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An improved treatment of electron correlations is presented within the framework of a
previously developed unified model for Stark broadening by plasma electrons. This treatment
employs the method of the Bogoliubov-Born-Green-Kirkwood- Yvon hierarchy in connection
with a closure relation corresponding essentially to the exclusion of simultaneous strong colli-
sions. A line-shape expression is derived for the case that the perturbing electron gas is in
thermal equilibrium. This expression depends on the dynamic dielectric constant and on the
two-electron correlation function. If the latter is approximated by the linearized Debye-
Huckel expression {low-density case), and if the result is simplified for the vicinity of the line
center by using second-order perturbation theory for the atom-perturber interaction, the re-
sults of earlier treatments of electron correlations are recovered.

I. INTRODUCTION

Two important problems involved in the theory
of Stark broadening of spectral lines have been
treated separately in all previous investigations:
the influence of the interaction between the plasma
perturbers on the line profile, and the problem of
"unification" of the "impact" and "quasistatic"
theories of electron broadening.

The interaction between the charged particles
of the plasma entails a shielding of their Coulomb
fields. In connection with line broadening, this
effect has generally been taken into account in
calculations of distribution functions for the "low-
frequency" component of the electric microfield, '
and of autocorrelation functions for the "high-
frequency" part of the microfield. The latter were
needed in the impact theories of electron broad-
ening. '8 Early treatments were based on cutoff
procedures, truncating the collision integrals
over the impact parameter at a shielding distance
equal to the Debye length, ' or to 1.123 times
the Debye length. " In other investigations, static
shielding effects have been introduced with the
help of the linearized Debye-Huckel two-electron
correlation function. ' ' More recently, these
approximations have been r efined by expr essing
the autocorrelation function of the microfield in
terms of the dynamic dielectric constant. '
However, all these investigations used second-
order perturbation theory for the plasma-atom
interaction. This necessitated strong collision
cutoffs for small impact parameters" and also
prevented the resulting line-shape formulas from
describing the transition to the quasistatic line
Wing.

Recently, theories have been developed which
unify the impact and quasistatic aspects of the

electron broadening in a coherent formalism, being
valid from the collision-dominated line body up to
the quasistatic wing. However, perturber correla-
tions, which were basically contained in some of
these approaches, were neglected at an early stage
of the for malism. Shielding effects thus wer e
treated by cutoff procedures (or Debye potentials),
just as in the early impact theories.

The first unified treatment of electron broaden-
ing was based on a semiclassical many-body
formalism. ' The starting point was a generalized
Liouville equation which was solved with
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
techniques using one essential assumption, namely
that simultaneous strong electron collisions can
be neglected. The method of using semiclassical
statistics in connection with the exclusion of si-
multaneous strong collisions was pursued in later
publications, ' ' where more elegant expressions
for the line profile have been given. Also, a
quantum-mechanical formal line-shape expression
has been proposed for the line wing. Note that
in all these treatments weak electron collisions
are allowed to occur simultaneously, but, as al-
ready mentioned, without statistical interdepen-
dence. In Refs. 18 and 19 this restriction was in-
troduced for the sake of mathematical simplicity,
but was not necessary in principle, because the
Liouville equation used there naturally contains
the plasma interaction potential.

The purpose of this paper is to generalize the
BBGKY method of Ref. 19 (hereafter referred to
as I) to take full account of the electron part of
the plasma interaction potential. This will lead us
to a line-shape formula which contains both static
and dynamic shielding of the electron gas. There-
fore, our result will not only be unified with re-
spect to electron broadening but also contain
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properly the effects of electron correlations.

