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An eikonal distorted-wave theory is proposed for inelastic electron-atom collisions at inter-
mediate energies. The primary interaction, responsible for the transition, is treated to first
order, while the initial- and final-state interactions are taken into account by using the eikonal
approximation. Direct and exchange collisions are both considered. Detailed numerical cal-
culations are performed for the excitation of the n =2 levels of atomic hydrogen by electron im-
pact. The results for the differential excitation cross sections are compared with those obtained
in the Glauber eikonal approximation at small scattering angles.

I ~ INTRODUCTION

The analysis of inelastic electron-atom colli-
sions is a problem of long-standing interest in
atomic physics. Reliable approximation methods
such as the close-coupling method have been
devised when the relative incident energy is low,
so that only a few channels play an important role.
Qn the other hand, the Born approximation has
been used extensively at high energies.

In this paper we are concerned with the region
of intermediate energies. As an improvement over
the Born approximation, we propose an eNonal
distorted-svave method, where the optical-model~ 4

formalism and the eikonal approximation' are
combined. At the expense of treating to first or-
der that part of the interaction potential which is
responsible for the inelastic transition, we are
able to obtain reasonably simple expressions for
the scattering amplitudes. These take into ac-
count explicitly the longitudinal momentum trans-
fer. allow the explicit evaluation of exchange ef-
fects, and may be directly applied to target atoms
containing many electrons.

The basic features and the approximations in
volved in our method are presented in Sec. II for
the general case of a binary rearrangement colli-
sion A+B-C+D. In Sec. III we apply the theory
to the excitation of the 2s and 2P states of atomic
hydrogen by electron impact, neglecting exchange
effects. These are studied in Sec. IV. Finally,
we compare in Sec. V our treatment to other ap-
proaches, particularly the "many-body eikonal"
method proposed by Glauber in connection with
high-energy hadron-nucleus scattering, and ap-
plied recently by several authors ' to the elastic
and inelastic scattering of electrons by atomic
hydrogen and helium.

II. EIKONAL DISTORTED-WAVE METHOD

Consider a nonrelativistic collision of the type

A+B C+D, (2. l)
where the particles A, B, C, and D of masses
M&, M&, M&, and M& may be "elementary" or
composite. We shall describe this collision in the
c.m. framework. I et R, and k, be, respectively,
the relative coordinate and the relative momentum'
of the particles A and 8 in the initial channel i.
The reduced mass M& in that channel is given by

M] =M~ +M~

The channel Hamiltonian H& is such that

H; =K]+8),

(2. 2)

(2. 3)

AA9 A(SA) CAP A(SA)

@BLAB(SB)

CBPB(SB) ~

one has

h; = h~+h~,

~a= ~~+ ~a ~

(2. 6)

where K, is the relative kinetic-energy operator
given in the position representation by

I4) ———(1/2M() v„", (2 4)

and h& is the internal Hamiltonian of channel i such
that

(2. 5)

Here the subscript o', refers to a collection of
quantum numbers, while $, denotes a set of gen-
eralized coordinates (including spin variables when
necessary) describing the internal structure of the
systems A and B. If h& and h~ are the internal
Hamiltonians of 4 and B, with
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(a($ () QA(SA) 9B(SB) (2. 7)

0&Xa = E.Xa (2. 9)

are given in the coordinate representation by

X.(r t() = (2~) "'e'"'"' l.(&() . (2. 10)

Finally, if the interaction between the systems
A and B is denoted by V, , we have

(2. 11)

where H is the total Hamiltonian of the system.
Completely similar formulas clearly hold in the

final channel f with the substitutions i-f, o- P,
A C, and B-D.

Let us now suppose that the scattering proceeds
from an initial state X, =-x&, to a final state X&

The differential cross section for this pro-
cess is given by

—= (2(() ~ M(MtI T, I (2. 12)

where 7.'„ is the T matrix on the energy-momen-
tum shell. Thus„

~. =
& xb I

vy
I
&.' & =(~'s 'I v(

I x. &,

where +,"and 4,' ' are the state vectors given by

(2. 13)

4,' = X, + (E H+iq) V-(X, , (2. 14)
@~

' = X( + (E -H -i&) '
VtXn ((l- o')

Let us now suppose that the interaction poten-
tials are decomposed in the initial and final chan-
nels as

~~ = U~+ ~~
(2. 15)

Vy = Uy+ 8'y .

