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We study the problem of an electron in a dilute gas of density p of hard spheres. The radius
of the spheres is a. It is shown that a systematic expansion of the Green's function in a series
involving the small parameter pa leads to inconsistencies at low energies. This is attributed
to the existence of localized states. We then assume that the problem can approximately be
reduced to the motion of a classical particle through a suitably defined smooth, random, en-
ergy-dependent effective potential. Physical arguments are given to justify this reduction, al-
though a rigorous proof is lacking. The resulting classical problem is in complete agreement
with the Mott-Cohen-Fritzsche-Ovshinsky model of disordered materials, and is simple enough
to permit detailed calculations of all quantities of interest. As a test for the validity of our
approximations, we apply the theory to compute the mobility of excess electrons in gaseous He.
By adjusting two parameters of order unity we get a good fit to the experimental data; the re-
maining small discrepancies admit satisfactory explanations.

I. INTRODUCTION

The natural starting point for understanding the
electronic properties of disordered materials is a
knowledge of the one-electron energy spectrum and
the nature of the associated wave functions in dis-
ordered potentials. In crystalline materials this
task is enormously simplified by the Bloch-Floquet
theorem which essentially reduces the study of the
whole crystal to the study of one elementary cell.
This theorem is the basis of the well-established
band theory of solids. Unfortunately no analogous
result exists for the disordered case, and in ordei
to gain the desired information one is confronted,
at least in principle, with the formidable task of
diagonalizing a random matrix of order =10 3, or
of solving some equivalent problem.

Very few exactly soluble problems involving ran-
dom media are thus far known. Most of these deal
with one-dimensional situations and give only the
energy spectrum but no information on the wave
functions, and the methods of solution cannot be
used in higher dimensions. Notable among these
are the work of Dyson on the f requency spectrum
of a disordered chain of oscillators (equivalent to

- the electronic spectrum of a one-dimensional tight-
binding alloy, since both problems consist in finding
the eigenvalues of a tridiagonal matrix), and the
electron spectrum in a random set of 5-function po-
tentials, solved by Frisch and Lloyd. 2 For the
last one Borland proved also that all electronic
wave functions are localized under quite general
conditions. The same property has subsequently
been shown to hold for other one-dimensional sys-
tems. "

Instructive as these problems may be, their use-
fulness as guidelines for realistic three-dimension-

al cases has to be questioned. From a physical
point of view, waves can go around obstacles in
three dimensions but not in one; mathematically
there is considerable difference between the as-
sociated boundary-value problems for ordinary dif-
ferential operators (one-dimensional case) and par-
tial differential operators (three-dimensional case).
It is therefore not surprising that the simplification
achieved by studying a problem in one dimension is
often accompanied by the loss of interesting phe-
nomena. Examples of this situation are discussed
by Lieb and Mattis. '

The only exactly soluble problem in three dimen-
sions has so far been the density of states found by
Lloyd, who considers a tight-binding alloy in which
the off-diagonal elements in the Hamiltonian have
translational symmetry, while the diagonal ele-
ments I&Q are independent random variables with a
Lorentzian distribution p(&). The average density
of states (n(E)) turns out to be the convolution of the
pure crystal density of states no(E) with the prob-
ability distribution P (e). Unfortunately, this elegant
result is only valid for a Lorentzian probability dis-
tribution for the &-„and does not help one to under-
stand other cases.

Among the approximate methods for the study of
disordered materials, the most popular has been the
perturbation expansion of the Green's function in
the form G = Gp+ Gp VGp+ ' ' ' . Several choices of
the unperturbed situation, and various renormaliza-
tion procedures have been used. The literature on
this point is so vast that it is impossible to select
a reasonable set of references. The most success-
ful of these approximations seems to be the "co-
herent-potential approximation" (CPA), 8'9 which
uses as Gp the propagator in a fictitious average
medium that is determined self-consistently. The
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FIG. 1. Energy bands in (a) an amorphous material
according to the Mott-CFO model, and (b) a perfect crys-
tal.

CPA is not restricted to small values of some pa-
rameterlike impurity concentration or scattering
strength, and gives reasonable results at most
energies. But the CPA gives energy bands with
sharp edges, such as those one finds in a perfect
crystal, while it is known that in a disordered
medium the band edges are smeared out into tails,
as shown in Fig. 1(a). That the theory is incor-
rect near the band edges is a serious failure, since
this is the most interesting region. In many cases
all transport properties are determined entirely by
states in the tails of n(E). Feynman path integrals'
and integration in other function spaces, ' as well
as variational calculations, have also been used
in connection with random"media. In spite of all
these efforts our understanding of disordered ma-
terials is still in a very primitive stage. A com-
prehensive review of the present situation is given
in Ref. 13.

In recent years a model of the electronic struc-
ture of disordered systems known as the Mott-Co-
hen- Fritzsche-Ovshinsky (Mott-C FO) model~ ' has
emerged. Its basic assumption is that there are
certain universal features shared by all disordered
materials: The energy eigenvalues are grouped
in bands [Fig. 1(a)] but, in contrast to the crystal
case sketched in Fig. 1(b), both the Van Hove sin-
gularities and the band edges are smeared out. In-
side each band there exist critical energies E„E,
which separate electron states of completely differ-
ent natures. The states between E, and E,' are ex-
tended, while those in the tails of the density of
states [shaded area in Fig. 1(a)] are localized. (In
a perfect crystal all states are extended according
to the Bloch-Floquet theorem. ) The energies E,
and E,' are called mobility edges; the mobility p, (E)
is zero for states outside these points. If the dis-
order is increased the mobility edges move towards
the center of the band, and the region of extended

states may eventually disappear. This is known as
the Anderson transition.

The Mott-CFO model is based on and unifies a
considerable amount of information on disordered
materials, both theoretical and experimental, which
is at present available. Its assumptions, however,
have not yet been derived in general from first prin-
ciples; it differs in this sense from the band theory
of crystalline solids. The main obstacle for such a
fir st-principle derivation is the extreme mathemati-
cal complexity of the problems under consideration.

In the present paper we study one of the simplest
imaginable three-dimensional problems: an elec-
tron in a low-density gas of hard spheres. In Sec.
II we discuss the difficulties encountered by using
the "most natural" approach to the problem; to
expand the Green's function in a series involving
the small parameter pa «1. We find that there is
always a region around the origin on the energy axis
where such an expansion is not possible; we relate
this to the existence of localized states.