H. BASIC ASSUMPTIONS

Our formalism will be based on the classical-
path approximation which includes the neglect of
the back reaction of neutral atoms on the plasma
perturbers. The validity of such an approach has
been discussed in Paper I. A further assumption,
also introduced in I, is the possibility of excluding
simultaneous strong collisions. This has to be
understood here in a generalized sense: not only
strong electron-atom collisions, but also strong
electron-electron collisions must be well separated
in time. The strong-collision impact parameter
for electron-atom collisions b „is generally on
the order of the %eisskopf radius b~, but can be
smaller in some cases of isolated lines,

b f baal 3hn /2m, V,„
Here n is the principal quantum number of the ex-
cited state, I, the electron mass, and V,„ the
thermal velocity of the electrons. The correspond-
ing parameter for electron-electron collisions is
the Landau length

b~ =e /m, V,„
where e is the electron charge.

Hence, the validity conditions for the exclusion
of simultaneous strong collisions are (a) b „
«v '~', (b) b~ «v '~ ', where v is the electron
density.

A further condition needed for our formalism is
imposed by the necessity that the cumulative effect
of simultaneous weak collisions is sufficiently
small as to cause only small changes of the atomic
state during the plasma period v~'. As indicated
in Appendix A, this leads to the inequality (c)
(b~/v "')~~~(b~/b~)'~'1n(X Jb,.) «1, where XD
= (b TJ4pve2)'~2 is the Debye length. Note that this
is one of the conditions for the impact theory to be
valid around the line center. Hence, our unified
formalism for electron broadening will be valid
over the whole line profile if the impact theory is
valid in the line core.

Condition (b) is equivalent with the requirement
that the Debye sphere contains a great number of
charged particles (kinetic plasma). Up to now, no

theory of line broadening or plasma kinetics exists
for cases where this condition is not fulfilled. For
not-too-high principal quantum number n, con-
dition (c) is included in (a). We have written con-
ditions (a) and (c) for the electrons, for which
they are usually well fulfilled. This would not be
the case for the ions which, therefore, must be
treated by a separate formalism. Following Ref.
3, we assume that the total plasma microfield can
be split up into two stochastically independent
parts: a "low-frequency" component F (being due

to "dressed" ions and including ion-ion and ion-
electron correlations) and a "high-frequency" com-
ponent arising from a homogeneous gas of electrons
moving in a uniform neutralizing positive back-
ground. The validity of this decomposition has
been discussed in Ref. 23. According to this de-
scription we incorporate the low-frequency com-
ponent F in the unperturbed Hamiltonian of the
radiating atom, H =H (F). Neglecting the time
dependence of F, H then contains a static Stark
effect. The total atomic Hamiltonian is

N

H=H'(F)+~& V(r, ),
)~i

where V(ri) is the potential due to the presence
of one plasma electron at position r&. The sum
of all electron potentials in the Hamiltonian (1)
represents the contribution of the high-frequency
component of the plasma microfield.

III. FORMALISM

As in I, we start from the general semiclassical
line-shape formula' which describes the dipole
radiation corresponding to transitions between two
well-separated level groups, a and b, of the atom:

x e *'"0'""((np~ IT,(f)T.*(f))., n'p'))«.
~ 0

(2)
In this formula, the following notations are used:

~ is the angular frequency measured from the line
center vo. The summation subscripts a, n' and

P, P' label the substates of the upper and lower

atomic level groups a and b, respectively. p is
the atomic density operator and 5 the dipole mo-
ment operator, with p„„and 5,~ denoting corre
sponding matrix elements. In the direct product

Tt, T,*, T, and T~ denote the atomic time-evolution
operator at time t, acting only on subspaces a
and b, respectively. ((nPI T~ T,*I n'P')) ("doubled-
atom" notation') stands for (n I T*l n') (Pl TIP').
The symbol f f„means ensemble average with
respect to the plasma perturbers.

