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In an earlier paper an expression was derived for the memory function associated with the

classical phase-space fluctuation function.

In this paper, we investigate further the proper-

ties of this memory function, We dicuss the region of validity of our approximation, the low-
wave-number and -frequency limit, as well as general properties of the memory function. We
also discuss the hydrodynamics predicted by the memory function and the associated kinetic
equation, We see, for example, that the sound velocity is given by the adiabatic speed of sound
calculated thermodynamically from that static energy and pressure evaluated to lowest order
in the density. Finally, we discuss two techniques for handling the two-particle Liouville op-

erator that appears in the memory function.

tor which serves as the classical time propagator.
functions of the two-particle Liouville operator.
functions is given in terms of Hamilton’s characteristic function.

knowledge, were not available previously.

INTRODUCTION

Inaprevious paper (I), !
determining the memory function associated with the
equilibrium phase-space fluctuation function, In
particular, the memory function appropriate for a
low-density system was derived and the classical
limit of this memory function was investigated.
Finally, a short discussion of the properties of this
memory function was given. In this paper, we
want to discuss further the properties of this low-
density memory function and indicate the range of
validity of our approximation. We shall limit our-
selves to a study of the classical memory function.
We begin with a review of our previous work,

I. SUMMARY

In I we discussed the kinetic equation
E‘.’ > > - -
(Z - —,;Zﬁ)s(krpp’yz)— j daﬁ ¢(k,pp,Z)S(k,§§',z)
=-S&,pp") (1.1)

satisfied by the Fourier-Laplace transform of the
equilibrium phase-space fluctuation function

SE-%',5p’,t~1")

= Ept) - (fEBEY (X D )= (' D N,
(1.2)

where
f(Fﬁt)=t£z: 8(F - F,(1)) 6(5 - B, 1)) (1.3)

¢ is the memory function associated with S and §
is the spatial Fourier transform of the static cor-
relation function S(&,pp’,—#’=0). We found in I

that in the low-density limit
o&, 5P, 2)= 0 (k,0)+ 9 [k,BD’,2) , (1.4a)

5

we discussed a technique for

One technique is to introduce the Koopman opera-

The second technique is to introduce eigen-
In an appendix the exact form of these eigen-
These eigenfunctions, to my

_Where
6@ &,p)=- (k- p/m)C
pD’,2)f(p")=

(®)fo(D) (1.4b)

@k, 5P n*(B/m)*v v,

- 2 2
X [ dad®rd®pe?@ P ”"‘g(r)V’V(v)
><[e’“‘ r/z (a p +p) e" ik /25( p)]

x[z -k &/m+LE,5)]"v, Vir) e-'“/z s(p-a-p),

(1.4c)
and
S (5, 55" =/o(p)6® ~B") + k() fo() fo(p") . (1.5)
In these equations, f,(p) is the Maxwellian
folp)=n(B/2mm)*/2 &80/ 2m (1.6)

C(®) is the direct-static correlation function and
is related to the hole function %(%2) and the pair-
correlation function

(|5~ |)=<’_§ E-F)6G -F,))  (1.7)

by

h(k)=Ck)/[1 -nCk)]= [ dr[gl) - 1]e**?

(1.8)
In the low-density limit, g(r)=e" , where V(r)
is the interparticle potential. Finally, we note
that L(¥,D) is the relative two-particle Liouville
operator

B8V (r)

L{,D)=LyT,P) +L;F,p) , (1.9a)
Ly¥,p)==-2ip-v,/m , (1.9b)
LF,p) =iV, V) v (1.9¢c)

The kinetic part of this Liouville operator has a
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more familiar form if we introduce the reduced
mass [ =3m.

II. TWO-PARTICLE LIOUVILLE EIGENFUNCTIONS

As a first step in developing a practical method
for use in numerical calculations, we must develop
techniques for treating the two-particle Liouville
operator in the memory function. In this section
we develop the eigenfunction method. In Sec. IV

we develop the orbit method. Since the eigenfunction

method is particularly useful in discussing the gen-
eral properties of the memory function, we intro-
duce it here.

We introduce the exact two-particle Liouville
eigenfunctions which satisfy

LE,DUED| E¥) =K -Tw@EB| k¥ . 2.1)

We show in Appendix A that we can find such a set
of eigenfunctions and that they can be constructed
to be complete and orthogonal:

J @R @B | RV ED | KV =8(F -5 -5"),
(2.2)
[ drd*pyp* G | KT ED | K90 =0® -K)6G, -77).
(2.3)

We can then introduce the identity (2. 2) into (1.4c),
and use (2. 1) to find

¢k, BB, 2)fo(p")
— Ba?
=303(B/mm )V, v, [ dadkdiv e /™
X F¥ o &V, | D)z -k - a/m +K -T)
X Fk,u(ﬁvﬂrﬁ')j ’ (2-4)
where
g —- . 3 I
Fu o &V |D), = [ @ d®p e PHED /12y F5|KT,)
xv Vet (T,p,p) , (2.5)
P *(F,B,B) ="/ 26(G -5 +5) - e *H26@ -5~ 7).
(2.8)
We now have a well-defined expression for the
memory function, We note that the dynamics are
now included in the eigenfunctions. In our further

analysis, it will be useful to write ¢‘® in a spec-
tral form. Since the collision operator is analytic

in z for Imz #0, and vanishes as z =, we can
write
> dw " E,-‘*, w ’
¢(c)(ﬁ’ppr,z)fo(p'):j aw ¢"(k,pp’, )fl](p ) ,
T W=z
(2.7)
where