In Sec. III we examine the problem from a com-
pletely different point of view. We use physical ar-
guments to construct a semiclassical model for our
system. The set of randomly located hard spheres
is replaced by an equivalent, random, smooth ef-
fective potential, and classical mechanics is then
assumed to be approximately valid. The physical
picture so obtained is in complete agreement with
the Mott-CFO model and illustrates many of its con-
cepts, for example, the existence of a mobility edge
follows naturally from the existence of a percolation
threshold, localized states are the result of unusual.

ly deep fluctuations in the random effective poten;
tial, etc. Our semiclassical approach has pedagog-
ical value, since it can be easily understood and
still exhibits all the physical properties postulated
by the Mott-CFO model. More important, it is
accurate enough for approximate calculations of
several quantities of interest. In Sec. IV we apply
it to compute ihe mobility of excess electrons in
gaseous helium. By adjusting two parameters of
order unity we obtain a very good fit to the experi-
mental data of Levine and Sanders. ' Sections III
and IV are an expanded version of earlier work by
Eggarter and Cohen. ' '

To simplify our equations, units such that 5= 1
and 2m, =1 will be used.

II. FORMULATION OF THE PROBLEM; ATTEMPT AT
SOLUTION BY GREEN'S-FUNCTION TECHNIQUES;

DIFFICULTIES; SOME ONE-DIMENSIONAL RESULTS

A. Problem

We want to study an electron in the presence of
a gas of hard spheres. Let a be their radius, and

~qx~j, i= 1, 2, ~ ~ ~, the random positions of their cen-
ters. The spheres are assumed to be motionless.
The Green's function for this problem is the solu-
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tion of

&„-G (x, x'
I E)+ E G (x, x' IE) = —41rfi(x —x') (1)

with the boundary conditions G (x, x' IE) = 0 when ei-
ther x or x' are on the surface of one of the spheres,
and G bounded for lxl - or tx'l -~.

We will restrict our attention to low energies
E «a 2 in which case the scattering by a hard sphere
is dominated by s waves; P-wave scattering is
smaller by a factor E a and will be neglected. The
Green's function can then be expanded in the usual
way

G(x, x'IE)=Go(x, x' IE)

+ Z Go(x x~ IE)(-a) Go(x~ x IE)

+g 2 Go(x, x, IE)(-a)
jAi

x Go(x„xj IE)(-a) Go(x&, x IE)+ ~ ~ ~ (2)

where Go(x, x'IE)=e's "" '/Ix —x I is the free-
particle propagator and a = e-'~ ' is the s-wave
scattering amplitude.

The terms in the series (2) can be represented
by graphs in the usual way; for example, Fig. 2
stands for

Go(x x1 IE)(- a }G o(xi, xo I E )( a ) G o(xo x2 IE )(- a)

x Go(xo xs IE)(-a)Go(xq, x IE).

Several quantities can be obtained from a knowl-

edge of the Green's function. To be specific, let
us assume that we want the average density of states
per unit volume n(E), which is given by

n(E) =
o lim lim Im .G(x, x'IE+is) . (4)

e 0+ Ix-x'I »0

Let us consider one graph g linking x scatterers and
having x+s+ 1 free-propagator lines (for example,
x= 8, s= 1 in Fig. 2), and call I(8) the contribution
it makes to (G )-„„-.. I(9) is given by an integral of
the form

FIG. 3. Ring diagram giving con-
tribution of order zero in the small
parameter (pa ) to the Green's
function.

exp(ivE Ix —xo I) exp(i&E Ix„—x I)
lx-x& I (x„-x I

where the integrand has x+s+ 1 free-particle prop-
agators. The change of variables $;= uEx, reduces
this to

i(~)=~ (pa')" (pa/E)" " (8)

We will now discuss briefly the first two approxi-
mations, which are easy to compute.

B. Ring Approximation; Optical Potential

The only s=0 diagrams are the rings, Fig. 3.
The integrals they give, Eq. (5), are convolutions
of free-particle propagators, which are easily
evaluated through the use of Fourier transforms.
The sum of all ring diagrams turns out to be

where Io(8) is a definite integral (i. e. , a number)
depending only on the topology of g but not on pa-
rameters p, a, or E.

If we are interested in a low-density situation
pao «1 and in energies E =pa (this is the physically
interesting energy region, as will soon become ap-
parent), Eg. (6) suggests a natural way of organiz-
ing the perturbation series for n(E). It consists in
taking as a first approximation the sum of all s = 0
graphs, which do not contain the small parameter
(pao)", as a second approximation the sum of all
s = 1 graphs, which contain one factor (pao) ', and
so on. What one expects to obtain is an expansion
of the form

n(E) = WE [Fo(pa/E)+ (pao) ~oF, (pa/E)

+ pa'F&(pa/E)+ ] . (7)

Z I (ring with x scatterers)
r~1

=i [(E —4opa) n E& t] (8)

FIG. 2. ~pical diagram in the
expansion (2) of the Green's function.

To be consistent with the neglect of terms in (pa )
-iS~ 2a -i&E/~ )1/2( @~3&l/2

we must set a=a, since e ' '=e " '
The density of states that results within this ring
approximation is

(E —4opa)~~o/4m for E ~ 4opa

n(E) =
for E & 4mpa,
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FIG. 4. Double ring giving a contri-
bution of first order in {pa )

For the same reasons discussed before, we can set
a = a(1 —iaKE), which is correct up to order (pa )

i~.

Putting (G ) = Go+ (G )„„~+(G )„,„», „~,we get as
our second approximation

n(E)= —~ i
Re(E —4vpa+i4vpa vE) '

4m~

+ 2mpa~Im 1 —2ia E

kox, = tan[kp(x —0)] . (12)

Equations (11) and (12) determine ko and hence

V~~ as a function of p and a. At low density one
can expand tanx=x+ 3x and recapture the optical
potential. The argument can be generalized to
construct traveling wave states and gives a disper-
sion law E(k) = V»+ k~/m ~. The effective mass
m *(p, a) differs from 1 by less than 2% for all (p, a)
values to be considered in this work, and we will
neglect these effective-mass corrections. -

C. Double Ring Approximation

The first correction to the ring approximation
consists in taking the s = 1 graphs. These are the
double rings shown in Fig. 4. The sum of all these
graphs can be obtained by a straightforward but ra-
ther lengthy calculation and is