%e define the new Hamiltonians 8, = II&+ U;, 0&
= II&+ U& and assume that the corresponding state
vectors

The total energy available in the c. m. system
in channel i is

E, = E( ~ ——k(/2M(+ e~+ es = k(/2M(+ E~

(2. 8)
where we have used the notation a -=(i, (('.). The
channel eigenfunctions or asymptotic states X,

such that

which explicitly incorporate our knowledge of
(f&,
' and Q(,

' into the expression of T(„.
A physically meaningful separation of V, and VI

may be accomplished if we first choose

U( =—U;(R()

Ut -=Up(%t),
(2. 18)

y(+) ~&+) y(-) ~(-) (2. 20)

and substituting into E(l. (2. 19), we obtain the
distorted (save B-orn approximation (DWBA) for
the transition amplitude

TDWBA &y(-)
I

gr
I

y(+) ) &y(-&
I

gr
I

y(+) )

(2. 21)
Before we proceed with E(l. (2. 21), it is im-

portant to specify our choice of the potentials U&

and Ut . Any interaction which satisfies E(l. (2. 18)—and therefore forbids excitation or rearrange-
ment —clearly leads to Eq. (2. 20), but the most
natural choice is to adopt for U& and U& the optical
Potentials describing elastic scattering, respec-
tively, in the initial and final channels. The re-
action (2. 1) may then be pictured as in Fig. 1,
where elastic scattering in the initial (final) chan-
nel precedes (follows) a single interaction induced
by 8'& of R'&. The interpretation of the reaction

so that the potentials U& and U& only induce elastic
scattering. The corresponding wave functions
(P,
"and (PI

' are called distorted (aves and E(ls.
(2. 17) become, for inelastic or rearrangement
collisions,

T(. = &(tI 'IivtI +.' &
= &'4 Iiv(I 4 ."& (2 19)

The formulas (2, 19) are still rigorous' if the choice
(2. 18) of distorting potentials is made. By approxi-
mating

(P,
"= X, + (E —H„+ iq) '

U, X, ,

= Xr + (E —Hy-iq) UtX(
(2. 16)

are known. A simple calculation starting from
the integral representations (2. 13) of the T matrix
element yields the t(vo potential formulas

T». = &»' '
I
v( —~~

I x.& + &»' '
I
tv~

I
~"&

(2. 1'7)

T,.= (x, Iv, —w, Iy."&+ &e,'-'Iw, I((."&,

FIG. 1. Schematic representation of the primary inter-
action W& (or W~) —treated to first order —and the initial-
and final-state interactions U~ and U~—treated to all orders-
in the DWBA matrix element (2, 21) for a binary rearrange-
ment collison A +B t" +D.
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kf

0 k;

FIG. 2. Two choices of the Z axis adopted in this pa-
per: (a) case I, Z axis along R;; (b) case II, Z axis along
the bisector of the scattering angle 8.

in terms of the primary interactions W, (Wf) and
the initial- and final-state interactions U& and U&

is then obvious.
We now return to the DWBA transition matrix

element [E»I. (2. 21)] and observe that when the
conditions of validity of the eikonal approximation
apply we may write (in the "straight-line" approxi-
mation)

~ »»Zj

= (2v) exp ik, R, —— U, (R„Z,)dZ, g, ($»),
V

+@f

p»
' = »t

t'" = (2»»)
' ' exp ikf Rf —— Uf(Bf, Zf)dZ f $»(»$f)

V
~e

(2. 22)

where v; = k;/M; and vf = kf/Mf are the relative
velocities in the initial and final channels and we
have adopted a cylindrical coordinate system to
decompose

R; = B» + Z; Z, Rf ——Sf + Zf Z . (2. 23)

In writing E»I. (2. 23), we have not yet chosen the
Z axis. Two simple possibilities, illustrated on
Fig. 2, will be discussed below. In case I we
choose the Z axis along the incident momentum
k, , while case II, corresponding to an axis chosen
along the bisector of the scattering angle, ' is
somewhat closer in spirit to an evaluation of the
eikonal along the classical trajectory.