¢""(K,5p’,w)=Imp (X, pp’,w+i0*) .  (2.8)
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From (2.4) we have immediately

> >y

¢"'(K,pp’, w)fo(p")
== 3V, v, J dad’td v, Fy o (f'\?olﬁ')j

X F o o[ B); (B8/1m P6(w - K- 3/m + K- ;).
(2.9)

We then want to take matrix elements of ¢’ with
respect to the complete set of momentum states
Hy(p),

>,

o1/K,w)=[ dpdp"Hf (p)" 'K, DD, w)fo(p" ) H,(p")
== 3m*(B/mm)® [ daadslgfvoe's“‘z/”'
x6(w —K - &/m +K-¥o) B ®¥,|k DB, &V, |k o),

(2.10)
where

B,(EVOM?E):f &p d°p d*r e PH I /2

X V,Hy(p)- v,V )Ep | K¥o)o*F,5,5) .

(2.11)

If this expression is to have more than formal
significance, we need an explicit form for the eigen-
function y(Fp1KV,). We give an explicit expression
for these eigenfunctions in Appendix A. The form
for the eigenfunctions given by (A2) can be inferred
through the use of the eikonel approximation in
taking the classical limit of the quantum-mechanical
equation:

L| E)(E,|=G/n)H,]| E)(E,]|]
=G/n)E, ~E,)| E) (| ,

where the |E;) are relative two-particle energy
eigenstates, While we have seen related approaches
in the literature,z we have not seen this form (A2)
previously identified as the exact classical two-
particle eigenfunctions,

(2.12)

IIi. SOME GENERAL PROPERTIES OF THE MEMORY
FUNCTION

In this section we summarize some of the gen-
eral properties of our low-density memory function.

A. Symmetry Properties

First we note, as can easily be seen from the
symmetry properties of the Liouville eigenfunc-
tions, that the collisional part of our memory func-
tion satisfies the symmetry conditions!

¢k, pp’,2) ==~ (~K,pp’, - 2)

=[¢p@&,Bp’,2)]* , (6.1
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>

¢ ®,55’,2)fo(p") =0 &,5'5,2)fo(p) . (3.2)

These symmetries guarantee with the kinetic
—b-b,

equation (1.1), that S&,pD’,w) is invariant under

PROPERTIES OF THE LOW-DENSITY MEMORY FUNCTION

2547

‘B. Sum Rules

For short times S(&,pp’,z) can be calculated
from sum rules.® These rum rules imply large-z
conditions on ¢*:

translations, rotations, parity, and time reversals. }{YE¢(E,§5',Z)=¢(S)(E,-§) ) (3.3)
j
1imz¢ [, 5", 2)fo(p")=np? [ &rgw)Vv, v V)]V, v, [f(p)s® -]
-8 [ drcosk-T)gt)v, v, Vr)+ 1V, v, C)] v, v, [fo(p)fo(p")] (3.4)

In the low-density limit, where g(r)=e™"" we

see that our memory function satisfies both sum
rules and gives the correct short-time behavior
for S.

Note, because we have used a kinetic description
where the memory function depends on the contin-
uous indices p and p’, the single expression (3.4)
summarizes in a symmetric form the many sum
rules one obtains in a finite-component description,

C. Weakly Coupled Limit

If we expand our approximate memory function
to lowest order in the potential and introduce the
Fourier transform of the potential, we obtain pre-
cisely the form for the memory function obtained
by Forster and Martin.*® Forster has shown that
in the small-%. and -z limit their memory function
reduces to the Fokker-Planck operator that is well
known in the theory of Brownian motion,

D. Dynamical Stability

We note from (2. 10) that if we set i =j we have the
inequality
¢1ilk, ) <0 (3.5)

This inequality property is related to the dynamical
stability of the system and guarantees the re-
quired®® positivity for S:

J @pd®’H¥(p)SEK, 5D, w)H, (p’) = (3.8)

Of course, this positivity requirement of S follows
physically from the fluctuation-dissipation theorem
(T2.11)

%Bws(ﬁaﬁﬁ'yw)zx”( (3-7)

and the identification of the dissipation with the
work done on the system which implies®

-y

pr,w)

J @pd®’ Hf (p)wx"&, D', wH,(p")=0 .
(3.8)
This inequality holds for response functions de-
scribing decaying systems. It is easily seen that
(3.5) is related to the well-known theorem that
eigenvalues of the linearized Boltzmann equation

are negative and serve as the inverse relaxation

]
times associated with the decaying modes in a sys-
tem near equilibrium,

E. Conservation Laws

It is also well known from the Boltzmann theory
that the eigenvalues corresponding to the five con-
served momentum eigenfunctions

H(p)=n(p)=1,

Hy(p)=g,(p)=p5 ,

Hy(p)=e(p) =(1/V86) (p*-3) ,
Hy(p)=g:(p)=p1 , Hs(p)=gi(p)=ps

are zero. In our case, where the collision operator
depends on % and z, Forster and Martin® have shown
that the matrix elements of the memory function
with respect to H,, H,, H,;, and H; form the poten-
tial contributions to the currents associated with
the particle and momentum densities multiplied by
k. The matrix elements taken with respect to Hs(p)
have two parts, the potential contribution to the
energy density times z, and the potential contribu-
tion to the energy current times 2. We have shown
these statements hold for our low-density memory
function. The explicit forms for these currents

are not very illuminating, We shall be satisfied
with showing that as % and z go to zero the matrix
elements with respect to the five conserved eigen-
functions do vanish, thus guaranteeing the total
conservation of particles, momentum, and energy.