5 I(double rings) = 2mpa~[E/(E —4 gapa)'" —1] .
(13)

consistent with Eq. (7) with Fo= (1 —4wpa/E) '3/4m

for E -4mpa and zero otherwise. The physical in-
terpretation of (9) is simple: The gas of hard
spheres represents a potential barrier of height
V= 4&pa for the electrons. This V= 4mpa is called
the optical potential, and the above result has been
known for a long time '3 and can be d'rived in a
number of ways. There is one alternative deriva-
tion, which we would like to sketch briefly; it is
called the Wigner-Seitz method and gives the optical
potential at low densities, but includes repeated
scattering corrections for higher p's, The idea is
to derive the effective potential barrier represented
by the gas, V~~= ko, from the conditions that the
wave function of the electron in its ground state
must be s-like close to any one of the scatterers,

(&= sin[k, (~ —~)]/&, r= ix-x&
i

small, (10)

and the wave function must be smooth when going
from any scatterer to its neighbors. Associating
with each scatterer a "Wigner-Seitz sphere" of
radius r, defined by

g4-m', p=1,
we have to impose the boundary condition

(ag, /s~) I „„=0

or

x E 4p .4p, E
—I .. &4

E &4vpa[1+ (4vpa~)~i~], (16)

and Fi(pa/E) turns out to be zero for these ener-
gies. [Consideration of terms with higher s will
restrict the validity of the perturbation series (7)
to still higher energies. This must be so since the
Wigner-Seitz potential Vzz =4vpa(l +

& (4vpa ) )
is already higher than the right-hand side of (16).]
At lower energies our whole approximation pro-
cedure breaks down; for E=4mpa, for example,
the leading term in (14) is E i (pa )

i /6& in con-
tradiction with (7), thus indicating an inconsistency
in our procedure.

The reason for the failure of (7) at energies not
satisfying (15) is most easily understood by consid-
ering a very low energy E «pa. In this case Eq.
(6) contains one very small and one very large pa-
rameter, and any reasonable selection of the most
important diagrams should consider both of them
simultaneously. Furthermore, such a selection
should not be based only in the powers of the two

parameters, but also consider the coefficients Io(g}
corresponding to each graph, and the fact that the
number of topologically inequivalent graphs in-
creases drastically with x and s. With all these
difficulties, the problem becomes untreatable from
a mathematical point of view. But it is possible
instead to gain some insight into the problem from
purely physical arguments.

D. Localized States and Failure of Expansion {7)

It is at present beyond any doubt that in any ran-
dom potential there exist localized states
near the band edges, and that these states are as-
sociated with fluctuations in the potential. To see

If our approximation procedure makes sense, it
should be possible to rewrite (14) in the form (7)
and extract the first-order coefficient Fi(pa/E)
from the expansion. An elementary analysis shows
that the right-hand side of (14) admits an expansion
like (7} if and only if

E —4mpa &4vpa~&E, (15)

which is approximately equivalent to



THOMAS P. EGGARTER

ay Oo{) 60 Q '0 ~800'4 4~ goo 0 &4
4&' 0 O00y 0 ~ 0@y& 0 aO 0

Oy~o gO 0 & 4'C) ~0e+ 4' &6 & o ~
q y 0 O

y0 y y 0 ~ o 6 & o0~
Qo Oo 90~~4 44& ~& &

O
e 4

p 0 ~ o y

0 O & &~&- ~~~O~ a oo

90 0 0/0 0 0 0

go~ o o'
~ () y 0 Q

0 0 o 0
& ~ool g

0 0 ~~ o
y

y o o o ~ g
0o04 0 pe' 0

p 0 0 o Q 00+ 0
0 P

™~ o

Q+ @ ~ 0 aea0 0 9 4

OOQ+~Sygt go
4 0 g OO O OO +c &~O Oo e

PIG. 5. Configuration of scatterers which can lead to
a localized electron state.

what this means in the present problem, let us
consider, for example, a configuration Ix~) like
shown in Fig. 526 in which aspherical region of
radius R has no scatterers, while outside their
density is everywhere close to its average value.
Such a configuration has a small but finite probabil-

-4s pals/3ity of occurring, of order 8 " per unitvolume
of the system.

It is possible to put an electron inside the empty
region, which requires a localization energy of or-
der E =A, and by the VAgner-Seitz argument the
repulsive interaction with the outside gas of scat-
terers can be replaced by a potential barrier of
height V„,z =4wpa. Clearly if V~~ Its» -,'v we have
a localized electron state (which incidentally is a
simplified version of the bubble states in liquid He,
considered by several authors" ~'2 ). It is now

physically clear that the electron interacts most
strongly with scatterers that are close to the
"bubble, " and the interaction becomes weaker and
weaker as one considers more remote scatterers.
It follows that a reasonable approximation proce-
dure for G(x, x'iE) at very Iow E should start by
summing all diagrams linking scatterers in some
vicinity of the points x, x' of interest, say
Ix —x& I &A, and successive approximations should
let A. increase to infinity. This is basically the pro-
cedure of Anderson in his work on localization in
tight-binding alloys.

So we know at least in principle how to obtain suc-
cessive approximations for G. To carry out the
actual calculation along these lines, however, and
to justify rigorously each step, turns out to be a
very difficult task. Anderson's paper has occasioned
controversy for this very reason. Recent work
has been done to simplifym ' Anderson's original
derivation and to generalize his results but the
underlying mathematics is still complicated and

not always very clear. %e conclude from this dis-
cussion that the Green's-function approach is prob-
ably the most powerful method for a first-principle
solution of our problem, but presents considerable
practical difficulties as soon as one tries to do
actual calculations. It seems therefore desirable
to look for some alternative approach, in which a
few physically reasonable assumptions are built in
instead of being derived from the theory, if at this
price considerable mathematical simplification of
the problem is achieved. %e will devote Sec. IG
to such an alternative approach.

d2(—~+ VOE 5(x —x )g =EP .
dx (17)

Frisch and Lloyd~ have shown that the solution of

(17) can be reduced to the study of a one-dimension-
al, one-parameter, stochastic process. Combin-
ing their procedure with some results of Borland
it is possible to prove the following theorem
Consider a chain of length I, and one fixed config-
uration (x,), 0 &xq &xz ~ ~ ~ &x„&I. Call an interval
(a, b) on the x axis empty if it does not contain any
of the x, . Call M(l) the maximum number of dis-
joint empty intervals of length l which the chain can

contain. Let X(E) be the integrated density of states
for the problem defined by Eg. (17) and the bound-

ary conditions g(0) = g(I ) = 0; then

M % g ~ cotan"

(Ig)
where the branch taking values between 0 and & has
to be taken for cotan (x). The theorem is particu-
larly useful for E-O'. It then states that the num-
ber of states below E is approximately equal to the
number of empty intervals of half a de Broglie
wavelength, l =v/vE, thus suggesting that the low-
est eigenstates are the one-dimensional analogs
of the bubble, Sec. IID. It also gives the asymp-
totic form

(%(E) )= e e '~

(c slowly varying) for E- O'. By analogy we expect

E. Some Exact Results in One Dimension

It would be useful to have some exactly soluble
problems at hand in order to check the validity of
the assumptions of Sec. OI. The only exact calcula-
tion done so far for a three-dimensional problem
is the density of states found by Lloyd, already
mentioned in Sec. I. It refers to a very specific
problem, and is of no help to us.