The eikonal distorted-wave matrix element Tb,
is simply obtained by substituting the expressions
(2. 22) of $,"and»t»» ' in Eq. (2. 21). We immedi-
ately note that for direct inelastic collisions (no
rearrangement), where R, =—Rf =—r and p'»= Vf=tf',
we may write

T»","= (2v) ' f dbb f'"dz

xf"d@ exp{i[(k» —kf cos8) z+ 5 e'(5, z)]].

x exp[-ikfb sin8cosp]A(b, z) . (2. 24)

Here we have adopted the eikonal formulation I, so
that

and

since ( and g» are orthogonal and the potentials

U, and U& only depend on r.
A similar formula with slightly different kinemati-
cal factors holds for the case II. As we shall
illustrate below, the integration over the azimuthal
angle P can often be performed, leaving a two-
dimensional integral to be evaluated numerically.
R is worth noting that no assumptions have been
made concerning the neglect of the longitudinal
momentum transf er.

For rearrangement collisions, where, in general,
R& &8&, the eikonal distorted wave transition
matrix element is clearly more difficult to evalu-
ate. We shall return to this point in Sec. IV in
connection with the exchange scattering of elec-
trons from hydrogen atoms.

III. EXCITATION OF 2s AND 2p STATES OF HYDROGEN BY
ELECTRON IMPACT

We now apply the eikonal distorted-wave method
to the excitation of the 2s and 2P states of hydro-
gen by intermediate energy electrons, neglecting
exchange effects. Let r and r' be, respectively,
the coordinates of the incoming and the atomic elec-
trons. Then we have

r=b+z k'], (2. 25)
(3 1)

1
54(5, z)= ——

'U~
~ 00

U, (b, z )dz

while (b, Q) are the polar coordinates of b in the
plane of impact parameters perpendicular to k&.
Moreover,

As a first approximation to the optical poten-
tials describing the elastic scattering in the initial
and final channels, we choose the corresponding
static potentials. Thus, we have in the initial
state

Uf(5, z ')dz ',
vf ~g

(2. 26)
U» = &4» l~ll» &

=-z (I/~+I)

while in the final states

(3. 2)
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U~ = (Oa. ll'(I(3. ) = -& "~ —+ 4+ 4+ 6 ~,
3

(3 3)

1 „1 1 1 1 ~ ra
U(' (42jl ~~~42po) z +

4
+

4
+

24 ~+ 12+p(cos8) 3 z r + r +
2

+
6

+
24

+ 144

(3.4)

at, ( „1 3 r r 't 1 „1 1 1 1 r rz'l
U~"'= (0» ll'lt» ) =-e" —+ —+ —+ —~-6P, (cos8) ~ -e-" —, ~+ + —+ —+&+1 & 4 4 24 ~

2 r x r 2x 6 24 144 j
(3 6)

The eikonal distorted waves (2. 22) are now given by

it
Q,
""= (2w) exp ik, ~ r ——

~

U, (b, z )dz g„(r), (S. 6)

Q(",
" — (2(() exp i k& ~ r- —

~ UP (b, z )dz g„(r), (3. 7)

where the index A. refers to the final states (2s, 2po, 2p„) considered here. By substituting these expres-
sions in E(l. (2. 21) and using the fact that

g (z) (2~)-1 f z(cxo4t~(n(e~/R)dy (3. 6)

where 4„ is an ordinary Bessel function of integer order n, we obtain for the various transition matrix
elements (in formulation I)

Ta,'"„= (2m) f dbb Jo(k&b sin8) f dz exp(i[(k, —k&cos8) z+ 64&, (b, z) ]]A~,(b, z),

Tat" „=(2m) fo dbb Jo(kgb sin8) f dz exp(i[(k, —kzcos8) z+64» (b, z)]/A» (b, z),

T~t, „= (2w) i f dbb Z, (kgb sin8) f dz exp(i[(k, —k&cos8) z+ 64», (b, z) ]jA», (b, z),

(3. 9)

(3. 10)

(S. 11).

with

and

64),(b, z)= ——i U((b, z )dz —— U~(b, z')dz
~ «!