(3.9)

1. Conservation of Particles

If H=11in (2.11), then
BEV| RA) =V, - [ drdpyED |EV,)
XV, V(r)2isin(3k. ¥)=0, (3.10)
o1, w)=¢{{[K,w)=

for any %2 and w, which guarantees the conservation
of particles.

2. Conservation of Momentum

If H=p,, v=2, 4, or 5, then from (2.11)
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B,[&¥,|Kd)= [ drdFpED|KT,)

X v 'V(r)2 sin(3k.1), (3.11)

and as & goes to zero
imB,&V,| K&)=0
k=0
for v=2, 4, and 5, and the total momentum will be
conserved since
lim¢}(k, w) =lim¢ (K, w) =0 (3.12)
B =0 k=0
for v=2, 4, and 5.
3. Conservation of Energy

If H, = Hj,, then
By (&7, ka)

=[ &rd’p »FD | K Vo)l2a - v, V(r)2isin(zk-T)

+2p - v, V(r)2cos(3k-T)]
If we first set £ =0 and insert the explicit form for
¥ given by (A2), we find
B,&V,|0a)=4 [ d®rn,¥,)
X V,W(E,V) v, Vr) o™t VoW )
(3.13)

If we integrate this by parts and use the “micro-
scopic conservation law” (A9) satisfied by the den-
sity of orbits, we find

By(E¥,| 0a)= [ & Virm(E, V) PR

X4 Z—J\ El Ver(Fr—‘;O)VvOIVrIW(;f ‘70)
12%]

We can then use (A7) to find

By®¥,|0a)=4i p2[R-¥,) [ d*r d®p Vor(Ep| KY,) .
(3.14)

Since B, is multiplied by the & function 6( - vy +w)

in the matrix elements ¢3}, we find as we let
w =0 that

11mhmq>3!(k w)=lim lim¢/; (k w)=0 (3.15)

w=0 &-0 w =0 k-0
We should point out that this alone does not show
that the matrix element of the complex memory
function vanishes as k-0 and z - i0* or

x (936, 0}/ (w ~2)]=0 . (3.186)
As a first step in showing that (3. 16) holds, we can
use the result (3.15) with the Plemelj relations to
find
lim 11m¢31(k 2)= hmPf dw/ﬂ)[¢3’(k w)/w)]
z=10* R~

(3.17)

Inserting ¢§,f(§,w) using (3.14) and (2.10), we see
that the integration over w can be easily performed:

[ do 6w +K-¥ )/ wl=-1/&-7,) .

This k - ¥, cancels the factor in B;, We can then
use the completeness of the Liouville eigenfunctions
to rewrite (3.17) as

lim hm¢3,(k z)
£+10* 2 =0

=in2@ip)(p/mm) [ drd’pdia e t?s?)/m BV ()
X V('V)VTV('V) M Va [HJ (a +§) - H/(a - 5)]

and we note that this vanishes due to the oddness of
the integrand in #, thus proving (3.15). Therefore,
we have ensured over-all conservation of energy

in the system., We note that energy conservation
requires some attention to the detailed dynamics

of the system. Consequently, one must be very
careful when modeling memory functions to be sure
this property is preserved.

IV. ORBIT METHOD

The traditional method used in dealing with the
Liouville operator is to use the time-propagation
property for Koopman’s operator e*Z¥, This op-
erator has the property that for some function

F(%,9),

3 -
e”‘L‘f""F(r, p)=

FEQ),p0) 4.1)

where T(¢) and p(t) are the phase-space coordinates
for the relative motion of two particles as a func-
tion of time, and T and D are the initial coor-
dinates. Using this property we show in Appendix
B that the memory function can be written in the
form

¢ K, pD,2) =0 K, pD’,2) + 957 K, D", 2) ,

lim l1m¢3,(k z)=lim lim f (dw/m) (4.2)
2-10% &= 2=10* 2 =0 where

|
SO, BB, 2)/o(p") = ~n2(B/1m)* [ dad®y dFle" 2 6(G - F+5) + e F2 5@~ - )]

x g8 (o245 Im l?—k'?i/m+Lo(f,§)]{g(r)z(z k-p'/m) [ at ek EIme



|on

Xe-n?.;(t)/z 5(5r -a-p) )+e-n‘:-?/z 5@ -a- g)]} ’

¢5 &, DD, 2) fo(p ) = &-B/m)CR) fo(p) folp ")
(4.4)

Therefore, to obtain numerical results, we must
specify the form for the interparticle potential and
then solve Newton’s equations for the relative
trajectory and momenta of the “colliding particles”
as a function of time given the phase-space initial
conditions (¥,p). We then have several integrals
to perform; one of which is a time integration.
This form is particularly useful if we choose a
potential that has a step discontinuity in space; then
the force is a 6 function in space and the relative
momenta of the particles are constant in time except
for a finite change over an infinitesimal time ele-
ment at the point of force. We can perform the time

i

>
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(4. 3)

[

integration in the memory function explicitly, be-
cause the momenta, and, therefore, the coordi-
nates have such a simple time dependence in this
case. We intend to discuss the case of discontin-
uous potentials in a companion paper.