Among the soluble one-dimensional problems,
the one that most closely resembles ours is the
electron in a set of randomly located, repulsive,
5-function potentials. The Schrodinger equation
is
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(5L(E) &-ee "
for the three-dimensional problem.

III. SEMICLASSICAL THEORY

(20)

A. Effective Potential and Density of States

We start by considering a situation which is com-
pletely opposite to the problem of Sec. II: an elec-
tron in a very smooth potential V(x}. It is well
known that the density of states is approximately

V(x) = V2, 2 (p(x)) . (24)

n(E) = — —-2— . . d2xd~p 5 [E —p2 —V(x)] (21)(22)

in this case. An elegant and general proof of this
equation can be found, for example, in the paper
by Gelfand and Yaglom, who prove the equivalent
equation

Z(P)= fn(E}e "dE=(4vP) 2/2 f-e 2"~d-x.

(22)

We will now transform the hard-core problem into
an approximately equivalent one in which the elec-
tron moves in a smooth effective potential, and
then apply (21). The procedure is a slight reformu-
lation of earlier work by Eggarter and Cohen. ~8'~9

We note first that in the hard-core problem (p &

= E, since (g i Vlf&= 0 because of the boundary con-
dition that g vanishes on the surface of each sphere.
This, together with the uncertainty principle, gives
a lower bound for the spatial extent of the wave
functions of energy E:

m ~ 2v/(~ )= 21/(3/E)«2 .
If we restrict our attention to energies which

are low enough to make &x»r, [r, defined by E1I.
(11)]we see that the electron interacts with many
scatterers simultaneously. It is thus natural to
use the Wigner-Seitz argument locally to generate
a smooth effective potential V(x), related to the
local density of scatterers p(x) in the neighborhood
of x by the Wigner-Seitz e1luations (11}and (12).
We therefore assume

the variational calcu].ation of Halperin and Lax'
for electrons in a random Gaussian potential. Al-
though we have not succeeded in finding a rigorous
justification for either choice, we use L ~& " for
the following reason: The spatial extent of the
most localized wave functions, which is the small-
est region the electron can sample, is essentially
given by the uncertainty principle dx = 2v/~„. In
the hard-core problem &p„= (2 (p'&) = (2E)1/2,

hence Lfx-E . The situation is different in a
Gaussian potential, where (p'& = E —(g I V ig). We
believe that our choice is not in contradiction with
the work of Halperin and Lax; the difference in
sampling length is simply due to the fact that we
deal with different problems. In our case the elec-
tron is always in a free space where V= 0; in their
problem it moves in a potential that is close to V.

Because of the energy dependence of L, the ef-
fective potential is also electron-energy dependent,
V= V(x, E) This .potential can be inserted in (21)
to get an approximate density of states

n (E)=—
2

— d x [E —V(x, E)] /,
4m'3

with the domain of integration consisting of all points
which make the integrand real. If we want the en-
semble average (n(E)& per unit volume we get the
simpler form

( (E)& = (4 '} '([E - V((), E)]'"&.

From the definition of p and provided that within
the range of f there is a huge number of scatterers
(which will turn out to be the case in our problem),
it follows that p has a narrow Gaussian distribu-
tion, and the same is true for V. Let p, Vand

be their mean values and standard devia-
tions, respectively. We can write (27) more ex-
plicitly as

( (E}& (E V}1/2 -& v-v& /202 d V422(2&)1/2 o
(23)

and after some elementary changes of variables

Clearly p(x) must be constructed by sampling the
density of hard spheres in the vicinity of x, i. e. ,
must have the form

(n(E)&= (41/ ) 1o / E((E —V)/o„), (29)

p(x)= fp(x') f(x —x') dx', (25) E(x)= (2~)-"2 f,
" 2"2e '"-""2d2 . -

(30)

where f(x) is a smooth positive weight function,
whose integral over all space is 1, and which goes
to zero over some characteristic distance L which
has yet to be determined.

Two reasonable possibilities for the choice of L
exist. These are L ~E ', which is suggested by
Eq. (23) and has been used by Eggarter and
Cohen ' and L~ I]E, —VI ', which follows from

Everything is known in Eg. (29) except o'„, which
we could compute if we knew 0,. This in turn re-
quires the knowledge of the sampling function in
E1I. (25) and we must content ourselves with an
order of magnitude estimate since we have no way
of determining f(x) precisely. The approximation
consists in replacing f by the characteristic func-
tion of a cubic box of side
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FIG. 6. Function F (x), Eq. (30), which determines
the shape of the density of states.

L - 2v(3/E) /3

centered at the origin. In order to correct some-
what this very crude approximation, we prefer to
introduce an undetermined parameter c of order
unity which can then be adjusted to fit the theory to
experimental data. Thus we put

L = c2m(3/E)'",
(32)

and

inside a cubic box of side L
/(x)= centered at the origin

0 everywhere else .
(33)

and

o2 (2tttS zc )-3/2 p E8/2 (34)

g2 WS g2 (35)

which completes the calculation of (n(E)), leaving
only some arbitrariness in the choice of &.

The shape of &n(E)& is primarily determined by
the function E(x), Eq. (30), which is shown in Fig.
6. The asymptotic forms for E(x) are readily ob-
tained:

E(x)-x'/2, x»1
F(x)- 2xl 3/a e-g /2 x«1

(36)

(37)

and so the density of states is given approximately
by

& (E)&- (4") '(E —V)'", (E —V)/ (38)

It is now an easy matter to derive, assuming Poisson
statistics for the number of scatterers in a cubic
box, that

The transition from the form (38) to the form (39)
occurs over an energy range of order /J«(E= V).
Assuming, for example, that p is low enough so
that the optical approximation is valid, we have
from Egs. (34) and (35)

o«(E= V)= (pa ) (Smc )
s V«V, (40)

that is, the characteristic width of the tail of local-
ized states is much smaller than the shift V of the
band edge.