Equation (2) is based on the neglect of transi-
tions induced by the plasma perturbers between
levels of different groups (no-quenching assump-
tion). The same approximation leads to a "pro-
jected Schrodinger equation" for T, and T, in the
subspaces a and b of the atomic Hilbert space

+ Vbr&t T&,
)~1

T. ,(O) =1

where r&(t) describes the trajectory of electron
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Ix&=-P, Iz'&, Iy&=-P, Iz&

Since we have

I
x(t)& = 1".(t)I x(o))

I
y(t)& = ~~(t)l y(0)&

(6)

for any initial values (x(0)& and (y(0)&, we may,
in particular, choose the initial vector independent
of the initial configuration of the plasma electrons.
The desired operator average can then be related
to the average of the dyadic product (yx*» -=)y& ]x~&

by the equation

(I~(t) ~(t)&&}„,=(T,(t)T.*(t)}„,Iy(0)x*(0)&& .
(6)

It is shown in I that the quantity on the left-hand
side of Eq. (6) is related to a tensor 4 „(r&,v~, ...,

r„,v„;t) depending on the positions r, and veloc-
ities v& of the N plasma electrons, and on time t.
This tensor has been defined in I by means of a
distribution function for the variables of the atom-
plasma system. An alternate definition of 4N
mathematically equivalent but may be more trans-
parent for physical interpretation. Let f„(r„v„
. . . , r„,v„, t) be the distribution function of the
electron gas in the 6N-dimensional phase space
and

be the atomic state corresponding to a specified
configuration (r„v„.. . , r„,v„) at time t Then.
[using definitions (5)], one has

@g(r» vi

( y (t ) (t )» fS(r 1 i V 1 i ' i r((( i V((( i t )

j, and

a, (,
=—P, ba P, ~, v, ~= P-, ~vP, ~,

I', and I'~ being the projection operators on sub-
spaces a and b, respectively.

According to our decomposition of the plasma
microfield, the ensemble average in (2) is carried
out in two steps,

9'~&.*}"=((&a&.*}ht}a=f, Wit(P)P'a &.*}.id+,
()

where hf and lf refer to the high-frequency and
low-frequency components of the microfield, and

W„(E) is the low-frequency microfield distribu-
tion. The most elaborate evaluations' of this func-
tion have been presented in Refs. 4-6.

Our aim is the evaluation of the high-frequency
average (T, T,*}„,. To this end, we consider the
atomic-state vector Iz(t)& (with components z"

on some basis) and project it into the Hilbert sub-
spaces a and b:

(Iy(t) '(t)&)}., = f +„(„„.. . , „, „;t)

x d 'Y(d 5y ' 'd&Nd Us . (7)

The tensor 4N has been shown to satisfy a dif-
ferential equation of the Liouville type [Eq. (6)
of I],

—4„+—@4„yZ I V(r))@s+v~ .

( Bii' i
) 0 ( )~e ~rg ~v

with the initial condition [chosen in accordance
with (6)]

((((1ri lvi
=

I

y(0)x*(0)»fs(r&, v». . . , r„,v»0)

Here, the following abreviations have been used:

a'-=a,'- a.'*, v(r, ) = v, (r, ) —v.*(r,);
further,

N N

W„=Q E W(r), )
g~g l ~/+1

with

W(r)=8 /I r I, rg =-rt —rg

denotes the interaction potential of the electron gas.
The action of an operator 0, or Ob on the tensor
4N has to be understood as follows: If 4'N are
the components of +N, and O, &

~ or O, &~. the ma-
trix elements of 0, or 0~, the components of the
tensor 0,4N are

(0,4((() =go. Oatu. @„

and those of O,@N»e

(Ob N) ~s' b Is' N

The next step of our treatment will be similar
to the familiar BBGKY method known in statistical
mechanics. For the sake of brevity we shall use
the short-hand notations (1,2. . . ) instead of

(rq, v„rz, v„~ ~ . ) and d(j) instead of d r, d n;
and also omit the time argument t when it is not
needed explicitly.

Let us define the tensors 4, (with s = 0, 1, . . . , t(t)

@,(1, 2, . . . , s; t) = f 4 &(1, 2, . . . , Ã' t) d(s+ 1).. .d(&) .

In particular, for s= 0, this expression is identical
with the average dyadic product (7):

From this it follows immediately that the quantity
we wish to calculate is given by Let us also introduce the s-electron distribution
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functions (s = 1,2, . . . , N):

f,(1,2, . . . , s;t)= Jf-„(1,2, . . . , N;t)d(s+1) ~ d(N).