V. BOLTZMANN LIMIT

In I the relationship of our memory function to
the Boltzmann collision operator was discussed.
Here it is to be demonstrated explicitly that

lim imo ‘@&, pp’,2)f,(p") =ik, BB f(p")
2-40* R =0
(5.1)

where Kz(pp’) is the linearized Boltzmann collision
operator.’ First we set 2=0 in (4.2) to find

¢ ©, 5D, 2)fo(p") = =n2(B/mm ) [ dPad®ya®F e @ FHIM5(& - + D)+ 6(@-B - )]

x[z + Ly@, ) {gr)i z

[+ dt et 6@ - G - 5(1) +6(5 -3 - B)]} (5.2)

In the limit as z —i0*, we can use the identity derived in Appendix C to find

3@ (BB ffp N =in?(B/1m) [ dad® d% e <) Im [6(G -3 +5) +5(G -5’ - D)]

(@5 v,/mi{ge(-F - P)6(F-a-p) -6(F-a-p*N} ,

where the step function ©(-7T -p) is necessary_since
there will be a collision only if ¥-p<0 (for ¥.p >0,
p*=p). If we fix p along the z axis, change integra-
tion variables from d* to dpbdbdz (where ¥ is the
azimuthal angle and b is the impact parameter),

J

(5.3)

—

and express the momentum “after the collision”
(p*) in terms of §, b, and ¢, we can easily per-
form the integration over z evaluating the integrand
at the surface z =+~, Because of the step function
the z =+« term does not contribute, and we find

S (BN olp") = - in2(B/m) [ d*ad% et @I m (2 |B] /m)[6(@-5"+5)+ (@ -p"~5)]

xfo'” bdbf:' ap[6(p-a-p)-6(F-a-p*)]

- 3 - -

(5.4)

After doing the integration over «, and performing a change of variables, we find

¢(c)(0, 55’,i0‘)fo(1’,)=i fdsj),dﬂo(ﬁ—ﬁl, Q)(l 5‘51]/””)fo(1’)f0(?1)

x [6(" ~BF) - 6(D" =Dy +6(D -p*) -8(5'-D)] ,

where o is the differential scattering cross section,
dQ is the differential solid angle, and the p’s are
related by

D+Di=D*+pF (5.6)
2 2 *2 *2
P ) i ©.7)

2m " 2m  2m " 2m

(5.5)

When we compare this result with the linearized
collision operator K4(PP’) we see that they differ
only be a factor of i.

There are several points to note here. First,
since (1.4c) was derived via a density expansion
for the self-energy associated with the single-
particle Green’s function, it has not been necessary
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to truncate a hierarchy of equations. Consequently,
we have not used the molecular chaos assumption.
Second, we see that the standard coarse graining
arguments are equivalent to looking at the small-
frequency and wave-number behavior of the memory
function. This, of course, means that we average
over the region of two-particle interactions in
space and time. Finally, we comment on the fact
that we have derived the “irreversible” Boltzmann
collision operator from the reversible memory
function. The answer to this apparent paradox is
that we “prejudiced” the time variable to be used

in connection with Kz by requiring that Imz >0,

By choosing Imz >0, we were able to use the identity

(B9) which meant that we were to propagate quan-
tities forward in time. If we had chosen Imz <0,
then the propagator

e -k G/m+ L& D)) =i [ at e mr® i

would enter the calculation. Simple manipulations

‘then show that the memory function in the limit
z-i0°, =0 is given by (5. 5) with p* replaced with

the t1me reversed momentum and e( r. p)

~o(F" p) If we let p~-p, B’ -—sp andp-——p,

@ - - & in the integrand and note p%(-p) = - p*, we

find

$©0, -5 -5",i07)=-0°@0,55,i0") ,
which is precisely the requirement for time-re-
versal invariance. Consequently, even in the
Boltzmann limit our equation is reversible if we
keep track of our position in the complex plane.

VI. HYDRODYNAMICS

It was indicated in I and in Sec. III of this paper,
that our memory function is in agreement with the
conservation laws governing the system, More
specifically, in this section, it is to be demon-
strated that our memory function is in agreement
with the long-wavelength and small-frequency limit
of these conservation laws where there is the hy-
drodynamical “contraction” of the description,
Our kinetic equation in this case should reduce to
the five equations forming the Navier -Stokes the-
ory. A complete analysis of the relationship be-
tween our memory-function formalism and hydro-
dynamics would be rather lengthy. The reader is
referred to the paper by Forster and Martin (FM)®
where such an analysis is carried out for their
weak-coupling memory function. We note that
much of their analysis is not tied to their partic-
ular choice for the memory function, but depends
on the general symmetry properties satisfied by
the memory function and the form of the kinetic
equation. Thus, many of their results are applic~
able to our low-density case if we replace their
“mass operator” with our low-density memory

GENE F. MAZENKO
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function. Here we only want to outline the tech-
nique they have developed for extracting the hydro-
dynamical behavior from the kinetic equation. This
is done by showing how one can obtain micro-
scopic expressions for the transport coefficients and
by demonstrating that the density-density correla-
tion function does have a sound and diffusive mode
in the hydrodynamical limit. In particular, we
shall want to show that the sound velocity is equal
to the adiabatic speed of sound as predicted by
hydrodynamics.

