placzeck, Z is the fluctuation of mass density at
time t and distance R of the cell &V, a linear
function of 5f. In this paper we shall study the
Green-Kubo autocorrelation functions, and it will
be shown in Sec. IIE that in this case Z is equal to
some linear combination of the 2(d+ 2)(d+3) quan-
tities J5f (r, t)dr, and this quadratic function of
6f depends for long times on the value of 5f (o.', t)
near e=O.

Consider, for example, the quantity

fdr M'(r, t) = f dry
~
M(Z, t)

~

' .

Taking a = a t as the integration variable in this
last expression, we obtain from (2. 7) and (2. lib)

—,
' fp(r, t) u (r, t) dr + f dr 5e(r, t) = 6E, (2. 10a)

where 5p and 5e are respectively the perturbations
of the densities of mass and of internal energy.
For large times p(r, t)- p and fdru (r, t)-t ~, as
shown below. Then (2. 9a) and (2. 10a) take the

asymptotic form

fdru(r, t) = 5P/p (2.9b)
f »oo
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fdr 5S'(r, t) = t "-'f du' lim
~

5S(Z't-"', t)
~

'

p
'" (5z -I 5~)'= (, „'=-, —=-... — . (2. i2)

Along similar lines it could be shown that
fdr5f (r, t), -„ t for those components of 5f
that behave according to a diffusion law. Consider
now the components of Jdr 5f (r, t) that are quadratic
in the amplitude of the sound wave generated by the
initial fluctuation. One of these quantities is
fdr5p (r, t), which is given by

f 5P'(r, t) dr = t "'fd ~
i
5p(e t "', t)

~

' . (2. 13)

From (2.7) and Table I,

= —,.-"- ~. g~5p(o, t, )[ ., C ~u, (o, t,)]

+ [terms in cos, sin (4mn'Ct'~')]] . (2. 14)

Terms in cos, sin (4wu Ct ~
) on the right ha-nd

side of (2. 14) give exponentially damped contribu-
tions to Jdr 5p (r, t) and the other ones give contri-
butions in f "~, which yields

4/2
dr 5p'(r, t)

Smq, t

-+ — az- — m . 2 ~5
C 5p Bp Bg

d 8& ~p j

Similarly,

and

,

dr u(r, t) 5p(r, t)
J

p )~ 5P9* 5z-—
eo 871'lie, t) pd 86

( p, - ~ Bp

To conclude, we have shown that jdr 5j'(r, t)
is asymptotically equal to f, ~ multiplied by the
square of some linear combination of 5M, 5P, and
5E whenever 5f ~ is the product of two diffusion
components or of two sound-wave components of
5f. The other components of fdr 5f 2(r, t), namely,
the crossed quantities like fdr 5p(r, t) 58(r, t), de-
crease exponentially and may be neglected with re-
spect to the elements of Jdr 5f (r, t) considered
above. In Sec. III we shall apply these remarks
to the ease of the Green-Kubo integrands.

III. ASYMPTOTIC VALUE OF GREEN-KUBO INTEGRANDS
FOR@, z, AND)

Using the method of Landau and Placzeck we

shall calculate in this section the asymptotic values
of the Green-Kubo integrands for g, g, and f
(@=shear viscosity, a=heat conductivity, and r
= bulk viscosity). The calculations will proceed
as follows: The Green-Kubo integrands g„„&(t)
are put into a form equivalent to (2. 3) . Then,
according to the Landau-Placzeck theory, their
asymptotic values are given by (2. 5). For these
autocorrelation functions the local equilibrium
value of g;X„namely, Z„„„is equal to some
linear combinations of the ~(d + 2)(d+ 3) quantities
f5f (r, t)dr; then, as was shown at the end of Sec.
II, the asymptotic value of Z„„,,(t, 0„&&V ) de-
pends on time and on initial fluctuations inside
&V as

z„,„,, —t ""[5(m, p, z)]', (s. 1)

X, (n„'))„o . (3. 2)
j, r &dF

The equilibrium fluctuation on the right-hand side
of (3. 2) is calculated by the standard methods, which

gives explicitly the asymptotic value of P„„&(t).
This method can be applied straightforwardly to

the cases of the shear viscosity and heat conductiv-
ity, the asymptotic value of P„,„(t)will be obtained
in See. IIIA.

The case of the bulk viscosity is more complicated
and will be handled in Sec. IIIB.

A. Asymptotic Vail of f„,(t)
The Green-Kubo formulas for shear viscosity and

heat conductivity read

q= (I/uT) f dt t„(tt) {3.3a)

~ =(I/t. r) f dt's„(t),
a

(3. sb)

where P„and P„are two autocorrelation functions
defined by the general formula (2. 2) and the func-
tions X„and X„are given by

&&,n —Pi: exey {3.4a)

X] „= --gag ' v) (E]—mb) —
q ~ r)) -- ~ v]

(3. 4b)

where [5(M, P, E)] stands for some linear combina-
tion of the quantities 5M, 6M5P, OMBRE, 6P, . . ..
Inserting into (2. 5) the value of Z given in (3. 1), and
accounting for the translational invariance of equi-
librium, we have

y„„,(t) - t "'(I/~V, )([5(M, P, Z)]'
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where e„,are two perpendicular unit vectors,

1 ~2 1%
E$ 2 fPlv) + 2 ~ y Vf f

V, ~ is the two-body potential energy, and where

as explained in Sec. II. For that purpose, we re-
place in (3.Gb) 6k by a linear combination of 65 and

5p which evolve, respectively, according to the
laws of entropy diffusion and of sound propagation.
This can be done from

9
P, =~nv, v, --, ~~, r„-

9r]
(s. G) 6h = T6S + 6p/p,

%e shall verify at first that the local equilibrium
values of g&x&.„„aregiven, for long times, by ex-
pressions of the form

Z„,„-J 6f (r, t)dr .
From (3.4) we have

Z„=p fd nu„*(n, t)u, (n, t)

—2(e„e:Z~r)~8 V))/Br(}, (3.Ga)

and we obtain

4/2

z(t n'&~v') =
fC S g pT1/2 4mtI

' (6Z- au&)(d-1)
(q, +rl)4"

x &E ——

1 Bp

(2',)"' ee
„

(S. 1Oa)

6P„6P, p d —2
Z„(t Q„An.V ) = " '

~)2 +~g
, „d(d+2 p artZ„-. P, dnu+ (n, t) 6I (n, f), (s. Gb)

where ( } stands for the local equilibrium average, and
and

where 5h is perturbed enthalpy per unit mass,
which is the local average value of the microscopic
quantity

~2
mv, 1 ~ 9V&~

nz E]+ ——~ r) ~ —h.
2d 2d g 9r]

To derive (3.Gb) we have dropped terms of order
f6f (r, f) dr, which are negligiMe in the asymptotic
limit with respect to f6f (r, t)dr, since 6f(r, t)-0
at g

Before proceeding any further, let us determine
the asymptotic order of the last term on the right-
hand side of (3. Ga). For an homogeneous equilib-
rium system, (e„e„:g&r, &8 V, ~/8 r, } is equal to
zero. Then this local equilibrium average is cal-
culated through an expansion in powers of ef(r, f)/
9r, which yields

(uT)' p
"' d'-2 1

d(d. 2) G.f
(3.12)

The asymptotic value of g„(t) is obtained in a
very similar manner. From (3.4b) and (3.10a)

p
, :„pT 4nf g(ri, +q)'"

(s. lob)
ln (3.10b) terms involving 6M have been omitted,

since their final contributions to g„(t) vanish, 6&&

being a fluctuation independent of 65.
From the Landau-Placzeck theory, the asymptotic

value of g„(t) is given by

y„(t) = (I/&V)( Z X; „Z,(t, Q„P &V )}
f ~lo i, 1]&6VO

(3.11)
Then from (3.4a) and (S.10b)

(e„e, :Zq r, ) 8 V, q/Br; }"
86f(r, t) 86f(r, f)

~ OO 9gy

BP 1 q 9$
~'. -pT'—

ee (2x],)'~ ' "
ep

where we have used

(S.13)

Using the method that succeeded in calculating
fdr 6f (r, t), we obtain

86f(r, t) 86f (r, t)
t ' 6f'r, t dr .