The asymptotic expression (38) is identical with

(9), while the low-energy limit E-O', Eg. (39), is
of the form (20) because o«~E /~, E-O'. This
strengthens our confidence in the semiclassical ap-
proximation made. It is also encouraging to see
that thedensity of states, Eqs. (29) and (30), has the
same functional form as the one found by Cooper-
smith by a very sophisticated quantum-mechanical
calculation. His result is (n(E))=nag, where no is
the free-electron density of states and g is a Gauss-
ian centered at V and of width IVdx: V(pa )

' . Our
result would agree exactly with Coopersmith's if

(a) we made the simplifying assumption o„(E)
=o«(E= V) for all E (this was done in Ref. 18), and

(b) we put c= (3/2) ' (Sme)
' =0. 3. This choice of

c, however, does not allow us to fit the exper imen-
tal data of Sec. IV (they require c = l. 4). In addi-
tion, it is physically hard to believe that the elec-
tron should sample over less than half a de Broglie
wavelength as c = 0. 3 would indicate. We prefer
to leave c as a parameter to be determined from
experiment.

B. Percolation Theory and Nature of Electron States

Ziman first pointed out that the transport prop-
perties of classical particles moving in a random
potential constitute a problem closely related to
percolation theory. We will now discuss the na-
ture of electron states in the effective potential
V(x, E) defined by Eg. (24), starting from a similar
classical point of view, and theninvestigatewhat
changes the correct quantum-mechanical formula-
tion of the problem would introduce in the discus-
sion. The main ideas were already sketched by
Eggarter and Cohen, and further extended and
clarified by Cohen and by Economou et al. '

For each energy we will divide space into two
regions, which we call allowed and prohibited, de-
fined by the conditions V(x, E) ~E and V(x, E) &E,
respectively. The fraction of space which is allowed
for a given energy E we denote as c(E), and this
quantity is clearly equal to the probability that a
point chosen at random is allowed, i. e. ,

2 21 ~v -(E-F)2/2e~&n(E)&- 4,z (2 ~E Vi)wm
c (E) (2v)-1/2 1 (E-«t /tt«e -t~/2 dt (41)

(E —V)/a«" —1 (39)
For E-0 the upper limit goes to —~, and hence
c(E)-0; for E-~, c(E)-l. In addition c(E) is a
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(a)

A Q (c)

FIG. 7. Shaded region is in each case prohibited to a
classical particle. In (a) we have E &E~ and the allowed
regions form isolated lakes; states are localized. In (b)
E is slightly above E~; allowed infinite channels coexist
with allowed lakes, quantum mechanically all states are
extended, but a fraction of them is resonant with high
values of P only in one allowed lake. In (c) E»E~, the
particle can move almost freely with occasional scatter-
ing on prohibited islands; all states are extended.

monotonically increasing function of E; all this fol-
lows immediately from (41).

let us consider now a low energy (E —V)/o~« —1. Then c(E)«1 and most of the space is
prohibited. The allowed regions will form isolated
"lakes" in a "continent" of prohibited space, some-
thing like Fig. V(a). A particle located initially in
one of the lakes would remain there forever, at
least, classically. In the other extreme case
(E —V)/o „»1, c (E) = 1, and most of the space is
allowed. The situation is depicted in Fig. V(c) with
prohibited "islands" in an allowed "sea. " A particle
of energy E can now propagate freely, with occa-
sional scattering On prohibited islands.

From continuity considerations it is clear that as
energy increases the allowed lakes present at low
energy grow in size, until, at some critical energy
E„ the first unbounded allowed channel will appear
[Fig. V(b)]. This represents the first possibility
that a classical particle can diffuse away from its
initial location.

The determination of E„or c(E,), is one of the
central goals of percolation theory. 3 '3S Another
important quantity is the percolation probability P(E)
defined as the conditional probability that a point x
belongs to an unbounded allowed channel if x is in
allowed space; P(E) is strictly zero for E &E, since

there are no channels, and increases monotonically
to 1 above E,.

A classical dc mobility calculation should con-
sider only the fraction P(E) of the particles having
energy E. In fact, particles with E &E, are bound
to finite lakes and should not be counted, while par-
ticles with E -E, can drift steadily only if they are
in infinite channels, which happens with probability
&(E).

When quantum effects are included, the possibil-
ity appears that electrons can tunnel across pro-
hibited regions. However, one can convince oneself
by putting numbers into the various equations that,
for situations of practical interest, one can neglect
processes involving tunnelings in a mobility calcula-
tion. The amplitude for tunneling across one pro-
hibited region is considerably less than 1, and mo-
tion over any macroscopic distance requires the
crossing of a huge number of prohibited. regions.
We conclude that p, (E)~P(E) is still a good approxi-
mation in a quantum-mechanical treatment of the
problem.

Numerical work by Kirkpatrick suggests that
very close to the percolation threshold p(E),
~ [c(E) —c (E,)]8~5 would probably be a better assump-
tion. Cohen sees this as an indication that the
width A and length f of the first percolation channel
go as A ~ [c(E)—c(E,)]"and l ~ [c(E)—c(E,)], with
»0, P&0, and & —P= —, . We have not attempted to
include any of these corrections in our theory be-
cause they apply only when o(E) is just a few per-
cent above the critical concentration c(E,), and this
energy range receives little weight in our computa-
tion of the mobility [Eg. (55) below]. This last
statement is justified by the discussion at the end
of Sec. IVA.

The question whether p (E) is strictly zero or only
very small for «E, is irrelevant for our calcula-
tion, but has considerable importance from a con-
ceptual point of view. The work of Anderson, and
especially the discussion of it given by Mott, 4'

suggests thefollowing: (i) For E &E, the exact
eigenfunctions of the problem will be localized. The
nonresonant character of tunneling from lake to lake
makes it ineffective in causing delocalization. (ii)
For E E, the states describing electrons in infinite
channels form a continuum of extended states. The
states describing electrons which were classically
bound to lakes now become extended but resonant in
character, with most of the wave amplitude in the
original lake, and a small part of the wave function
spilling over into nearby inf inite channels. The
fraction 1-P(E) of resonant states goes rapidly to
zero for increasing E, until (iii) at E»E, all
states are extended, with considerable amplitude
in the allowed sea, and small amplitude in prohibited
is lands.