These functions satisfy the well-known BBGKY

hierarchy of equations. ' A similar chain of equa-
tions can be derived for the 4, . By integrating
Eq. (8) over the variables of all but s electrons,
we obtain an equation which couples 4, to @„,:

—@, +- a'4. +E —V(q)C, +v, C, — Z
)~1 ar, ' nz. ... ar, &v,

i= ——(N-s)
"BW(r) „q) s

V(s+1)C„,d(s+1)+(N-s) Z ' C,d, d(s+1) . (10)er

Writing this equation for s = 0, 1,2, . . . , N yields
a hierarchy of N+1 coupled equations for the func-
tions @o 4

y . . . @'g subject to the initial con-
ditions

4, (1, . . . , s; 0) = C (0)f,(1, . . . , s; 0)

As usual in kinetic theory, we truncate this
hierarchy after the second (s = 1) equation by in-
troducing a closure hypothesis, expressing the
three-body function 4 z(1, 2) (which couples two elec-
trons to the atom) in terms of two-body and one-
body functions. In our case of electron broaden-
ing, the following closure relation turns out to be
particularly convenient

4 2(l, 2) = 4)) (1)f) (2) + @,(2)f, (1)

+4 ()f2(1, 2) —2(f)of, (l)f,(2) . (12)

%e show in Appendix A that the approximation con-
nected with this relation corresponds to the ex-
clusion of simultaneous strong electron-atom and
electron-electron collisions, and that its validity
domain is delimited by the conditions (a)-(c) in-
troduced in Sec. II.

After writing Eq. (10) for s =0 and 1, we insert
the expression (12) for 4 ~ in the integral terms on
the right-hand side of the equation for s =1. As-
suming the electron gas to be homogeneous and
in equilibrium over the characteristic lengths of
interest, we may use the first BBGKY equation
for f,(l, t):

sf, (1, t) N-1 I elV(r„) sf, (1„3)
Bt m,

and thus obtain

4—+—d' c,(t) =-—N v(s)c, (s;t)d(s),

—+ —Ho+ —V(l)+v, ~
i )(1;t)= — f (1) V(3) Ci(3;t)d(3)

r
+ ' - i~ d' (3;t)d( )3— I ('(3)d(1, $)d($)d', (t), ((d)

e 1 ~ 1

where

g(1 2) -=fa(1, 2) -fg(1)f((2)

is the two-electron equilibrium correlation func-
tion.

Equations (13) and (14) are closed in C 0 and 4,
and will therefore serve to calculate 40 whose

I

Fourier transform is needed in the line-shape
formula [see Eqs. (2), (6), and (9)]. Since in our
formalism Fourier and Laplace transforms of
most of the quantities involved are needed, we in-
troduce a general definition, denoting the Fourier
and Laplace transform of an arbitrary function
h(r„ra, . . . , t) of position vectors r& and of time by

g(k, k~ . . . ;p)= f'" f' e 't"~'&+'&' &"'d r, d r~ J e ~'dth(r„r~, . . . ;t)

If h does not depend on time, h is defined as to be
just the Fourier transform, if it depends only on

time, it is just the Laplace transform. For brevity
we shall write V(k) = V(k). We further define
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g(k v )=ff e "' 1 3 g(1 2)d f'1d v1

(16)
To solve Eqs. (13) and (14), we make extensive

use of Green's functions. Let us first introduce
an operator A(1, 2; t) defined by the equation

(
e—+@ P+ —V(l)+v, R(1,2;t)

9ry

N=l ~ef(1). SW(rla)
(3 2. )d(3)

Sly 9V1 81"
y

with initial condition

R(l, 2;0) = 5(r, —r2)5(v, —vs) (16)