+x 9+si g oo

(s. a)
The first term on the right-hand side of (3. Ga)

being of order f6f (r, f) dr at f -~, we have from
(S.aa), (3. 7), and (S. a)

Z„=- p Jdnu*„(n, t )u„(n, t). (s. a)

Once we have expressed Z„„in the general form
fdnl 6f(n, f)l, we may obtain their asymptotic value

88=h+ p1'—
9p 9p

4„'=-(I/~v')(( Z x, „)6P„6Jd}„0.
f, PgC AVO

(3.14b)

These fluctuations are computed in Appendix A.

and where 4„' are two equilibrium fluctuations
defined as

e„'= (I/&v') (( Z x,. „)6p„(6z -h6m) }„o
f, P] &hVO

(3.14a)
and
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Inserting their values into (3.13), we obtain

(kT)' )t p

computation of („(t) for long times. '0 In our nota-
tion, their formula reads

(k T) p d Cp T(d —1)
„(t) = — ' .&34vt 2 (q +q)"

where

, x'(~ -1)
(~, +~)'~' '

(2~,)'t'
+C 8 '2 iu(2 ~ 3 20

Cv p z' t &s&

~C p ~T
y= ~ and X=——C„T&p

Recently a particular case of formulas (3.12)
and (3.15) was published' that concerned the
kinetic-kinetic contribution to („and g„. Since we
have shown [Eqs. (3.8), (3.9)] that the asymptotic
contribution to )I)„ is of a purely kinetic origin, our
formula (3.12) coincides with the long-time kinetic
kinetic contribution to („(t).

But the situation is different for g„(t). In the
previously cited work, Ernst et al. calculated the
asymptotic value of the kinetic-kinetic part of g„(t).
I et („(t) be this kinetic-kinetic part of („. It is
defined as g„(t), except that X, „. is replaced by

X; „=(v;„/T t ) [~mv; —(d+ 2) 2kT] . (3.16)

Then the kinetic-kinetic contribution to Z„reads

Z„(t) = dnu„*(n, t) 5T(n, t), (3.17)

where 5T is the perturbed temperature. In the
limit of smooth perturbation with a weak amplitude,
5T is related to 6S and 6p as

5S 1
5T= T —— 5p .

Cp pCq g

Applying now the method outlined in Sec. II, we
may calculate Z~ in terms of 5E, 5M, and 55.
Terms proportional to 5M may be omitted, since
they give zero when inserted into (X„Z„"), and we
have

dpi'"' '(4wt)' (q+g, )"' (2g, .)'") '

(3. iS)
The asymptotic value of p'„(t) follows immediately

and reads

p p d —1 y —1u(2 ('

(( ~ )'I* '
(2 )"')'

(3. i9)
where C&= (k/m) &(d+ 2) is the heat capacity at con-
stant pressure in the perfect-gas limit.

This formula agrees perfectly well with that
which has been given Ernst et al. , and its low-
density limit coincides with that of („(t), since

x(p=o) =-1.
Recently Ernst et a/. presented the result of a

In the limit n=0, 5S(n, t) evolves according to

5$(n, t) = exp[- [(2n n) '/p] q, (t —t,)] 5$(n, t,) .
(3.22)

From (3.22) and

5$(n, t,)
~oo $y+ IIo

6E -&5M
pT

it may seem that, near n =0, 5$(n, t) is a scalar
quantity from the geometrical point of view; thus
the action of geometrical transformations on Z„'~
is completely determined by u. From (3.21) and
the conservation relations,

4/2

Z ' (t)
'

yy 2 (6E k5M)T"' 4v(g+ 7k)

in which the potential contributions to 5E, invariant
under geometrical transformation, cannot be elim-
inated from simple arguments of spatial symmetry.
The same sort of consideration remains valid when

The identity of (3.15) a'nd (3. 20) can be shown
from the Mayer relation:

1 8pCP-C~=
T 2

x p,
A similar calculation has been recently done by

Wainwright et al. "for two-dimensional fluids.
We agree with their result concerning the kinetic-
kinetic contributions to )I)„and g„. However these
authors claim that the long-time behavior of P„ is
identical to the long-time behavior of g„', whereas
a comparison between g„(t) given by (3.15) and g"„(t),
given by (3.19), clearly shows that P„(t) =)I)„'(t) at
t- ~ does not hold, except in the low-density
limit, although P„and P~ are of the same order in

t at t-~.
We do not think that the arguments based on the

symmetry of the pressure field (and more gen-
erally of the scalar components of 5f) given by these
authors are sufficient to eliminate the kinetic-po-
tential and potential-potential contribution to g„(t)
in comparison to („(t). I.et us consider, for ex-
ample, that contribution to Z„which is propor-
tional to the product Pxz 6S:

ZF, 8(t) Tl/ 2 1'dn
g ~ oo

x6$"(n, t) 5„~ (1 -n n/n ) u(n, t) . (3.21)
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one explains the contribution to Z„and („., which is
quadratic in the amplitude of the sound wave gen-
erated by the initial fluctuation in &V: The poten-
tial terms occur in scalar quantities and cannot be
eliminated by geometrical conside rations.

B. Long-Time Behavior of P&(t)

It will be shown that the Green-Kubo integrand
for the bulk viscosity has the same qualitative be-
havior as g„„(t) at t- ~. The Green-Kubo formula
for the bulk viscosity reads

(3.23)

In order to deal with an infinite system, we shall
use the grand-canonical form of the autocorrelation
function gt(t). It is defined from the fluctuations
occurring in a large part, say &V, of an infinite
system and reads9

(,(t) = (I/«') & Y,(Q.' ~ «')

Z, (t) = 5p(n=O, t)+ p dru'(r, t)
g ~oo d

—&E — —BM — . (3. 28)
Bp Bp

Bp
P 6

This value of g& does not take at once the form
f5f (r, t}dr. However it may be reduced to this
last form by means of equilibrium relations among

p~ e, and p.
For that purpose we evaluate Bp(n = 0, t) up to the

second order in 5M, M, and BP by using (2. 6)-
(2. 8). Let 5'f be the variation of hydrodynamical
field linear in BM, 5E, and 55 and 5 f be the varia-
tion quadratic in these fluctuations. From (2. 6) and
(2. 8): 5 p(n = 0, t) = 5M and 5 p(n =0, t) = 0. On the
other hand, 5 e(n=o, t)=BE and 5 e(n=o, t)=
——,'pfdr u (r, t). Writing now 5 p and 5 e in terms
of 5'& 2S and B~~ ~p, accounting for B~p(n = 0, t) = 0
and eliminating 5 S(n =0, t), we have

where

Qz) ]&(av')&av (3 24)
5 p(n=O, t)= — BE+-BP Bp

Be' Bp
(3.29)

Y,(Q„)= Z — mta ——Q r,2 ) Br]

—phV ——. BE —— BM, (3.25)o Bp Bp
Be'

I
Bp

5M and 5E being the initial fluctuations of mass
and energy inside hV (namely, those fluctuations
that are defined by Q„'~&V'), and where
Yq(Q„+ 4V ) is equal to Y&(Q„},except that the sum

g, runs over particles i lying in 4V . The auto-
correlation function (&(t) may be put into a form
very close to (2. 4), which reads

6p=—2 Bp
Be BP s Bp BP'

—l (n's F (, ', ' ——' ' t,' )

Using

+(terms in B~S B~p) . (3.30a)

Be Bp Bp Be
BSz

p Bp, BSz, BS li Bpz

g, (t) = &Y,'(Q„') &Y, (Qg (t, Q„')]&„„i,&„0,

where

(3. 26) and

B e BE B p 1 C BE BC

5(r- r)) I -a
p ~Q g=~ —mv

we simplify (3.30a) as

BP—p —— [Z, 5(r —r, ) —~]Be
a aP, a (a'u)' eu P 8&'

)Be 2 C Be
j C Bp

[E,mB(r —r, ) p] . (3.2-7)

Now we may apply the Landau- Placzeck method to
compute Pt (t), since Yt depends on the dynamical
situation around r. For long times, we replace
&Y~ (Q ~ (t, Qo )] & ««i ~

by its average value over the
local-equilibrium ensemble describing the asymp-
totic decay of the initial fluctuation. From (3. 27)
this local-equilibrium value of &Y~(Qg(t, Q~)&~~o
reads

(5 S) BP Bpl
+ (terms - 5'S 5'p) .