In order to simplify the discussion, let us intro-
duce dimensionless momentum variables. We let
P~ muv,p for all momenta where muZ= 8", and we
define

Wolp)=e?*12/(@m)/? 6.1)

We then introduce a bracket notation for integrals
in momentum space. The scalar product for two
functions H(p), G(P) is denoted by

(H| Gy = [ & HXB)W,o(p)G(D)

The matrix elements of some “operator” R(p
are defined by

(H|R|G) = [ d’pd’p’ H*(D)

(6.2)

- -»,)

R(BD)Wo(p")G(D')
(6.3)
We then observe that the subspace in momentum
space on which Ky vanishes is very important in
the hydrodynamic limit, This subspace is spanned
by the five orthonormal states H;(p), defined by
(3.9). We will take % in the three direction so that
H;, i=1, 2, 3 are longitudinal modes and H;,
i=4, 5, are transverse modes. These five states
can be understood as part of a complete ortho-
normal set {H;(P)} such that

(H,|H)y=6,;, ,
20 | By (H | =1 (6.5)

We will not need to specify the form of these func-
tions for ¢ >5 in this section.
We also introduce the projection operator

(6.4)

5
=1—731\H1><H¢\=1—Q , (6.6)

which projects onto the subspace where K van-
ishes,
Ky P=PKy=0 (6.7)

We now want to evaluate the transverse-current
correlation function

Sk, z)= (mvo)z(g,]S(E,z)lgt)
= —n(mvo)z(gt \ [z "zo—¢(ﬁ,z)]-l‘gt>

(6.8)
and the density-density fluctuation function

Sy, 2) = =1 = nC(k))™
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x(n|lz=2°) - (&,2)]Yn) , (6.9)

where the operator in momentum space 2°(¢) has
the explicit form

2°K, 5" =vek B 8(5 -5 ). (6.10)

We consider these quantities since one can iden-
tify the shear viscosity with the relaxation rate for the
transverse excitations, and the sound pole is as-
sociated with the excitations in the longitudinal
modes. We consider the transverse excitations
first and omit the £, z arguments where possible.
Forster and Martin have shown that the transverse
fluctuation function can be written in the form

Si(k,2) = = n(mvyflz - D,(k,2)]"" (6.11)
where
Dy(k,2)=(g| 0| &) +(2:| 5Qlz - @9Q1 QP | &)

(6.12)
ok, 2)=2"() + o &,2) . (6.13)

If we compare (6.11) with the expression from hy-
drodynamics, we see that the shear viscosity is
given by

n=1lim lim 2% p,(,z) . (6.14)

z2-i0* k=0 k

We can go further if we note from (3.11), (2.7),
and (2.10) that

3 (&, 2)| g,) =0k &,2) | &) (6.15)

(8¢9 (K, 2) =vok( g, | 7, &,2) |

where we expect that

(6.16)

7,(0,40*) = lim lim7,(k, z)
z~10* k=0

is a well-defined quantity. Then we can easily
show, using symmetry arguments, that
(&:]2°+ 0 +0 | g,) =(g,| 6, 2) | &)
(6.17)
and since ¢’Q =0, we can write
(gt l @°+ ¢(S) +¢(C))Q= vk 8¢ s-{Pa + T:(E,Z )R
(6.18)

We can calculate the matrix element ¢,,(k2) for
small 2 and z explicitly. We find to lowest order
in 2 and z that

(8|0 @k, 2)| &) = - kit [ at [ drdp
X Wo(p) g )y ), E @)

where I,(r) is the potential contribution to the dy-
namical flux for the “shear viscosity of a two-
particle system”:

(6.19)

IV(F)=—'V3V,2V('V) . (6.20)
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We then have the expression for the viscosity

n=m+n , (6.21a)
where
m=tmn [ dt [ & dp Wo(p) g, ELE)
(6.21b)
e = mnvi{ & | (pg +7:(0,i0"))Q( - K51)Q
x (p3+74(0,i0") | g,) . (6.21c)

We understand the need for the minus sign multiply-
ing Kj;! since the eigenvalues of K, are negative and
n should come out positive. Thus we see how one
can extract expressions for transport coefficients
from our microscopic equation of motion. We

note that if we had started with the Boltzmann equa-
tion, we would have derived the expression

N =mnvi{ g, ll’sQ( ~K;1)Qps ! &)

for the viscosity. Comparing this result with the
result we have derived above, we see that by
setting 2 =0 before solving the kinetic equation we
lose contributions from the potential to the vis-
cosity.

We now want to consider the existence of sound
modes in the system. These modes are longitudi-
nal, and in this case, the density, longitudinal mo-
mentum and energy correlation functions are cou-
pled. Because of this coupling, Forster and Mar-
tin considered the matrix correlation function

Gy, (K, 2)=(i|[z - 2°®) - 0 (k,2)] | 5) , (6.23)

where i, j=1, 2, 3 are the three longitudinal states
n, &, and €. We note that

(6.22)

Spnlk,2)= —n[1 - nC(k)] "Gy, (&, 2) ©6.24)

Forster and Martin show, in complete analogy to
the transverse case, that we can write

[2511“[)11&72)]01)::51;: ) (6.25)

where
Dy, (K, 2)=(i|z°+o| )
+(i| 2%+ 9°)Q[z - Qz°+ $")Q] 1@

x(@°+¢)| 5y . (6.26)
Forster and Martin give many details about the
treatment of such an equation in the hydrodynamical
limit. We will not go through the entire analysis,
but we will simply show that the position of the
sound pole is correct. To find the poles of S,,(kz)
we must examine the zeros of the 3 X3 matrix

z — D(kz) by solving the determinantal equation

det[z - D(k,z)]=0 (6.27)