If we use Eq. (13) to eHminate the first integral
term on the right-hand side of Eq. (14) (using
N=N-1), the operator A may serve us as a
Green's function to express 4, explicitly in terms
of 4~. Taking the Fourier and Laplace transform
of 4„we obtain

C, (k, v„P)=8{k,u„P)C,(P)
with

e e

k(k v P)-- JJI (k)(v, k' v P) fj(k) P+ —H il(k') —
~ V(k')d(k', v~)~d v~dk'

J
(2o)

Ck, (p) can now be expressed explicitly in terms
of 4)o(0) by combining (19) with the first equation
of the hierarchy [Eq. (13)]. We obtain

C.(p) = [p- ( /)t)B'. ~(p)] '4, (0) (2

E(p)= ———

)I V(k)8(k v p)d'kd'U

From Eqs. (2), (4), (6), (9), and (21), it can easily
be seen that X(P) becomes the electronic collision
opeI'ato1' ( wld'tll alld shift operator ) of 'tile line
profile if we put p =ix+0.

For the further evaluation of the expression
$(k, v; p), we next determine the operator 8 from
Eqs. (1V) and {18). To this end, we use the aton1ic
time-evolution operator q(r, v; t) describing the
time development of the atom in the presence of one
perturber moving on the straight line r+vt qis.
defined by the Schrodinger equation

W(r„v,~)ft(3-, 2;t- ~)d(3) .
r1

Taking th. e Fourier and Laplace transform of this
equation and integrating over the velocity vector
v, leads to

f D(k, k";P)[fA(k", v„k', v„P)d t), ]d'k'

= q(k+kd, v„P+tk v), (2S)

where the kernel D is given by

a(f, k';p) -=6(f -1")
iK 8 )1

pp2Q(27(') J 8v1

x q(k g' v P+jf v )d t) (24)

To solve Eq. (23), we again introduce a Green's
function G(k, k';p) defined by

q+ '—„[ff'+V{r +vt )]q=O, (22) f D(k, k";p)G(k", R';p)d'y"=6(R-R') . (26)

with. the initial condition

q(r, v;0) =1

By an integration along the characteristics [for
more details of the calculation see Eqs. (9)-(17)
of Paper I], Eq. (IV) may be given the following
form:

&(I,2; t) =: q(r, -v, t, v„t)5(r12 -v, t)6(v, —v, )

~k()' 8f,(1)
+ ——— q(r —v 7' v 7)d7

9v 1 s 1&
4t

The unknown in Eq. {23)can then be expressed as

= f G(k, R";p)q(k" +k', v, ;p+tk" v, )d'u'" .

(26)

Before determining G from Eqs. (25) and (24),
let us insert the formal expression (26) in Eq. (20)
(after integration over v, ). With the help of the
relation (Bl) of Appendix B, and using the fact
that G(k, o;p) = 5(k), the operator K(p) takes the
following for IQ'

k'(p)= kz k k ' ([V()QG(f f';p)Q(R' —f",vp+it v)p(R")( p
—+kid(R", V))d'kd'k'd'k "d'e . (kk)
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Here,

y(v, ) = Vf, (1)= (m,/2vkr, )'~'e

denotes the Maxwell distribution (V being the
plasma volume).

In order to derive an explicit expression for the
function G(kk; p), we slightly change the form of

Eq. (24). Using the relatibn (Bl) of Appendix B
for k-k-f', p-p+ik' v, we obtain a new ex-
pression for the kernel D:

a(R, k';p)=D"'(k, k', p) D")(k,k';p),

D'"(R, 0';0) = d
(
R, P+

'—id')0%-t'},

i -1
D"&(k,k';p)=- ——, — —,=-- k'IV(R')q(k-k", v„p+ik. v, )V(I'"-k')~ p+ —„a' ik' v

iv t" sp(v)»(k„s)=1 — — 'k W(k)(s+ik v) 'd v
BZd i SV

is the dielectric constant of the electron gas.
Equation (25) can now be written in the form