2 Be BS
i Bp j

P

(3. 30b)

Terms proportional to the product 5'5 5'p are not
written explicitly in (3. 30), since they contribute
as f5S(r, t)5p(r, t)dr to 5'p(n=o, t) and Z, (t, Qo

Ab, V ) and this contribution is negligible at t -~
with respect to f5p (r, t)dr and fBS (r, t)dr.

Using now (3. 29) and (3. 30b) to express Bp(n
= 0, t), we obtain from (3.28)
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5p (r, t)dr

Zq(t, n„~ &V ) = p ———— u (r, t)drd 2 Be

—..'. (-, . --: ".;),).

(x —1)'x'
2 8««q~t C~ ~T lq

2
—pXT '

(k T)'
Bp

(3.35b)

2
1aP Bp Be
2 Bc BS Bp

5S'(r, t) dr . (S. 31)
and where

The various coefficients in front of the integrals
on. the right-hand side of (3.31) vanish in the per-
fect-gas limit. This may be verified from

2 pd
p «P

and

p BC p BT 2
C BP p p T BP p p d

Using now the laws of hydrodynamics to compute
the asymptotic values of fu {r,t)dr, J5p (r, t)dr,
and f5'~(r, t)dr, we obtain from (3. 31)

z, (t, n„'~~v') = z,"{t,n„'a ~v')
g «OO

(3.35c)
These expressions have been obtained by using

the fluctuation formulas derived in Appendix B,
and the thermodynamical relations

= -x(~-1),Bp

B ~ 2 (T BCO BC= px cpT l
—pxT

Bp r
The coefficient

1 &P . p BC

C Bp

where

z,'(t, no& ~v')

+z,'(t, n,'n ~v')+z,'(t, n„'& ~v'),
(s. 32)

can be expressed by means of g, C~, and C~ and
their derivatives with respect to p and T as

1 Bp
'

p BC

d B&, C Bp

d-1 p QP2 1 1 gp

P

=d +
2

+
2 sT [~,~ x(w-1)x(~ -1)

z', (t, n„' & ~v')

18P Bp Bg2

2 BE' BS Bp
P

(5Z —I 5M)' p

p T 8mget

(s. ssb)

hx c (1'-1)1.pT B 2' 'PT
Our asymptotic value of g&(t) agrees with that

which was recently published by Ernst et aE.

IV. DIVERGENCE OF GREEN-KUBO INTEGRALS IN
TWO-DIMENSIONAL FLUIDS

z;(t, n„' av')

I'1 gP p BC &I2

2pC' k d &&, C &p, S~q,t

— + — 5E —— &M
' C'(5p) sp se

d B~
p Bp

(3.33c)
Replacing now in (3.26) (Y~(n~(t, n~o)})«~v««by its
asymptotic value Z«(t, no A &V'), we obtain

(~(t) = «t~(t)+0&(t)+If(t), (s. 34)

where

q,'(t) =(Y, (n'„)z, (t, n„'Aav')), 0

= 2(kT)'(d —1) p —+ 2,, (3.35a)S~gt

Since we have shown that the Green-Kubo inte-
grands for p, ~, and f decay as t" at t-~, we
should conclude that the Green-Kubo integrals
diverge logarithmically for two-dimensional sys-
tems. Qne may dram from this fact two different
conclusions.

(a) One (or eventually more) of the assumptions
that are necessary to obtain this result is wrong,
but transport coefficients exist (and Green-Kubo
integrals converge) in two-dimensional fluids.

(b) Transport coefficients do not exist in two-
dimensional fluids.

Let us examine these two possibilities.
Conclusion (a) is rather difficult to discuss. How-

ever, it might be interesting to recall the main
assumptions used to find the t "~ behavior. For
long times the motion of the many-body system is
described by the lams of hydrodynamics, and these
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(ii) The relation between a thermodynamical
force and the corresponding flux is no more linear,
but remains local in space and time. This pos-
sibility of such nonlinear transport laws is ex-
hibited in the following example.

The velocity of a given particle submitted in a
fluid to a small external force F is usually given
by the transport law'

D
— F

F~0
(4. I)

where D is the self-diffusion coefficient of the
particle. In the Einstein limit, the particle is
assumed to be a large rigid body and its inter-
action with the surrounding fluid is handled hydro-
dynamically. In the case of a large sphere, D is
given by the well-known Stokes-Einstein formula.
In two-dimensional fluids, the situation is different,
since the viscous drag on a large circle moving
with a constant velocity is given near u = 0 (if we
assume the existence of the shear viscosity) by

laws are linearized around the equilibrium state
of the fluid. This use of hydrodynamics is justified
by noticing that in the hydrodynamical limit (which
is equal to the slowly varying hydrodynamical field)
the Liouville equation may be expanded in powers
of the derivatives of &f(r, f) and the usual equation
of hydrodynamics are recovered. But with our
knowledge, the precise manner in which the solu-
tion of the equations of hydrodynamics approximates
the solution of the Liouville equation is yet unknown.

The second assumption (linearization of the laws
of hydrodynamics) also poses a difficult question,
since we do not know how the solution of the non-
lineaxized hydrodynamical equations approximate
to the solution of these lineaxized equations.

Assuming that conclusion (b) is valid (that trans-
port coefficients do not exist in two-dimensional
fluids), we face two connected problems: How do
Green-Kubo integrands behave asymptotically in
two-dimensional fluids? And what sort of laws
replace the laws of Fourier and Newton in two-
dimensional fluids? In fact, we cannot assert at
the same time that Green-Kubo integrands behave
as t ~ at t- ~ and that the laws of Fourier and New-
ton are wrong, since this t ' behavior was estab-
lished by using the transport laws in their usual
form. These transport laws can be modified in
two different ways:

(i) The relation between a thermodynamical force
(here "force" has the sense given by Onsager) and

the corresponding flux is no longer local but re-
mains linear. This has been investigated by Wain-
wright et al. " and leads to

4mug

„-.0 ln/u)

[In fact the Oseen solution of this problem yields

(4. 2)

4' q
—,
' —c —in(up 6/8g)

where 6 is the diameter of the circle and c the
Euler constant; (4. 2) is recovered by taking the
limit u- 0 in this expression of the drag. ]

Expressing now F as a function of u, we have

from (4. 2)

u
F~0

—FlniFi
4m'

(4. 3)

In (4. 3), F is the external force and is equal and

opposite to the drag.
Using the Landau-Placzeck method, it can be

shown~' that the Green-Kubo integral for the
self-diffusion coefficient diverges logarithmically
in two-dimensional fluids. Thus it is worth em-
phasizing that, in a particular case, the linear
transport relation (4. 1) is replaced by the non-

linear transport law (4. 2) when the Green-Kubo
integral for the transport coefficient diverges.
However this nonlinear transport law cannot take
the form (4. 3) if the shear viscosity does not ex-
ist.