To solve this equation to lowest order in &, z we



2552

note that we need D, to first order in 2, z. Since
(i1¢'”(kz) is explicitly of first order in %2, we see
that the second term in D;; is of second order in

k and

D, ([&,2)=(i|2°+ ¢ +¢'| j) +0(F?)
=vekD},(x) +0(R?) , (6.28)

where x =z/vyk. The matrix elements of z°(k) and
®'® are straightforward. We discuss the evalua-
tion of the matrix elements (i|¢‘(kz)l j) in Ap-
pendix D, We obtain the result

0 1 0
D%,(x)= [ 1-nC(0) 0 Vi(1+3d)| ,
0 Vi(l+3d') -xd
(6.29a)
where
d=5n [ & [BV()]Pek) , (6.29b)
a'==%n [ dr[BV0)glr)+Ckr)] (6.29¢)

The associated determinantal equation reads
X[x®*1+d) -3 (1 +5d"P]-x(1 +d)[1 -nC(0)]=0 ,
with the solutions
X,=0 , (6.30a)
X5,5=1-2C00)+5[(1+5d"P/A+ad)] . (6.30b)

The first mode corresponds to a diffusive mode
which gives rise to the Rayleigh peak observed in
light-scattering experiments and the second and

1
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2{1-3nfd* [BVr) ™" 1oV _1]}2

len

third solutions correspond to the Brillouin peaks

with the associated speed of sound
Co=ViX3,s5 . (6.31)

We can check this expression for the speed of
sound against that calculated from hydrodynamics.
According to hydrodynamics, the speed of sound is
equal to the adiabatic speed of sound

2 _( 8P
CA'(amn s
We can express this thermodynamic derivative in
terms of the » and B variables as

(ﬁ) :( aP) 1 (gg) €+p —n(de/on)g

(6.32)

amn omn )5 mn \ 3B i (9e/9B), ’
(6.33)
where for a low-density system
€=3nkT+3n* [ & Vir)e™®"™ (6.34)
and the static pressure is given by
P=nkT - 3n°kTC(0) . (6.35)

This follows from the exact equation
P=nkT -§n* [dF-v,V(r)glr)
and the low-density result
[ & F-9,Vr)e®" " =3/8) [ dr(eF"" 1)

=(3/8)CO0) .

We easily compute the thermodynamical derivatives
to find

ci=V:<1-nC(o)+

Comparing this with the expression derived from
dynamical considerations, we see that the results
are identical. This is, of course, an important
test for our theory, and we have agreement. We
will not investigate the damping of these sound
waves here since the analysis follows that for the
viscosity and we do not anticipate any unexpected
results,

In summary, we see that (1.4) gives us consider-
ably more information about the dynamics of a
low-density system than the Boltzmann equation.
For example, if we had used the Boltzmann equa-
tion we would replace (6.36) with C4 =303, This
is, of course, because the Boltzmann equation is
only compatible with free-particle thermody-
namics,

VII. RANGE OF VALIDITY OF THE THEORY

Before going further we want to discuss the range
of densities for which our theory is applicable. It

3 1esnldr [BVEr)]Fe™®™

) . (6.36)

-

is plausible that our approximation for the memory
function breaks down at approximately the same
densities that our approximation for the static cor-
relation function breaks down. This is another way
of saying, at least for short times, that we believe
that higher-order corrections in the densities be-
come important through mean-field effects before
they enter through multiple-scattering effects,
where we consider the density corrections to the
time propagator e'“*, We can, therefore, estimate
the density at which our approximation fails by
analyzing where C(r) deviates from its low-density
value. In this regard the solution of the Percus-
Yevick equation for hard spheres should be ade-
quate.® In that approximation we find that the direct
correlation function deviates from its low-density
value when

£ mrdn=0.10

(ro=hard-core diameter) or 'ro/n‘/s" 0.5. We ex-
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pect, therefore, that our “low-density” approxi-
mation is valid for moderately dense gases. In
contrast, our approximation is clearly inadequate
for describing liquid systems where mrin~3,

In discussing an experimental test of this theory,
we note that light-scattering experiments do not
probe with wave numbers large enough to observe
deviations from the Boltzmann equation. This is
supported by the fact that the linearized Boltzmann
equation® adequately describes the light-scattering
experiments of Greytak and Benedek!® which probed
nonhydrodynamical behavior in gases.

The need for a theory beyond the Boltzmann equa-
tion develops only for systems where either kv,
~0.1 or nd4m{/3~0.1 where 7, is the effective hard-
core radius., The first condition indicates that the
probe samples the region of interaction and the
second indicates that the density is large enough
for static correlations to be important [C(z =0)
= —%77703]. These two conditions also demand
that k1 ~1 where [ =3 (3m)! 2(nmrd)™ is the mean
free path.

Greytak and Benedek performed their experi-
ments on xenon at 24, 8 °C and a pressure of 780
mm Hg, reaching wave numbers on the order of
2x10° cm™. If we note that the effective hard-core
radius for xenon is about 5.2 A, we have kv~ 0,01,
Thus, even for these relatively large wave numbers,
one does not really need the detailed structure
of the memory function. We also note that these
experiments were performed on a low-density sys-
tem where the density times the direct correlation
function is a small number,

nC0)=-ninri~-107

Consequently, the static part of the memory func-
tion can be neglected and one can use the free-
particle initial condition

SE,55")=0(5-3"/,(p")

At present, the only experiments that measure
S for wave numbers such that 27~ 0.1 are neutron
scattering experiments on simple liquids. The
densities involved in these experiments are, from
a rigorous point of view, beyond the range of our
“low-density” approximation. Thus the results we
can derive from our memory function which show
definite deviations from predictions of the Boltz-
mann equation cannot as yet be checked against
experiment. Consequently, it would be very inter-
esting to see the results of scattering experiments
performed in the intermediate-density region
ndn/3r{ ~0.1.