0(K1c';0)= 0 '(0, 0+ —' P)

x &(Il-k')- D("(k k" )G(k" k' )d'k "~

0(R R'0)= 0 '(0 0+0 P) 0(R-(P) . (29)

By writing the corresponding iteration series for
the quantity

This equation is particularly suitable for an itera-
tive solution with the lowest-order approximation

After inserting the expression (29) in Eq. (27),
the operator K(P) still contains the two undeter-
mined functions g(k, v) and Q(f, v;P). The former
is related to the two-electron equilibrium correla-
tion function [see Eq. (16)], which is generally
well approximated' by

Z(1, 2) fg(1)fg(2)

t r&3Ix exp — =- ~'r» exp —'
o''

(30)
In cases where condition (b) is well fulfilled one
may replace (30) by the Iinearized Debye-Hiickel
expression" [corresponding to the first two terms
of the series expansion of the outer exponential in
(30)]. This leads to

&f(Ii, v) = —[V (v)/V]»2~~-1+0 &~

f V(R)G(R k' p)d'k

[which is needed in (2'I)], it can be shown" that
the relative correction to the lowest-order solution
(29) is on the order of b~/Xv. Since for a kinetic
plasma v ' ' is much smaller than ~~, we have
b)), «Xn whenever condition (a) is fulfilled. There-
fore, the approximation (29) is less restrictive than
the closure hypothesis (12).

and since

»(k, o) =1+I/k'X', ,

we have the relation

Ng(k, v) + ((() (v)/ V=- » (If, 0)(t) (v)/V

Using (29) and (31), the operator K(P) takes the
for m

(31)

IC(P)= ~~fff Vlf)e ~(f, + —0B )()(0 —f', 0;0 ~ (R 0)V(k')0 '(k', 0)V(v)d~dd~d'd~gr (32)

For numerical applications, it appears to be
more convenient to invert the Fourier transforms
in the integrand of the expression (32). To this
end, we introduce the "dynamically shielded" po-
tential"

Vs(r, P) = [I/(2v)'] J V(k)» '('k, P) e'"' d'k . (33)

Using this definition, Eq. (32) becomes

CO

Z(p) = ——, e "dt
5

x Q(r, v, t) Vs (r, 0)(t)(v) d'r d'v . (34)

We notice that in this expression the two poten-
tial factors V~ are shielded whereas the potential
in the Schr5dinger equation (22) for Q is not.
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Therefore, Eq. (34) cannot be obtained from the
former unified theory' ' by simply replacing V
everywhere with V~. On the other hand, it cannot
be excluded that such a result would be obtained
if the cluster expansion would be extended to higher
order [instead of just using Eq. (12)] and if the
exact solution for G(k, k';P) could be used instead
of (29). We were able to show that using an exact
expression for G(k, k';p) without extending the
cluster expansion would not suffice to replace the
Coulomb potential. by a shielded potential in Eq.
(22). Any difference between such a result and Eq.
(34) would be small, however, because shielding
only becomes effective at large distances where

Q can be replaced by the zero-order term of its
perturbation expansion.

For a final evaluation of Eq. (34), the "one-
perturber" atomic time-evolution operator
Q(r, v, t) has to be determined from the Schrodinger

equation (22). Various approximate solutions of
this equation have been discussed in previous in-
vestigations' ' ' '; in particular, an algorithm
for a sequence of exponential approximate solu-
tions of equations of the type (22) has been de-
rived, ' and the second member of this sequence
has been used in Ref. 19. For the special case
of complete degeneracy of the unperturbed Ham-
iltonian and for a pure dipole interaction V, the
exact solution of Eq. (22) has recently been
found. ' " Therefore, in cases when the level
splitting due to the ionic microfield does not in-
fluence the collision operator significantly, cal-
culations for hydrogen lines on the basis of the
exact operator Q of Refs. 32-34 should be most
promising.