The above statements (linear and nonlocal trans-
port law versus nonlinear and local transport law)
are not mutually exclusive.

Consider, for instance, the functional

gF [(t f i)2 2]1/2 (4 6)

and in the static limit [E(t) constant)

I'fconstantF)= ,'7/[Ho(vF ) —N-o(YF )] (4. 6)

where 00 and N0 are, respectively, the Struve and
Neumann's functions. ~ Near F = 0, (4. 6) becomes

I'fconstantF] = —2E1
~

n~F
&"0

(4 /)

Suppose now that in two-dimensional fluids the
current is related to the thermodynamical force
through a relation of the form (4. 4). In the limits
considered above, we may deduce from this unique
functional relation either a linear (but nonlocal)
transport law (4. 6) or a local (but nonlinear) trans-
port law [(4.6) and (4. f)] (obviously there is no
claim that this particular functional is the actual
form of transport laws in two-dimensional fluids. )

As a conclusion it should be emphasized that any

glp2(gl )

(F(f)j df [f $i 2 a]g/a +(f ) i (4 4)

which becomes in the limit I' - 0
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attempt to find a nonlinear and nonlocal functional
relation between forces and fluxes encounters great
difficulties, since, in particular, equations of
hydrodynamics cannot be linearized and simply
solved if we give up the linearity of transport laws.

V. LOW-FREQUENCY LONG-WAVELENGTH BEHAVIOR OF
TRANSPORT COEFFICIENTS IN THREE-DIMENSIONAL

FLUIDS

&(&)= (1/») Jo «e "'(~(i) (5 1)

as a frequency-dependent transport coefficient

(~ =g, ~, or g). From (3. 12)-(3.15) and (3.4)-(3. 5),
we know that in three-dimensional fluids

In Sec. III, we were able to find the asymptotic
value of the Green-Kubo integrands, provided that
6 &2.

In three dimensions this will allow us to find the
first term in the low-frequency expansion of these
transport coefficient. This result will be general-
ized to the low-frequency long-wavelength expansion
of transport coefficients.

Define

the integration variable in (5. 7), we deduce from
(5 2)

$(&u) —g = -l2wrv I
'~~A, (1+i sgn~),

0
(5 8)

where sgn~= &/ I& I.
This &' shift in the low-frequency dependence

of transport coefficients has been already found for
the self-diffusion coefficient of a large sphere im-
mersed in a fluid"; it is a simple consequence of
the fact that the drag on a sphere executing small
translatory oscillations with a frequency in an
incompressible fluid is shifted by a quantity of
order &" with respect to the usual stationary
Stokes drag. '

The presence of a real and an imaginary part in
terms of order & follows immediately from
causality, since g(&u) is a response function. Let
$'(&u) and $" (&u) be the real and imaginary part of

g(~) (recall that )=q, a, or g). The Kramers-
Kronig rules relate $' and $' as

g((t) = kTA(t

where

A„=A„'+A„,

A„=A„+A„'

A~ —-A
~ +A~+A ~,

and where

(5 2)

(5. 3a)

(5. 3b)

(5. 3c)

(5. 4a)

where (P means the Cauchy principal value. Ex-
panding $ "(~g) near &= 0, one deduces immediate-
ly from (5. 9) that, if $"(+)„.0 I& I'~, then

&'(~) —&'(~= o).-o I
& I"',

where the coefficients of the &"~ terms in $' and
$" are related in such a way that

$((u) —$(0)„0
~

u&~' (1+ i sgne) (real coeif. ).
The factor sgn after i is needed to satisfy

&*(~)=&(-~).
7kT p

(5. 4b)

„.C,kTX'(y-1)
3 smq,

(5. 5a)

S/2

(5. 5b)

A;=4k' p
~

—+ (y
8m7l) 3+ 2 ) (5. 6a)

kTy (y —1) p
"~ & BC~

A~ py

(5. 6b) &u, (P) = +2vPC —4i(w'/p) P'q, . (5. 10)

The generalization of (5. 8) at any dimensionality
d &2 is carried out in Appendix C.

The low-frequency expansion of transport coef-
ficient given in (5. 8) is not directly useful in the

study of hydrodynamical phenomena: Hydrodynam-
ical perturbations that may be studied by means of

transport coefficients have a frequency and a wave
number, these two quantities being connected to
each other. More precisely, in hydrodynamics one
studies three classes of linear perturbations.

(i) Sound waves, where the frequency is related
to the wave number through the expansion

Consider now the quantity

(u) —$= (1/kT) fo dt(e '"' —1)g,(t),

(5. 6c)

(5. 7) ~„(p) = —4i(v'/p) p'q
8-0

(5. 11a)

(ii) Diffusion phenomena (of vorticity and entro-
py), where the frequency (actually a real decre-
ment) is related to the wave number by

where $ stands for $(co=0). Taking I&I t=t' as or
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~,(P) = —4i(m'/p)P'q, .
two

(5. 11b)

4) Oy d=3

(iii) Static diffusion phenomena such as, for
example, the thermal conduction between two par-
allel plates at different temperatures and at a dis-
tance much larger than any microscopic scale of
length. In this last case the frequency is equal to
zero.

We shall extend (5. 8) to find the shift of q, ~,
and t near (a= P= 0 when ~ and P are related ac-
cording to one of the above relations. For that pur-
pose we define frequency-wavelength-dependent
transport coefficients by'

$(P, cu)=, dr dte ' "' 's"
(&(t, r), (5. 12)

where

4~(t, r) = (6 X~, ~ ~(r~) ~g X~, i f QN(t, Q'N)] 5I r y(t) —r] ),
(5. 13)

where ro and r, (t) are, respectively, the positions
of particles i and j at point Q'„and Qp(t, Qo) of
phase space.

Before considering situations where P WO, let
us recover the l &I' shift in the low-frequency ex-
pansions of $ (+) -=$((u, P= 0). This method of cal-
culation will be used afterwards to expand $ (&, P)
near I8= 0. This I &u I

' shift originates from the
hydrodynamical contribution to g, (t) given by (2. 5).
Since Z, (t, Q„fl bV )- fd& I5f(&, t) I the hydrody-
namical contribution from (5. 1) to $(+) is

and

Z, (t, r) = pu„(r, t) u, (r, t)

Z„(t, r ) =p T ' ~ u„(r, t) 5k (r, t)

(5. 18)

(5. 19)

1 1 8p 2 1 8p 8p
Z~(t, r) =p --—— u'(r, t)- ——

2 ~C
& 2 96

&
BS

d = 3. (5. 20)

x
& Q X, , 5f,(0, t, ) 5f„(o, t, ) &„o, (5. 18)

i, rfg 4VO

which agrees with (5. 8).
This calculation can be extended to frequency-

and suave-number-dependent transport coefficients.
For that purpose, let us define at first the hydro-
dynamical contribution to a transport coefficient
$(P, &). Let $ (P, &) be this contribution, which is
the Fourier transform in space and time of the
autocorrelation function (1/kT)(&(t, r), which itself
is defined as

(,"(t, r) = (Q, 5(r, ) X, q(Q„) Z, (t, r, Qg tl &V ))

(5. 1V)

where Z, (t, r) is the local equilibrium value of

);&X, , &(r —r&(t)). Reasoning very similar to that
which led to (3. Bb), (3.9), and (3. 31) gives

where

)ty V

(5. 14)
In three-dimensional fluids, the low-frequency

expansion of $ "(&u) and $(&u) give the same first-
order term, namely

$"(~)—&"(~=0)= $(~) —
h ~~~"', ~-0 .