The critical energy E, separates localized from
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extended states, and is the "mobility edge" of the
Mott- CFO model of disordered materials.

We now turn our attention towards the determina-
tion of k, . The percolation problem has so far been
studied mainly on lattices by the use of Monte Carlo
methods. Frisch, Hammersley, and Welsch4 have
determined in this way the percolation probability
as a function of concentration of allowed sites for
several Bravais lattices. We can convert our con-
tinuous problem into an approximately equivalent
lattice problem if we simply imagine space divided
into boxes of side L, the correlation length of the
potential, and use accordingly the result for a cubic
lattice, &(E,)= 0. 3, as an estimate for E,. From
the Gaussian character of e(E) we then get the
equation

~(E)=';eP(E) r(E); (48)

second, the electrons cannot be considered as prop-
agating in free space, but instead in the potential
V(x, E), so that the velocity is

v = (E —V (x, E)]i (49)

(50)

and third, the mean free path is reduced below its
classical value &,= (op) by the presence of pro-
hibited regions. We can get a simple estimate of
the mean free path &~ associated with scattering off
prohibited islands. The correlation length of V(x, E)
is I, Eq. (32). The probability of finding along a
given path & correlation lengths of allowed space,
a prohibited region occurring in the (k+ 1)th, is

p/ =c (E) [1 —c(E)],
E,= V- 0. 52o'p(E, ) (42) and so

which in the very low-density limit becomes

V [1 0 52(po8)1/4(3&e2)-8/4] (43)

C. Semiclassical Mobility

In classical kinetic theory the mobility of an ex-
cess electron in a gas of heavy scatterers at tem-
perature T is given by

i/ =Z J p. (E)n(E) e ~ dE, (44)

Z= Jn(E)e dE,
where

~(E) =3-«(E) . (46)

r(E) is the mean collision time for electrons of

energy E, i. e. ,

7(E) X/v= (opvE) i . (47)

The preceding discussion, Sec. IIIB, suggests
immediately how to change the various classical
equations in order to apply them to our problem.
First, Eq. (46) should contain a factor P(E) to ex-
clude localized (or resonant) states, i. e. ,

Our choice of the cubic geometry has been crit-
icized by Zallen and Scher, who claim that for
percolation in a continuous potential the critical
concentration is c(E,) = 0. 15 (instead of 0. 30). Al-
though their value has not been derived rigorously,
we must admit that our choice of the cubic lattice
is to a large extent arbitrary. Had we chosen a
fcc lattice, for example, the result would have been
c(E,) = 0. 195, while for a tetrahedral lattice &(E,)
= 0. 425. Our c(E,) is therefore uncertain approxi-
mately by a factor of 2; but this is of no practical
importance for our calculations: Ov contains the
parameter e anyway, and by adjusting it to fit the
experiments we correct for all kinds of factors of
order unity which have escaped the present elemen-
tary theory.

Xq = P „ALP ~ = Le (E) [1—c (E)] i (51)

which combines with ~, to give an energy-dependent
mean free path

Le(E)
&,+ &~ 1 —c(E)+Lope(E) (52)

The mean collision time can now be computed from
this and the conditional average (v ), of the inverse
velocity over allowed space:

r(E)= X(E) (v ~),

X(E) E -1/2=
(2 )1/8 (E) J (

X 8 -(V-P) 2/2'g2
V RV

= 2"(E)' (E)o~"'F'[(E —V)/o v] (53)

c(E) ~ 0. 30,
p(E) =

e-25[c(e&-0.33 e(E) &0 3
(54)

fits their numerical values (Fig. 6, simple cubic
in Ref. 42) accurately enough. The approximation
(54) fails for c(E)- (0. 3)', where P(E) ~ [c(E)—0. 3]
with o'=0. 6 but the discrepancy is unimportant for
our calculation, for reasons given below at the end

of Sec. IVA.
From Egs. (48), (53), and (54) we find the energy-

dependent mobility p(E). The shape of this curve
has the general form shown in Fig. 8. Below the
mobility edge E„p,(E) vanishes because of the fac-
tor p(E); for E &E„ //. (E) increases linearly [be-
cause this is the behavior we have chosen for our
approximate p(E), Eg. (54)] and for E» V, p(E)
becomes free-electron-like, I/, (E) = —,'e(op) (E V) ~/~,

In order to do numerical work with our equations
we need in addition some explicit form for the per-
colation probability P(E) given graphically by Frisch,
Hammersley, and Welsh. For our purposes
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p. (EI
since, as is well known, the fluctuation in the num-
ber of particles for a gas in the grand canonical en-
semble is

(~')= (~')id a am "sTI—
g9P r' (56)

Ec"

FIG. 8. Typical behavior of the mobility p(E). At E
&E, it vanishes because the percolation probability is
zero; at E &E~ it increases roughly as p(E); the decrease
at higher energies occurs because the collision time vw)
diminishes with increasing velocity.

differing from the classical expression only by a
shift V in the zero of energy.

At this point we have all the necessary equations
to compute the electron mobility p, (p, T) as a func-
tion of temperature and density of hard spheres:

fn(E) p, (E)e ~s dE
fn(E) e ~ dE

A simplified version of this calculation was done by
Eggarter and Cohen and compared withan extreme-
ly complicated first-principle calculation of Neu-
stadter and Coopersmith. The comparison showed
qualitative agreement: The mobility is close to the
classical Langevin result

To calculate (~p/~+)r we use the equation of state

P = pksT [1+pB(T)] (59)

and the experimental values ' of the first virial co-
efficient B(T).

Second, we have the fact that He atoms are not
fixed in space. This has a very important conse-
quence: The mobility of "localized" electrons be-
comes nonzero. To discuss this point, let us con-
sider specifically a situation like that shown in Fig. 9,
in which a very low-energy electron is trapped in
a region of low gas density. If an electric field is
applied the electron can drift steadily simply by
pushing out of the way some He atoms. This mo-
tion would be very complicated to follow in detail,
since the He atoms are in thermal agitation, and
the local density p(x) around the electron would
fluctuate in time. The only thing we can say about
it is that the number of He atoms that are pushed
away must be sufficient to keep the local density
p(x) at values that are compatible with the electron
energy, i. e. , we have the constraint

Ncaa 8= 4e/3o'p(2wmkT)~~2 (56) V~z[p(x)] &E at all times. (60)

Before applying the theory of Sec. IO to excess
electrons in gaseous He, we must dis cuss some fur-
ther properties of this system. First, at the tem-
peratures =4 'K and densities =10'o-102' atoms/cm
we will be interested in, He shows considerable
departures from ideal-gas behavior. Therefore
the distribution of atoms in the "sampling box"
defined by E|l. (33) will not follow a Poisson law.
But the modification this introduces in the calcula-
tion is trivial; we simply must replace Eg. (34) by

'o=( &2m3)e-'" E"' k TP B
T

(57)

at low densities, and drops rather suddenly when
the density of scatterers is increased beyond a
critical value p„«. The values of p„«, however,
turned out to be somewhat different in the works of
Neustadter and Coopersmith and ours.