The knowledge of the expression (34) for P = i~ +0
permits us to write the line-shape formula explicitly.
Using Eqs. (2), (4), (6), (9), and (21), we find

I,(&)= —Re p p D
& Dg, ~| W (E)dE((nip

~
[i (id+H /ff)+K(iid+0)] '

~

n'p'))
ee' BB'

0

We note in conclusion that from the "width and
shift operator" X(iv+0) as given by Eq. (34), we
may reproduce the "unified" result of Refs. 19-21
and the "dynamically shielded" impact formula of
Hefs. 14-16 by using corresponding approxima-
tions. The former is obtained from (34) by putting
e(R,P) =1 in Eq. (33) and introducing Debye cutoffs
(or Debye potentials) instead. The latter can be

~p
derived by approximating Q(r, v; f) by e ""~", the
zero-order ter m of its perturbation series, and

introducing a strong-collision cutoff. In contrast
to the results of Refs. 14-16, 19-21, the integra-
tions in (34) do not need to be cutoff at either small
or large impact parameters.

APPENDIX A

The closure relation (12) can easily be verified
for the case that two of the three particles (atom,
electron 1, and electron 2) undergo a strong colli-
sion (in the sense as defined in Sec. II) while the
interaction of these particles with the third one
is weak in comparison and thus negligible. Let
us assume that the strong collision occurs between
the atom and electron 1. Then 4z(1, 2), 4, (2), and

fa(1, 2) factorize to become 4, (1)f(2), 40f, (2), and

f,(1)f, (2), respectively, and Eq. (11) is identically
fulfilled. The same argument holds when electron
2 is strongly coupled to the atom. W'hen the strong
collision occurs between the two electrons, we
have 42(1, 2) =40f2(1, 2), 4', (1) =4of, (1), and 4, (2)
=4'Ofi(2), and Eq. (11) is satisfied again.

If the three particles interact simultaneously
but weakly (in the sense as defined in Sec. II),

fR(1 2 0) =fi(1)fi(2),

4, (1, 2; X„0,0) = e,(l, X,)fi(2),

42(1, 2;0, 0, A. ,q)=40f2(1, 2; A.,q), etc.

(Alb)

(Al c)

To first order in the coupling parameters we have

4, (1;X,)=4of, (1)+A., 4,(l;X,)~, +O(X, )
1

(A2a)

4, (2;~,)=4,f, (2)+~,
'

4,(2;~,)~, , +O(~,'),
2

(A2b)
f2(1, 2; &,~) =f, (1)f, (2)

I

Eq. (12) can be verified by a perturbation treat-
ment of the hierarchy (10) up to first order. ~~ We
here choose a slightly different method which is
less rigorous but somewhat simpler and physically
more transparent. Let us introduce formal cou-
pling parameters &» li2, and A. ,2 (characterizing
the strength of interaction between the atom and
electrons 1 and 2, and between the two electrons,
respectively, ) and let us write 4„4„and fa as

4i (1;Xi), 4 i(2; X~), 4&2(1, 2; Xi, A.a, Xia),

fg(1, 2; Xi2)

In the case that some or all of the ~'s vanish,
the three particles are partially or completely
decorr elated:

4', (1;0)=4'Of, (1), 4'2(1, 2;0, 0, 0)=40f,(1)f, (2),
(Ala)
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+~&a- fa(1 2'~»)I)„=o+0(») i

(A2c)
4 (1,2;X„Xa,X )=4 fi(1)f(2)

4 a(1, 2;A.„0,0)I'
1

8
+Ra @a(1,2;0, &a, O)I

8+» a(l, ;00, »)I&gao
8X)2

+ 0(X„Aa, X,a, A(Aa, X~Xga, yap~a) . (A3)

Using Eqs. (Al) and (A2), we find

4a(1, 2;X', 0, 0) I' o
1

9
=f, (2)z, 4, (1;x, ) I, ,

1

=f, (2)[@,(I;~,) —4of,(1)]+0(Aa~)

and correspondingly

@a(1,2;0, Xa, O)
8

=f (I)[@ (2;& ) —@of (2)]+o(&')

a(li 2i OiOi ~») I~ =o

=@o[fa(1 2 ~») -A(I)fi(2) J+ o(~ia)

On inserting these equations in (A3) we obtain the
closure relation (12) to first order in the coupling
parameters X„X~, and X».