~H ( )
~

dC1 1
4&+ (d&(Q)+ &d„(Q) b,V

x( Z X( ) 5f1(n, t1) 6f*„(a,t1))~~ . (5. 15)

In (5. 15) &1,„(o.') are the frequencies of the hydro-
dynamical modes (&, v = v, s, 8), 5f,,„are some lin-
ear combinations of the components of the hydro-
dynamical field, and the integration domain is a
sphere of radius &0, a fixed wave number, as small
as wanted. In fact, hydrodynamics is an asymptotic
theory that is valid for vanishingly small wave-
number.

Considering now cases where &1(o')+ &u„(&) is of
order & near o.'= 0, which implies from (5. 10) and

(5. 11) that X, v= v, 8 or X, v= s, and taking n
= & I &l "' as the integration variable, we deduce
from (5. 15)

Generalizing this property to the low-frequency
long-wavelength expansion of $(P, &), we shall as-
sume that

(5. 21)

("(P, ~) =~ &."„(ti,~),
)ty V

where &, p=v, s, 8 and where

d
J ~q~ i[(d CO (+& 128+) + ~„(& —

2 P)] b V

~, ~(Q~) ~f1(&+.'P t1)-
foal'g g 4VO

("(P, ~) —$'II0, 0) =g(P, ~) —], &u, P-0 .
Since Z~(t, r)- Oft(t, r), the hydrodynamical contri-
bution to $ (P, tu) reads

x 5f,(- o+-,'p, t,))„o . (5. 22)
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We shall prove that the long-wavelength ex-
pansion of & "(P)-=&"(P, ~ = 0) starts as

g ( P)=P(P,=0)+0(P )

This term in P' ' correspondes to a large-dis-
tance behavior in r ~~ 2 of

(t((r) -=J(j dt gt(t, r)

Further, in the limit of diffusion phenomena
((d- P at P- 0), it will be seen that

$ "(P, ~) —&" =
& "(P)

g» 0, M~g~

According to (5. 22), $ "(P) is the sum of various
terms $,",(P) (recall that &, v= v, 8, s). We shall
demonstrate at first that, near P = 0,

(5. 24)

)0
(P) gH Pl / 2 (5. 25)

h",.(P) - 5",. P, - (5. 26)

if X~ v=5, e.
In order to show (5. 25), we start from (5. 22),

take (2'= ap as the variable of integration, use
(5. 10), and

Because we have deduced from (5. 15) the I
(c!'/

shift in the expansion of $ "((c) near (v= 0, we may
derive from (5. 22) the value of $ "(P, +) —$" near
~= P=0 (1) in the static limit (~=0, P-0) and in
the diffusion limit ((d, P -0, (8- P2) (this will be done
in Sec. VA) and (2) in the limit defined by E(I.
(5. 10) (&, P-0, ~ =+ 2((PC) (this will be done in
Sec. V B).

A. Long-Wavelength Expansion of $+ in Static Limit and for
Diffusion Phenomena

From (5. 21) and (5. 27)

& (P) —( = ,'m—"—'(2~PC )'"A.;, (5. 28)

This long-wavelength behavior of $(P) is related
to the large-distance behavior of

(I/t(r)= J dt(t(r, t)=ttT Jdpe "8' ((P) . (5. 29)

In fact, inserting into (5. 29) the long-wavelength
expansion of &(P) given by (5. 28), one obtains con-
tributions to gt(t') singular at r;-0, plus the value
of gt(t ) at large x which reads"'"

c"'
't') =

2' (2.)»2 (5. 30)

It is not very surprising to see that the long-
range behavior of (t(s') is defined by the part of 5f
that evolves as a sound wave. In fact, it is ob-
vious that sound waves may propagate perturba-
tions over larger distances than diffusion modes
do, This statement may be confirmed by the fol-
lowing reasoning.

An obvious extension of the Landau-Placzeck the-
ory shows that the behavior of +(5(r,)XI 'gt f dtX(t"
X5[r r/(t)]) —at large t' is e(lual to (g;5(r8()X(8'
&& I,"dt &(t, r, &'„~«)),vo.

From (5. 18)-(5.20) and Zt(t, r)- 5f (r, t),

gt(r) -
J~ dt5f (r, t) . (5. 31)

Furthermore, the value of 5f(r, t) at large 8 may
be computed from the linearized equations of hy-
drodynamics, which give for the sound wave com-
ponent of 5f

such that X, v=e, e. Very similar calculations give

h "(P, ~) —h" =-, k "(P) —k" P-"'.

= ~ 2((PC (t' p/~' —(8i((2/p) n"P(). ,

( ) (r Ct ) p/4n pt--
'Vt

(5. 32)

x (2, P- 0, Z' = n P
"'x const

which is true, provided one considers the sum of
two different determinations of (tt, (P), and obtain,
by carrying the limit P- 0 through the integrand,

$,",(P) —$,",= —8(('/ (2((PC) / At (5. 27)
8 "0

where the coefficients /in „,are defined in (5. 4a),
(5. 5a), and (5. 6c).

In order to expand $8 8(P) near P= 0, we take
&' = &P ' as the integration. variable in (5. 22), carry
out the expansion at first order in P, and obtain

~/

8, 8(P) 8, 8 P &&2[1 (8&2& i 2/ ) ]

which proves (5. 26), since this calculation is ex-
tended straightforwardly to any contribution $l" „

[The proof of (5. 32) may be found in Sec. VI. ]
Then the contribution to gt(8 ) (Iuadratic in 5f,
1 eads

/p (tO

dt (& —Ct) -( -Ct&2 /2n,
t3

(5. 33)
For a given value of r this integral is concen-

trated around t=~/c and extends over an interval
of time of order r'/ . Thus, gt ...—(&t) /t"-&
which agrees with (5. 30). On the other hand, a
diffusion component of 5f(8, t) evolves according
to the usual Gaussian law, which yields 5f„(t,t)
—t e " " "'. The correspond ing contr ibution to
g( „,„(8') reads

(~ )
— ( t pr2/2n t &-4-

y ~oo

and may be neglected with respect to It/(. ..(t') at



LOW-FREQUENCY BEHAVIOR OF TRANSPORT. . . 2581

In the above reasoning we have not directly
used the assumption (5. 20), whose validity is thus
confirmed in the static limit.

order" will be shown to be of order P'". A simple
consequence of this result will then be discussed.
I et us define

B. Long-Wavelength Expansion of )IP, u, (P)] G (R f) I dP e 2i-w8 R~~-iru «8 q(8)t (6. 3)

A'„=A„"+ (2 i /3)A'„,

A'„=-A„' + (2 i /3)A'

A'q —At+Aq+ (2 i /3)Ag,

(5. 35a)

(5. 35b)

(5. 35c)

where the quantities on the right-hand side of (5. 35)
are defined in (5. 4)-(5. 6).

Starting from the low-frequency long-wavelength
expansions of transport coefficients found in this

section, we shall be able to derive some hydrody-
namical properties beyond the Navier-Stokes or-
der.

VI. HYDRODYNAMICS BEYOND NAVIER-STOKES ORDER

Previously we have used Navier-Stokes equations
in their usual form, in particular, the hydrodynam-
ical modes have been studied by means of transport
coefficients at zero frequency and wave number.
In order to work at smaller wavelengths (namely,
beyond the Navier-Stokes order), we have to con-
si*der frequency- ar).d ravel. ength-dependent trans-
port coefficients. Accordingly, the relation that
gives &,(P) becomes

The transport coefficient $(P, (u, (P)) may be ex-
panded near P =- 0 in a manner very similar to that
used in Sec. VA: From (5. 22) g"„„(p,~,)
be expressed as a single integral over n and cal-
culated near P= 0 by putting a = nP'~ as a variable
of integration. One obtains in this way

$(P, +2iTPC) —$ = —(2v)U (2mPC)'i Ai(1 +i),
g.~o

(5. 34)
where

as the Green functions of hydrodynamical modes
(these functions describe the hydrodynamical field
created at any positive time by an initially singular
perturbation of 5f) A.t the Navier-Stokes order
(in fact, in some well-defined asymptotic limit),
these Green functions are obtained by inserting in-
to (6. 3) the values of &,, «, e(P) given in (5. 10) and

(5. 11). The following order in this expansion of
G ~, & & is obtained in a similar manner from the

P
' term in the expansion of (u, , ii, «(P).
In Sec. VIA we shall expand near P= 0 the fre-

quency of a sound wave and compare our results
with some recent works. In Sec. VIE we shall
study the case of the diffusion modes.