Since a mobility transition like the one described
above has been observed experimentally for excess
electrons in gaseous He, we devote Sec. IV to the
study of this problem, as a test for the present the-
ory.

IV. MOBILITY OF EXCESS ELECTRONS IN GASEOUS He

A. Consequences of He-He Interaction and of Thermal Motion
of He Atoms

The object "trapped electron+ low-gas-density
region" will. be called a "pseudobubble" because of
its similarity with the "bubble" state in liquid

1'Vp 22' 2V

If for the time being we consider only low energies
8 -E, I » kT we conclude also that pseudobubbles
are rather stable. Jumps to an extended state
would require an increase in electron energy much
bigger than the average thermal fluctuations in this
quantity, and are therefore rare events. If further-
more we restrict ourselves to a zero-field mobility
calculation, the pseudobubble stability is not de-
stroyed by its drift motion.

The above arguments are not valid for electron
states below but close to the mobility edge:
IE -E, I =O'T. But these states are not important
in the evaluation of p, (p, T), Eq. (55), as'long as
their mobility is much lower than that of free elec-
trons. The reason is the following: If the peak in
n(E)e is deep in the tail of localized states, then
the region E-&, is practically depopulated. If the
peak in n(E) e is close to or above E„ then anon-
negligible fraction of the electrons is in extended
states, and these dominate the mobility, so again
E-E, is not an important region. We therefore
do not need a detailed discussion of these states.
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FIG. 9. Region of lower than average gas density con-
tains a trapped electron. We call this object a pseudo-
bubble.

B. Qualitative Discussion of p-vs-p Curves

C. Parameters Characterizing Pseudobubbles

As stated in Sec. IV A, a detailed study of the mo-
tion of an electron in a pseudobubble state would
be extremely complicated. It is nevertheless pos-

Levine and Sanders have measured the mobility
of excess electrons injected in gaseous He at T=4
'K and pressures up to the saturated vapor. Sim-
ilar measurements at higher temperatures were
done by Harrison. The curves p, vs p, at constant
temperature, look in all cases like those shown in

Fig. 10.
We can understand this shape in a very intuitive

manner by using the ideas developed so far. It is
easy to verify that the function n(E) e ~ has one
maximum, say at E,„, and is rather sharply
peaked. For low density p&p&, Fig. 10, this
maximum occurs above V, the electron spends
most of the time in extended states, and the classi-
cal Langevin mobility is approximately correct.
The reason why p, & p. ,&, is that the mean free path
for any energy is smaller than the classical value

,= (o'p) because of the presence of prohibited
"islands. "

As the density is increased, the average poten-
tial V and the mobility edge E, shift to the right with
respect to & . In the density range p& &p &p2 the
peak in n(E) e moves from the right to the left of
E„and the mobility decreases drastically because
so does the fraction of electrons in extended states.
For p &p&, finally, practically all electrons are
well below E„ in pseudobubble states, and the mo-
bility curves saturate at a value characteristic for
these objects.

Our next task will be to put the above argument
in numerical form.

sible to make an approximation which reduces the
problem to an almost trivial form, and still retains
enough of the physics to give reasonable numerical
estimates of pseudobubble sizes, mobilities, etc.

We start by defining, for each pseudobubble, an
equivalent hard sphere of radius R„which has the
same mobility as the pseudobubble. It is clear that
this can always be done, no matter what the mobil-
ity of the pseudobubble in question is.

Next, we want to estimate R„. Here we make
the approximation' that the mobility of an object
in the gas is primarily determined by the number
b,N of He atoms that this object has to displace dur-
ing its motion; hence

+37iR,~p= hN . (61)

The problem of estimating R„now reduces to find
~N. %e stated before that the density of He atoms
in the vicinity of the electron may fluctuate in time,
but has an upper bound imposed by Eq. (60). This
equation can be inverted numerically to give an in-
equality of the form

P(x)&p- (E). (62)

But p (x) is essentially the density of atoms in a
volume I '(E), hence the deficiency of He atoms is
EN=I (E)[p —p(x)]. The local density p(x) fluc-
tuates in time but is constrained by the inequality
(62) to remain deep in the tail of a Gaussianprob-
ability distribution. Since this distribution goes
rapidly to zero for decreasing p(x) we can conclude
that p(x) = p (E) most of the time, so finally,

BN=L3(E) [p —p ~(E)j . (63)

R„=c '(36N/4')"3. (64)

It turns out that c'= 0. 4 gives the best fit to the ex-

log p.

JM. closs
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p, experirnentol
I

P, P~ P

FIG. 10. Typical constant-temperature mobility curve
for an excess electron in gaseous He. The dotted line is
the prediction of classical kinetic theory.

Equations (61) and (63) determine R„(E). Since very
rough approximations were made we introduce asec-
ond adjustable parameter of order unity, and re-
place (61) by
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perimental data.
The mobility of a pseudobubble, which is by defi-

nition the same as the mobility of a hard sphere of
radius R„(E), can now be computed from the inter-
polation formula

8 gism

6wqR ~ 4pR„(2nlVl „,ks T)'

I0000

l000

100
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Although the foregoing discussion is justified only
for I& -E, I » kT, we use the set of equations de-
fining the pseudobubble mobility p, »(E) for all val-
ues of & up to E,. That this can be done follows
from the discussion at the end of Sec. IV A. This
concludes the work needed to compare the theory
with the experimental data. The mobility at any
temperature and density can now be calculated nu-
merically using Eq. (55) with

&(E)= Il -&(E)I&»(E)+fe&(E)7 (E) (66)

The first term in the right-hand side describes
pseudobubbles, i.e. , electrons in localized states,
while the second term is the mobility associated
with extended states, defined in Sec. III, Eqs.
(48) -(54) .