Note that Eq. (12) is not valid for the case that
the three particles interact simultaneously and

strongly. Hence, our formalism is valid only if
strong collisions are well separated in time, i. e. ,
if conditions (a) and (b) of Sec. II are fulfilled.

A problem still arises from the fact that even
though the perturbation expansion in the coupling
parameters X makes sense for 4a(1, 2) (correspond-
ing to two simultaneous weak collisions on the

atom), the contributions of the higher orders in
the integral terms of the hierarchy do not neces-
sarily decrease with increasing powers of X. In
fact, the integral terms contain the cumulative
effects of many weak collisions, and we have to
make sure whether our perturbation treatment ac-
counts for these effects. Let us consider the most
pessimistic case of long times (t &"a, &o' being
the plasma frequency). Then all collisions are
completed and the perturbation has its largest ef-
fect on the time variation 84 o(t)/st. Our expansion
would then coincide with that used in the derivation
of the collision operator of the impact theory. 7 9

The condition for this expansion to be valid is

1 84——co
' «1

C et

where C' denotes some characteristic component
of the tensor 4o(t). Explicitly, this condition is
given by the inequality (c) of Sec. II.

APPENDIX B

Using the identity

Q '(r, v; —t) —= Q(r —vt, v;f)

which follows from Eq. (20), and the relation

d g .g dQ
dt dt

we obtain

q(r -vt, v; t)

Q(r —vt, v;f)[H + V(r —vt)] .

Taking the Fourier and Laplace transform, this
equation is readily transformed to

(, q(R-R', v;P+iR v)V(R')day'. (Bl)a2va „
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The ionization energy loss of relativistic heavy nuclei is calculated using the exact Mott
cross section for close collisions. Deviations from the Bloch formula are computed in some
typical cases and found to be significant for nuclei with Z & 20.

I. INTRODUCTION

Methods for calculating ionization energy loss
of charged particles traversing matter predate the
beginning of quantum mechanics. The original
classical calculation by Bohr' was followed by
Bethe's quantum-mechanical treatment~ and Wil-
liams' method of impact parameters. Bloch has
indicated the connection between the classical and
quantum-mechanical methods, and Mott' has dem-
onstrated the equivalence of Bethe's method and the
method of impact parameters. Elaborations and
extensions of this early work to include such things
as shell corrections and the density effect have
been given, and there are review articles which
give a complete summary of all this work.

One result of these calculations is that the aver-
age energy loss of a particle of charge Ze and ve-
locity p is proportional to Za when Z/137 p«1.
When this condition is not satisfied, Bloch's for-
mula' gives a more general Z dependence which
reduces to the classical result given by Bohr' when
Zj137p»1. Bloch's correction is present in the
nonrelativistic case and can be thought of as the
result of a modification of the minimum scattering

angle below which no energy transfer takes place.
If nuclear collisions are ignored, charged parti-

cles lose energy primarily by collisions with atom-
ic electrons. It is convenient to divide these col-
lisions into "distant collisions, " in which electron-
binding effects are included, and "close collisions, "
in which the binding energy of the electrons is ig-
nored. ' In the relativistic case, there are correc-
tions to the Born approximation for close coll. i-
sions of electrons with heavy nuclei (20 & Z & 120)
which are not included in Bloch's original calcu-
lation. In this paper, these corrections are com-
puted numerically using the exact Mott cross sec-
tion'o transformed to the frame in which the elec-
tron is initially at rest. The usual treatment of
distant collisions is assumed to be valid here (see
Sec. IIB for a discussion of this assumption).
The total energy loss is computed as a function of
Z and compared with Bloch's formula in some typi-
cal cases.

II. ENERGY-LOSS CALCULATION

A. Close Collisions

In order to obtain the energy loss of a heavy par-