A. Sound Waves beyond Navier-Stokes Order

Using (6. 1), we shall expand &,(P) beyond the
Kirchhoff damping rate, then compare this result
with the sound dispersion found in the low-density
limit and near the liquid-gas critical point, both of
which were the subject of recent investigations.
Furthermore, we shall derive, as announced, the
first correction to the Navier-Stokes value of the
Green function for sound waves.

Equation (6.1) yields straightforwardly

&u,(P) +2mPC+ (4im /p) 7i, P

= -(4i~'/p) P'[q.(P, ~2~PC) -q, ]. (6.4)
8»0

Accounting for (5. 33) and (5. 34), we have

g, (P, ~,.) - i), = —(2')'i-'(2iiPC)'i'(I+ i) A.„
8 0

(6.5)

~,(P) = 2mPC —[i (2mP)~/p]q, (P, &u), (6. 1)
2A„' =- —',A'„+A,'+A', + (A«e/C, )(y -1)

'l, (~i, ~) = .' [~'it(&, ~—)+g(P, ~)+ ~(P, ~)h —1)/C, ] .
(6. 2)

However, it is known that, beyond the Navier-
Stokes order, all transport phenomena cannot be
accounted for through frequency- and wave-number-
dependent transport coefficients defined as in
(5. 12). ~ We shall admit that these new transport
effects yield corrections to ~,, ii, «(p) that are of or-
der P near P= 0 and may thus be neglected with
respect to corrections considered below.

Using (6. 1) and similar relations for tu«e(p)l,
together with the expansions of g(P, &) near P = v = 0
given in Sec. V„we shall find those terms which
follow the order P' in expansions of cu, , ~, «(P) near
P = 0. These terms "beyond the Navier-Stokes

+ (2"'/3) [-,'A'„+A;+ (A„'/C, )(y —1)] .
(6.6)

Now we may deduce from (6.4) and (6.5)

(o,(P) +2mPC+i-. (2vP)'q.

pc 5/2
-- A'„(i +1)(2r)"' . (6.7)

a»o P

In order to compare ttus last expansion of &u, (P)
with that deduced from the Boltzmann kinetic the-
ory, let us consider the low-density limit of (6.7)
for a gas where A„«A„„and where the Eucken
formula relates K and q as ii = ~k/m. In this
limit, (6.7) becomes



2582 Y. PQMEAU

(c,(p) + 2t/pC + gi(2&(p)' tl/p

(2 +1) C(/2 P P5/2
(2~)"2 /T .

8"0 p 0 72 P

x I' 2 (l)3/2 ( 2)3/2 (
3 )3/2 ] (6 8)

while the Boltzmann kinetic theory gives

~,(p)+2~pc+-,'t(2~P)'&7/p -— —",,' (q/pc')(2wpc)'.
p 0,8 0

(6.8)
If we consider (c, as a function of P and p, we

may conclude from (6. 8) and (6.9) that the expan-
sion of ((& (P, p) near P= p = 0 is not unique beyond
the Navier -Stokes order.

It should be pointed out that the existence of this
P'/2 term-in the long-wavelength expansion of
(c,(P) has been shown in the study of the sound dis-
persion near the liquid-gas critical point.
Kawasaki has shown that the sound velocity expands
near the frequency ~=0 as

C((u) -C((c = O)
- (c'/' .

0

thing, as tacitly assumed from now on. Chosing
(c,(P) =2(/PC at P- 0, we may write (6. 12) as

G,(R, t) = (1/R) f d P P sin 2&/PB
0

(e 2(-s8ct -t(«&3(8& 28t-c&t c c ) (6

This Green function takes the usual hydrody-
namical form for large times and at fixed
(R —Ct) t / . In this limit the right-hand side of
(6. 13) is evaluated by taking P = P I R -Ct I as the
integration variable; rapidly oscillating terms
vanish and we obtain

G„(R, t) = G,'(R, t), (R —Ct) t ' fixed, (6. 14)

where

3/2 2
G(&(R t) P

I

-((&5~& /45 t&/»
8R Smg, t&

(6.15)
The term after G, in the expansion of G, (R, t)

at fixed (R —Ct) t ' and large t may be obtained
from (6.7) and (6.13). In fact, (6. 13) yields

This can also be written

c(p)-c(TI=0) - p"'. (6. 1o)
G.(R, t) -G', (B, t) -=„—1

"0
dP P sin2&&PR

Writing now the general dispersion equation as

~,(p) = ~ 2v pC (p) —(4t ~'/p) q, p'

and expanding near P= 0 the sound velocity given
in (6.10), one obtains

~,(P) = + 2&(PC —(4it( /p) 3/, P + O(P'/ ) . (6. 11)

Although the calculations of Kawasaki are per-
formed in the critical region, the reasoning leading
to (6.10) seems to remain valid for any state of the
fluid, subcritical or not. A quantitative compari-
son between our work and that of Kawasaki is not

easy, since this author drops many terms as being
not singular in (T —T,) or less singular in (T —T,),
although they contribute to the order P'/2 in (6.11).

We shall now deduce from (6. 7) an asymptotic
expansion of the Green function for the mode of
sound propagation. This Green function may be
viewed as the pressure distribution initiated by a
singular pressure field in the linear approxima-
tion. The general form of this Green function is

G (R t)
—= f dp +»'& 5(-'( t"~(8&t4 c c-)

=(1/R) f dppsin2&(pB (e '"3' "+c.c.) .
0

(6. 12)
The quantity ((&,(p) is a double-valued function.

However the following results are independent of
the choice of one of these determinations, pro-
vided that e,(P) stands everywhere for the same

-2$a'HGt t -3f(4] (g)-2frpC3t -(2&8)%~& /pb + C Cx $e -e / + ~ ~ J ~

(6.16)
The asymptotic value of the right-hand side of

(6. 16) is evaluated by using P =1)~R —Ctlasthein-
tegration variable, and we obtain from (6.7)

( 1/2 &t' 9/4
G,(R, t) -G,'(R, t)

S

r(—),E, 4,' 2,' —p 4
—(R —Ct)

(&
8 1 (R —Ct)
4' 2' 4q, t

3 R-Ct'

(6. 17)
where F is the Euler's integral and, F, the degen-
erate hypergeometric function. '

It is interesting to notice that

t- ~, (R —Ct) t ' fixed.
G, (R, t)

(6. 18)
In Sec. VI B, a result similar to (6. 18) will be

established for the Green functions of diffusion
modes.

8. Diffusion Processes beyond Wavier-Stokes Order

In this subsection we shall expand the frequency
of a diffusion mode beyond the Navier-Stokes order
and derive a correction to the Green function of
this mode beyond its usual Navier-Stokes value.
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Calculation will be performed in the case of the
mode of entropy diffusion.

The starting point is the generalized relation
between ~e(P) and P, which reads

&u~(P) = —i [(27/P) /pC/, ] &(P, (u)

From (6. 19) and

v(P, &u) —~ = ——,
' v'/'A„'(awPC)"',

~~62

(6. 19)

(6. 2O)

which was shown in Sec. V, we have

(2&P)2 (+C)i/2
(o,(p)+i ne = i

p gp 3p Cp
g &(211P )

5/ 2

(6. 21)
Consider now

G, (R, t)= (2/R) f-dPPsinamPRe '"~'~" (6. 22)

which is the Green function of the mode of entropy
diffusion. Taking P' = P t~/~ as the integration
variable in (6. 22), we find in the limit t-~, R2t '
fixed, the usual Gaussian form

G//(R, t) = Gg (R, t),
whel e

G'(R )=( /4.