VIII. DISCUSSION

In this paper we have discussed some of the
properties of our low-density memory function. We
have shown that our kinetic equation is consistent
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with all of the independent checks (sum rules, hy-
drodynamics, etc.) that we have at our disposal.
We are, of course, more interested in solving our
kinetic equation to determine the momentum mo-
ments of S for intermediate 2 and w where we have
no information. Techniques for carrying through
this calculation will be discussed elsewhere,

Even before carrying out such an explicit calcu-
lation, we feel that we have gained some insight into
the structure of the memory function associated
with the phase-space fluctuation function. Further-
more, we believe that much of this information will
be very useful in understanding memory functions
associated with more complicated systems.
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APPENDIX A: TWO-PARTICLE LIOUVILLE
EIGENFUNCTIONS

The solutions of the eigenfunction equation
LEBED|RY) =K -Tw@E B |KV) | (A1)
where L(r,p) is given by (1.9), are given by

YEBIRTY) =n(F,70)8(D - V,WEF, vy)) e F-Tug¥Ev)
(A2)

where
n(F, V) = (2m) /2 det(V,,o'V,’W(i", 7o) (A3)

is what we call the density of orbits, ! W(r,v,) is
Hamilton’s characteristic function satisfying the
equation

[V, W@, %)1%/20 + V) =z pof (A4)
which leads to the expressions, via differentiation,

v V) + (/)2 VIWE, V)Y,V IWE, V) =0

(A5)
poh = (1/1) 25, VI W(E, V)V, vvo’W(F, Vo)

(A8)
v, 2, vIWE, V)V, v, W, ¥,)=0 . (A7)

The quantity »(r,v,) satisfies the conservation law
Ei Vri [Vri W(Fy vO)n(ir’ ‘-;0)] = 0 (A8)
Proof of (A8)
If we define the quantity

Q =Z>i Vri W(Fy VO)V,«i"(Fr ‘-;0)
and note the identity
6(detA) =detd 23 Aj164,,
i lj

we have then
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fen

Q:IE v,'W(F, \70)’2! [V,' 9, W, 7)1 [V, v, v, ' WE, %) In(E, )

==n(f, %) 2 V'V, ' WE )V, v, WE )] VI WE )

where we have used (A8) to obtain the last line.
Then, since 3; X; Xj; = 5,,, we have

Q=~n(¥,Vy) 23 V)V, W(F,7,) .

isdsl

f

Adding Q to (V2W)n(r,v,), we easily prove (A8).
As a first step to showing that § given by (A3) and
(A4) is a solution to (Al), we consider the effect
of the kinetic part of the Liouville operator on the
momentum 6§ function in . We have

Ly(F,0)8(5 - v, W(F,¥,)) =i 42 %’ [v,' v/ WF, V)] v, 8(5 - v,WE,¥,))
!j

.~ VAWE, Y - > -
=3 %/ -"—(_’_0_) [V,'V,’W(r,vg)]V,’G(p-— er(r’vo))

P [

Using (A6) with the line above, we find that
L(F,5)8(5 - v,W(F, Vo))

==i[VEW(E,vo)/n]6(D - v,WEF,¥,)) .

Combining this expression with the conservation
law (A9), we can easily show

LE,D)6(B - v,W(F, %))n(F,¥)]=0 .
Then we have
LFEDWE, 5| &V,
=n(F, To)8(B - V,WEF, To))L(F, B) e Too¥ o) /

2 bi Vrjzl Vvol W(F, ;o)

=n(¥,¥,)8(p - v, W(F,7,))
11 K

xeui-vvowﬁ,vo)/u

m

'l:l\,'j“" |

=yED (ko) 2~ v, WE, TV, v, ' WE, )
7l

I

and, on using (A7), we recover (Al).
Finally, we want to show that these eigenfunctions
are complete. We consider the integral

[ ddPv,p*G | RV G B’ Kv,)
= [ @, 6(B - V,W(F,¥))8(p’ - v, W(E’, ¥,))
X8(V, W(E, %) = Vy WE, Fo)) 21 n(E, ToJnE, %) .

If we note the identity

_ 8(F -TF")
© det (v, 'V WE, V)’

6(V, W(F, Vo) - v, WE’', %))

we can write

i i - -
~ip e WER oo w7
i

-
[ d% dv, p*E B R E B KY,)
=6F-T8(b-5") [ d*vy8(p - v,W(F, %))

X det(V%’VrfW(F,Tro)) .
Then, after setting 5, = V,!W(¥,V,) and noting that

det( V,,oi VIWE, T dvy=d’

’

we recover (2.8). Using quite similar arguments,
we can show the orthogonality property (2.9).