D. Numerical Work and Comparison with Experiments

A calculation of the p, -vs-p curves for electrons
in He at various temperatures, using the above set
of equations, was done by Eggarter and Cohen in
Ref. 19. The scattering length was taken as 0.62

I I I I I I I I I I I

O.IO

I I I I I

90 5 IO I5 20 25 30

IO p crn
-20

FIG. 12. Mobilities as measured by Harrison (full
lines) and as calculated with the present theory. The
parameter c had to be changed slightly with temperature
to get a good fit.

A. 4' The data were displayed as Inp -vs-P/P,
curves for T=3.65, 3.9, and 4. 19'K. P/P, is the
ratio of the gas pressure to the saturated vapor
pressure at each temperature. . Results are shown
as Fig. 3 in Ref. 19. The reason for choosing
in', and P/P, as variables is that the experimental
data of Levine and Sanders were presented in this
way. All calculations were carried out with p and
T as independent variables, and at the end P/P,
was computed from the known properties of He. 45

With the choice of parameters c =1.7 and c =0.3
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FIG. 11. Mobility of excess electrons in gaseous He.

The circles are the results of measurements by Levine
and Sanders; the dotted lines are the predictions of the
present theory. The full lines have no theoretical sig-

nificancee.

He

FIG. 13. Density of He gas in the vicinity of a trapped
electron in (a) gas at low pressure, {b) gas at high pres-
sure, and (c) liquid He.
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a good fit to the experimental data was achieved.
Unfortunately, a small numerical error in the

computation of P/P, occurred in that work; we are
very grateful to Dr. J. Hernandez for discovering
it and bringing it to our attention. The correct
value for P/P, is

Req jAj
'

IS—

16—

l4—

(P/P, ) „„„=l. 1298(P/P, )„„, (67) IO—

To bring the theory again into agreement with ex-
periment after this correction is made, the param-
eters c and c' had to be redetermined. It turns out
that c=1.4, c =0.4 give the best fit to the measured
mobilities. The new curves are shown in Fig. 11.

The mobilities vary over five orders of magnitude,
and nowhere is our theory off by more than a factor
of 1.5. Considering that the present is only an or-
der-of -magnitude calculation, the agreement is very
good.

The main errors occur in the low-density region
P/P, & 0. 5 where our mobility is below but close to
the classical result Eq. (56) while the experimental
data are somewhat lower. As is discussed in Hef.
19 this is due to the fact that Eq. (52) overestimates
the mean free paths above but close to the average
potential. (This energy is the most populated at
the densities in question. ) A quantum-mechanical
particle will scatter on potential fluctuations even
if these are not high enough to reflect a classical
particle; thus our classical calculation overes-
timates the mobility.

Electron mobility measurements at higher tem-
peratures, up to T = 20 'K were recently done by
Harrison. Hernandez checked the present theory
against these new data, and found that again a good
fit couM be obtained, provided the parameter c
was slightly decreased with increasing tempera-
ture. He kindly sent us his results, which are
shown in Fig. 12.

K. Some Further Discussion of Pseudobubbles

The idea of pseudobubble states was crucial in
explaining the "saturation" of the mobility curves at
high density (p & p~ in Fig. 10). It would be interest-
ing to have a good physical feeling for wha, t these
pseudobubbles look like, and what their relation to
the bubble state in liquid He is. The present the-
ory is not detailed enough to carry out such a study,
but it is nevertheless possible to draw some con-
clusion from purely physical arguments.

Vfe are considering a situation in which an elec-
tron is surrounded by He atoms. These atoms are
in thermal motion, and interact with the electron
via a repulsive potential. The electron-He inter-
action clearly tends to keep the atoms away from
the electron, while the thermal motion tends to
produce a distribution of atoms which is on the
average homogeneous in space. As a result of
these opposing tendencies, some kind of equilib-

I ~ I

l4 l6 IS 20 22 24
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FIG. 14. At each density 99% of all pseudobubbles
have equivalent radii in the shaded region. It can be
seen that fluctuations in pseudobubble sizes decrease as
the density becomes higher.

rium situation must be reached, in which the den-
sity of He atoms inside the pseudobubble looks like that
in Fig. 13(a). The typical distance over which a
deficiency of He atoms exists is of order &I (E),
something like 50 A at T = 4 'K, while the equivalent
radius of the pseudobubble, defined as the radius of
the hard sphere that deplaces the same number of
atoms as the pseudobubble, is given by Eqs. (63)
and (64). Typical values are around 14 A, close to
the bubble radii reported for the liquid state of sim-
ilar temperatures T= 4 'K. '7~ At given tempera-
ture and pressure, pseudobubbles of different
equivalent radii coexist; R~ is a function of energy:
R~ =R~(E), and since there is a probability distri-
bution Z n(Z) e for the electron energy, this
implies a probability distribution for R~. It is
certain that also the shape of pseudobubbles, i.e. ,
the curve p(x) shown in Fig. 13(a), is not well de-
fined; this curve should be interpreted as describing
some vague kind of average shape.

Let us accept these ideas and discuss what hap-
pens when the density is increased at constant tem-
perature. The main change will be a relative gain
of importance of the electron-He interaction with

. respect to the thermal motion. Also as the inter-
atomic separation decreases, the He-He interac-
tion, not mentioned so far, will start to play a sig-
nificant role. As seen from Eq. (58) and the fact
that k~ T(sp/BP)r & 1 this interaction produces an
increase in (AN ) with respect to the ideal gas,
indicating a tendency of the atoms to cluster to-
gether. As a result of all this one would expect
pseudobubbles to look more and more like square
wells [say as in Fig. 13(b)] as the density of the gas
is increased. In Fig. 14 we have plotted in a
(p, R~) plane a shaded area which, for each density,
contains the equivalent radii of 99/o of all pseudo-
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bubbles (it corresponds to T=4. 19'K). We can
see that for increasing density the fluctuations in
A„become smaller, and it is reasonable to assume
that also fluctuations in shape will diminish as p
increases.

We believe therefore that our pseudobubbles and
the bubbles in liquid He [which can be idealized by
a He density like that shown in Fig. 13(c)j are physical-
ly the same thing, and that the quantitative differences
between the two can be fully explained by the dif-
ferent He densities. Pseudobubbles become better
and better defined, with increasing p until eventually
at the density of liquid He the minimum in free en-
ergy corresponds to a bubble like Fig. 13(c), and
this minimum is so peaked that fluctuations in shape

and size are insignificant.
It is interesting to note that Harrison 6 reaches

exactly the same conclusions from a self-consistent
calculation of the most-probable bubble configura-
tion, combined with an analysis of the experimental
datR.
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