(6. aa)

(6. 24)

The asymptotic value of G& —G& is calculated by
starting from an expression similar to (6. 16) and
then using (6. 21). This yields

Gg (R, t) —Gg(R, t)
2t

R t ~fixed

AC ~
3(2 11

Ggo 0TC t/ p ((4
Go (6. 26)

By putting r//r/&- q,/pe- 1, we have given this
last relation in a dimensionless form, in order to
make apparent some characteristic time. The ap-
proximation Ge of Gz breaks down when the right-
hand side of (6. 26) becomes of order 1. This
occurs when t -7=(kT) C p'/r/".

In the low-density limit, q mC/o, wher-e o' is
some atomic cross section, and 7 becomes of
order

The properties of the Green function of the mode
of vorticity diffusion are very similar to those of
G, (R, t). They can be deduced from (6. 24) and
(6. 25) by replacing G~ by G„, qq by g and A'„/C/,

by A„' ~

As announced at the end of Sec. VIA, Ge —G&

verify a relation similar to (6. 18). From (6. 24)
and (6. 25),

3/a 7 s/a

m C

However, the meaning of this characteristic time
in gases must be considered carefully, since the
value of G~ —G& at large t and small p probably
depends on the order of the limits. In fact, taking
at first the limit p-O, we are at the approximation
of the Boltzmann kinetic theory and the character-
istic time will be the mean free flight time

g/2
/ I pig)

which is much larger than the time v considered
above, which was found by taking at first the
limit t-~ and then the limit p-O.

VII. ASYMPTOTIC EXPANSION OF GREEN-KUBO
INTEGRANDS IN THREE-DIMENSIONAL FLUIDS

A striking analogy between calculations of Secs.
III and VI may be noticed: To find the asymptotic
value of Z„„~(t)- jef~(r, t)dr, we replaced ef(r, t)
by its asymptotic value, which is actually some
linear combination of the Green functions G, ~ ~
considered in Sec. VI. In Sec. VI we were able
to expand G, ~ ~ beyond their Navier-Stokes value.
Therefore one can suppose that a similar calcula-
tion will provide the a.symptotic value of ef(r, t),
and then of f ef~(r, t)dr, beyond the Navier-Stokes
order, namely, after terms in t ~ 2 found in Sec.
III.

This expansion of g„„~(t)beyond the Navier-
Stokes order is meaningful only if we assume that
the hydrodynamic approximation yields the asymp-
totic value of g„„~and its first correction [here
"hydrodynamic approximation" means that we re-
place P(t) by its value (2. 5) and then calculate
ef (r, t) in a hydrodynamical theory not restricted
at the Navier-Stokes order]. As emphasized in

Sec. IV, it is difficult to justify rigorously the
replacement of a nonequilibrium ensemble by a
local. -equilibrium ensemble. However, even in the
frame of the hydrodynamical approximation, many
corrections to the t ~ 2 behavior appear at the
Navier-Stokes order and thus must be compared
with the "non-Navier-Stokes" corrections con-
sidered below.

To obtain Z„„~- Jef~(r, t)d r, we neglected every-
where contributions cubic in ef. For example, the
local equilibrium value of g,.X/ „ includes a term in
—,p f u„(r, t)u (r, t)dr. Using the asymptotic value
of u(r, t) provided by the linearized Navier-Stokes
equation, which is a linear combination of G~and
Go~, we obtain

f u„(r, t) u (r, t) d r,-

This result can be extended straightforwardly to
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any quantity of the form f 5f' (r, t)d r which is either
of the order of, or negligible with respect to t '.

Another sort of correction arises from the lin-
earization of the laws of hydrodynamics. It may
be seen that the corresponding corrections are at
least of order f 5f'(r, t)dr. Furthermore, to com-
pute 5f(r, t) we replaced 5f(r, t,) by a singular
perturbation at time t=O; that is, we took t
instead of (t —t, ) 2/2 and replaced 5f(n t '/2, t, ) by
5f(n= 0, t,). Corrections arising from these ap-
proximations are, respectively, of order t ' ~ and

dn n 2
I

5f(n, t)
I

2 -— dn
I
5f(n, t) !2.

Now we shall prove that the "non-Navier-Stokes"
correction to (t„„&(t)arising from the P"' term
in the exPansions of &v e 2(P) is of order t / and
dominates every correction considered above.

Consider, for example, the expansion at large t
of JGS (r, t)dr. As indicated in Eq. (2. 19), the
Navier- Stokes approximation yields

! 5S (r, t)dr=!
I
5S(n. t)

I
dn

p
/2 (5E —I15M)

(7 1)
Q7Tgg t p T

(&(t) —&/&(t)=t2TB&t ', t-~,

where

2m kT(vC)'/ ll) 7, p
15 p 4/ 3

(7. 5)

(V. 6a)

2v t/T(1(C)'/2 t11 A„+ C/, A„' p
3 p k4 3 n+ne

11/4

+ v2 C,X'(r- 1)A„,
~S

(5E-h5M)' t p
'/ 21('/ C /2A I

p T I2ge 3p C&

(7. 4)
Very similar calculations would give the non-

Navier-Stokes correction for any quantity of the
form f&f (r, t)dr. By inserting these corrections
into the hydrodynamic approximation for („„&(t),
terms of order t "appear which follow the t
asymptotic value of g„,„,&(t) found in Sec. III. Call-
ing ((/„„&(t) the asymptotic terms of order t 2'2 in
the expansions of („,„,&(t), we find

The next-order term (or "non-Navier-Stokes"
contribution) is obtained by subtracting from
i 5$(n, t) I its Navier-Stokes value

(2„)2„,/p (5E —h5M)
pT

and then carrying the limit t- ~ through the change
of variable &'= &t . We obtain in this way

x + 2A.„A~ . '? 6c

One may again deduce from the expansion of (,(t)
given in (7. 5) a property of $(to) near &= 0. A

reasoning very similar to that which led to (5. 8)
gives

t ~2d=3

2(5E —I15M) 2/2 ~, , (2,~ ~ )2„2/P

pT

g(~) —g+ !2 c1u(l'" A(1 +is ng~)

I
tu I2/4 B,(cos '1T+ i sgn ~ sin—21&) . (7. 7)

cu 0

&& 2 Re lim [5S(n't '/, t) —5S (n t, t)], (7. 2)

where Re [ ] means the real part of [ ].
Accounting for (6. 21) and

5S(n, t) = e '"2' ' 5S(0, t1),
at 0

we have

5S(n /t-1/2 t) 5S(
Ozn1t2/t) 5S(0 t )

-(2su')2q&(/P

&&(21&n')'/ (1& C /t)'/ (A„'/3pC2),

(V. 3)
which yields, once inserted into (V. 2),

n [l5S(n, t) I' lns'(n, t) I']

As a conclusion we shall examine the following
question: Is it possible to deduce again from (V. 7)
[and similar formulas for the expansion of $(P, &)
near &= p= 0] terms after the order p"' in &u(, , 2, e(p)
and then corrections to the t term in the expan-
sion of (, (t)? Although this leads to cumbersome
formulas, it seems that there is no essential diffi-
culty in proceeding in this way, both after the or-
der t ' and even at higher order. Rough estima-
tions seem to indicate that we shall obtain an ex-
pansion of g, (t) where the successive terms are of
order t"' "', where n is an integer 1. The cor-
responding expansion of $(u&) near u& = 0 includes
terms of order ~' ' ~ . It is worth noticing that this
expansion is carried out in the frame of the Lan-
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dau-Plaezeck approximation, provided one assumes
that it gives the asymptotic value of (»(t) up to
terms of order t

APPENDIX A

This appendix is devoted to the calculation of the
grand-canonical fluctuations 4 ~'2 occurring in the
value of g„(t) for large times.