APPENDIX B: ORBIT MEMORY FUNCTION

If we rewrite (1, 4c) by reintroducing the “inter-
action” Liouville operators and the definitions

B - 05 -5

~

, (®1)
+i;°?/2 6(5 _§’+§) +e-i;'?/3 5(& _5,_ g) y

(B2)

pa(p)=e
we have
¢ ®,BD’,2) fo(p")
==n2(B/mm)* [ dad’rd%p e P Im ()
< (L; &, B)pi(D)lz - (& - &/m) + L(F,B)]
X Ly (¥, B)pe (D)

If we then integrate by parts over p and use the
identities

LiE D) et P/mglr) = - LF,B) e /mglr) , (B4)

(B3)

Lie kK &/m+L) Ly=Ly- (z —K* a/m+ L)
x(z-kK-a/m+L)*L; , (B5)



5 PROPERTIES OF THE LOW-DENSITY MEMORY FUNCTION

we can break ¢‘® into two parts

b &, 5D, 2)f(p") = =n2(B/mm)* [ dPad®rd%h pl(F) e 2P/ Mk - G /m + Ly(F, D))

>

(&, P

We not concentrate on the first term.
integral representation (for Imz >0)

[z- (k- a/m)+LEF, D)

If we use the

=—if; dte.i[a-i-a‘/mu?.s)lt (B8)

and the time-propagation property of ¢'%* (4.1),
we find after simple manipulations the form for
{9 given by (4.3). ¢{° is relatively easy to

evaluate in the form (4.4), if we note the identity
v, V@) e BV _ _ B'lV,(e'BVm -1) , (B9)
which allows one to integrate by parts over 7.
APPENDIX C: SMALL-—z THEOREM

We consider a system where two particles inter-
act through a short-ranged potential. By short
ranged, we mean that after some large time T,
the relative momentum of the particles approaches
arbitrarily close to some asymptotic value. There-
fore, for some function of the momentum f(p(#)),
we have

F@@)=r*(5%)

where

for ¢>T, , (c1)

p@)=p* for ¢>T,

We can then use the final value theorem of Laplace
transforms®? to find

lim iz [ ate*t f(¢)=1im [- £ ()]=-F*(H") .
z~i0* 0 teoo

(c2)
APPENDIX D: MATRIX ELEMENTS FOR SMALL k AND z

First we consider the matrix elements between
the longitudinal states (i|1¢‘ |j) @, j=1, 2, 3)

1, 2) fol ") =n2(B/1m)® [ dPad®r d%b py(B)glr) e B P/ m L o ()
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x[glr)e -k &/m+ LE B)'L(F,Blo, (B)] ,  (B6)
(87)
I
for small 2 and z. We have immediately that
(1] 0@ ] ) =¢i| 6] 1) =0 (D1)

We are interested then in finding the matrix ele-
ments (2] ¢4V 13) =(31¢|2), (219 |2), and
(319%13) to first order k and z. From (1.4c)
we have

(2] 04| 2) = (in/7)mvy)" [ BPaddyd®p e @HP
x gr)v, Vir)2isin(3k -¥)
X[z = kvgas + L(F, )]
X iV,aV(T)e";';/z .

If we let 73~ —7; and py~ ~p, and add % times the
two resulting expressions for (2] $|2), we find

(2|9 [2) = 2in/7°)mve)”? [ dad’d®p e

1

xg)vr V(r)sin(3k - F)

x [z = kvgay + LE,p)]
X 9, V(r)sin(3k -¥) , (D2)

and (21| 2) is explicitly of second order in .

We next calculate the matrix element (3] $|3),
This calculation is facilitated by the use of (1, 4c)
in terms of dimensionless momentum together with
the identities

[z -k &/m+LE 5] L(F,D)
=1-[z-K-a/m+LE D]z -K-a/m + Ly(F, )],

(B9), (B10), and (4.1). We have, after performing
the integrations over p and p’,

(3|6(3) = (in/387°)mve)" [ dPad®rd®p e P v Clr)- ["FF/2(G 4 F) - e T 2(G - F)li

xfow dt e* *20%)H [z koo (o +55(t))] e #7312 (G + D)) = [z — kvglag +Bs)] e#73/2(& +DP

Expanding this expression in powers of 2, we see
that the corrections to

(3|0|3) =(3|9(0,2)|3)

(D3)

—

are of order k2. Therefore, to lowest order we
have ’

(3|93



2556
== (22n/37°B)mvo)" [ dPadr dp e

X 509,00 [ dtet {[& 4501 - G +BY} -
(D4)
After doing the integration over @, we find
(3] 6|3) = = (22n/37°/28)mvo)* [ d® d%p &
x B+ v,Co) [T ate’™ (1) -77) .
(D5)
If we then use conservation of energy

mvdp2(¢) + VE () =moi p° + Vir)
and note that

[ @rlv,co)lvir)=0 ,
we have

(3] |3 = (2zmn/373/28)

(D8)

(mvy)® [ drd%p e
x B+ v,00) [ ate ' vir(t)) . (D7)
We now concentrate on the integral

I=[ @ d%e®5-v,Clr f dte*'*'v(F () ,

(D8)
which we can immediately rewrite as

==B [ drd% D v,Vir)e # D
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xfo’” dt e#i:t edL(?yg)t V(—f) (DQ)
After integrating (D9) by parts,
I1==8 [d*rd% e Vir)
x [ dtent e P BRI V) | (D10)

and after letting T~ - ¥, we have

1=8 [ &rd% e Vir) fow dt e 5(t) - v, Vir(t)
(Dll)
Using Newton’s second law, (D11) can be written as

I==4Bmuy [ d&rd’p e vir) f T dtetta/atpi) |

(D12)
To lowest order in z we have

== 1Bmu, [ drd% e HV(r)[pw)-5?] (D13)

== (8/2vy) [ dvdpe Vi) , (D14)
so that
(3|6 [3) ==3nz [ d* [BV()]%e(r) (D15)
After a similar analysis, we can show
(2] [3) = = (nkvo/V6) [ d* [Clr)+BV(r) glr)]
(D16)
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