These fluctuations are defined as

((IIB—hi)M) Z v„v
i, rig ~70

The derivative 9/BT ~, v may be replaced by

8 Bp 8 8 A 8

BT p
BT 8 y BP p BT'

p T BP

and the derivative

by kT
8 lng z y BP z

k2T3 Bh k T3
Cl p -p

m BT m
(A5a)

from the Gibbs-Duhem relation. Thus we have
from (A3)

x E; —mk (Ala) Similarly,

and

C„= 5M + v 3
K

i, ri E,&F0 APPENDIX 8

(A5b)

x E; —mh — ri) ' ' . Alb
1 8Viq

These definitions coincide with those given in
(3. 14), except that the tensor r;& SV,&/er; has been
replaced by

In this appendix, we shall compute fluctuations
occurring in the asymptotic value of (t)»(t). Let
4~" be those two fluctuations that occur, respec-
tively, in (t)»' and (t)». They are given by

gp ——gE- 5M

BV
d and

(Bla)

and

4„' = p(kT/m)((5E —k5M)5(H/M)) (A2a)

This is allowed from statistical independence be-
tween positions and velocities. The first step in
the calculation of C~' is carried out by replacing
v;„ in (A1) by (v,„—kT/m)+kT/m. The contri-
butions arising from (v, „~—kT/m) may be computed
straightforwardly, since they involve only fluctua-
tions of the kinetic energy. One obtains

,
s gE gM g gP gE 5M

(B1b)
The principles used in this calculation are those

that were used in Appendix A: 4~" are expressed
as derivatives of the logarithm of the grand
partition function. Let us examine at first 4&.
From (A4), and considerations which follow,

-2
4'»=AI k& +—(k —k)—

BT p T BP

ef = p(kT/m)(5M5(e/M) ), (A2b)

where 6H is the enthalpy fluctuation in the volume
&V, the enthalpy of this volume being defined
microscopically as In (B2) the notation

k, ~
BQ p Bp

„( ~3 ~3

) (B2)

The fluctuations on the right-hand side of (A2)
are given, as usual, by the second derivatives of
the logarithm of the gra, nd partition function, and
we have

3„=V
—31'v —h ) 3, (Ah)
O'T 2 8 ' 8

m BT, y 8 lng

means that these quantities cannot be derived with
respect to the thermodynamic variables. Consid-
ering now p as a function of q and p, we obtain from
(B2)

f h? h—h h—=v —), (B3)
8 BP 8$ Bg) Bp

BT p 8+ p
BT p Bp ~

BT
p

where V is the volume and z the fugacity defined
from the chemical potential per unit mass as

m p, =kT lnz

which, from

Bp ~ B& &Bpp
(B4'
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reads

8 8

BT p BDp BE' Bp p 8$ Bp

= —a V'a'T4-Bp BP 8

BT p 8$ Bp

The derivative 8 q/8p !~ may be given in terms
of usual thermodynamical quantities. From

Bq BS BT=8+ T—=A+ T --
Cp

BP p BP p BP p

and from

T
8'(1/p)

8P r . 8Z p

APPENDIX C

It has been shown that, in three-dimensional
fluids,

$(~) —$(~= 0)
)»o

(cl)

whi. ch is a direct consequence of the t behavior
of Green-Kubo integrands. This property can be
extended to any dimensionality d & 2. For this
purpose, we shall consider in order two cases:
d even and d odd.

1. d Odd = 2J + l, 1 Integer ~~ I

Frequency-dependent transport coefficients are
defined again by (5. 1) and the asymptotic value of

g, (t) verifies

we obtain g, (t) = kTA, (d)t (C2)

8 g 2 T BCp BCp

Bp2
—g CpT C BT

—gT
8

The fluctuation 4& is calculated along similar
lines. Writing 4& as a third derivative of the loga-
rithm of the grand partition function, we have

where the values of A, (d) are obvious from (3.12),
(3. 15), (3.34), and (3. 35). The coefficients
A„„,defined in (5. 3) are simply equal to A„,„,,(3).
Consider now the quantity

&'h(~) -=k(&) —&(0)

8 p Bg 8

BT p T Bp BP, z (d
l ~=o

(u' ' 8' '((&u)

(~-1)' (»)' ' . (c3)

Using now the rela, tion

8 8 BP 8

BT s BT p BT sBP r

This function may be expressed straightforward-
ly as a Fourier transform:

1a'$(~) = dtIT ~,

e " -1+it ~ ~ — —
&

t . C4-f et (- i(ut)'

(t —1)!

82
C~=AVk T p P ——

BJ s 8~ p

= ~V'a'T' ~8

BT sBp s Bp

Using now the identity

BP 8p ~8 8p

Bp 5 BT s 8$ p BT

f-
P)

~8 ~8 8q
BT BQ p

BT.

and the fact that any first derivative of

p
8&i p BP e

vanishes, we have

Taking now t )t as the integrationvariable and

integrating by parts, we have

a'((&u) = (i&u)' ' (-,'&u)'@ (1+i sgn~) [w/I'(f+ —,')]A, (d),
CO» 0

(c5)
which is the generalization of (5. 8) at any odd di-

mensionalityy.

d Even —=21, 1Integer ~~2

Consider first the case d =4 and the quantity

g(~) —g(u& = 0) = (1/kT) f dt (e '"' —1)!!~ (t) .
(ce)

For t larger than some time to, we may replace
g, (t) in (C6) by its asymptotic value (kT/ta) A, (4)
and obtain

we obtain

4'=bV k T 2C4 8p 8C 8p C

T s Bp s 8& p

p Bp s BT s Bp s BT s Bp s BT s ((w) —g = &omA&(4) f, dt lnte '"'

=i&a ln~ &u~ A, (4), ~-0, d=4. (C7)

Proceeding as in the case of odd dimensionality,
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we may extend this result at any even d to find

(cs)

where
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Two mutual friction numbers are derived for superfluid helium which can describe the on-
set of turbulence in counterf lowing helium. The numbers are M„——Ap, p„(V„)~d2/q„(V„) and

M, =Ap, p„(V„)dt/g„(V, ), where M„predicts the onset of turbulence in the normal fluid and

Ms predicts the onset of turbulence in the superfluid. Staas, Taconis, and van Alphen's
Reynolds number is found to apply only to flow conditions for which V„:V,.

INTRODUCTION

For many years, now, considerable attention
has been given to the heat transport properties of
superfluid helium. For this liquid, total isothermal
Quid flow in the presence of small heat currents
can be described in terms of a two-fluid model in
which a counterflow of two-fluid components,
normal fluid, and superfluid can be envisioned.
As a consequence, the heat transport properties
of He I are intimately related to its hydrodynamic
flow properties. The same might also be true for
larger heat currents where the two-fluid model
breaks down and nonlinear relationships develop
between the heat current and temperature gradient
as well as the heat current and pressure gradient. ~'3

The nonlinearities have been described in terms
of an empirical mutual friction force I' originally
proposed by Gorter and Mellink and are known to
accompany a developed tangled mass of vorticity
and/or turbulence within the fluid. ' Although several
experimental investigations have been made into
the nature of the tangled mass of vorticity, ~
very little is known about the onset of turbulence
in superfluid helium. By deriving a set of dimen-
sionless numbers similar to the Reynolds number'
of classical hydrodynamics, a possible explanation
for this phenomenon will follow.

CRITICAL-HEAT PROBLEM

The generally accepted equations of motion for
the steady-state flow of liquid helium are