A, (r)= —', 2' 'e '""(r+-',),

(3.12)

(r) =, —~ -e'"('~ ~+ +—+—r3' ~ ~ [~ 2~ 8 64
(3.13)

27 b 1 3„(g 1 3 9 27
A, (r) =~ — ~ -e-'"" -s+ --+ —+ —r3~ ~ ~ 2~ 8 64

As an example we display in Fig. 3 several
Argand diagrams for the 1s- 2s transition at 100
eV and various values of the scattering angle. The
phases of the distorted-wave amplitudes are seen
to differ appreciably from the Born result. The
differential cross sections for the excitation of the
2s state at 50, 100, and 150 eV are shown on Figs.
4-6. We note that the distortion effects reduce
significantly the differential cross section in the
forward direction. It is also worth looking at the
differences between the two formulations of the

l

eikonal calculation. These differences, which give
a qualitative idea of the error introduced by using
the "straight-line" eikonal approximation, become
important at the largest angles considered here.
Our results for the excitation of the 2p states are
shown on Figs. 7-9, with the quantization axis
chosen along the incident direction%(. We first
note that there is no selection rule hm = +1 for s-p
transitions, in contrast to the eikonal calculation
of Ref. 11. We shall return to this point in Sec.
V. We also see that distortion effects act in op-
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e =o'

e= &6

8 =8

posite directions for the excitation of the 2po and
2p, & states, so that the net result —for the total
process 1s- 2p —remains small. Another interest-
ing quantity is the polarization of the radiation
emitted from the 2p states, arising from the rela-
tive population of the excited magnetic substates.
Because of the possibility of large-angle errors
introduced by our use of the eikonal method, we
have not attempted here to study systematically the
required total cross sections, particularly at low
energies. As an example, however, we find that
our (energy-dependent) polarization fraction is
given at 150 eV by I' = —0.03, in closer agreement
with the experimental. value of Ott et gl. than the
(energy-independent) result P= -+ = —O. 27 of Ref.
11.

FIG. 3. Argand diagrams for the direct transition ma-
trix element corresponding to the excitation of the 2g state
of atomic hydrogen by electron impact at an incident elec-
tron energy E =100 eV and various scattering angles. Sol-
id arrow: eikonal DWBA (case II); dashed arrow: first Born
approximation.

IV. EXCHANGE EFFECTS

We now turn to the analysis of exchange effects.
As an example we shall study in detail the case of
the 1s- 2s transition. Denoting by T,'„'" the corre-
sponding eikonal transition matrix element, we
find from Eq. (2. 21) that

T;„'"=(2}})~ dr dr exp —i%& r —— U&(b', g")dg" (I)z,(r)
IW f ~g+

1 1
I

~

———U~ r exp j k, ~ r- — U bz dz
j g„oo

(4. 1)

where U; and Uz are given, respectively, by Eqs. (3. 2) and (3. 3). We have used here the "prior" form of
Eq. (2. 21); the "post-prior" discrepancy introduced by our use of eikonal wave functions in the initial and
final channels (instead of the exact distorted waves corresponding to the potentials U, and Uz ) should be
small at the angles and energies considered here.

Since the numerical evaluation of the expression (4. 1) would require an unreasonable amount of computa-
tional effort, we have simplified it as follows. From the form of the potentials U, and Uf, we note that final-
state interactions are much more important than initial-state ones. This effect is easy to understand phys-
ically, since the outgoing electron moves in the field of an excited hydrogen atom in the 2s state, while the
incoming electron feels the weaker potential produced by a hydrogen atom in the ground state. We have
therefore neglected .initial state interactions and written the expression (4. 1) as

r;,' =(Pe) ', drdr'exP —i(ex r' ——,P (4', )d edex, (r)e-, ——-((,(r)}e'""4', (r ). (4. 4)
kf lr-r'l y

Let us first dispose of the contribution of the two
last terms in large parentheses. Since these terms
do not depend on r, the corresponding matrix ele-
ments are easily reduced to two-dimensional inte-
grals of the type already encountered in our study
of direct collisions. The only difficulty arises from
the contribution of the first term in large parenthe-
ses, which we denote by I. Writing

P„(r ) =die ",
(„(r)=B(2-x)e ", B=(32}))'

and using the fact that

(2 s) i~ dK 1;x ( ~,}Ir-r
we find that

(4. 3)

(4.4)
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0.9- E = 50eV

0.8—

07-
lau er

0.6—

0.5—

0.4-

FIG. 4. Differential cross
section for direct excitation of
the 2s state of atomic hydrogen
by electron impact at an inci-
dent electron energy E =50 eV.
Solid line: eikonal DWBA (case
IQ; dot-dashed line: eikonal
DNA (case Q; dashed line:
first Born approximation; dou-
ble-dot-dashed line: Glauber ei-
konal approximation {Ref. 11).

0.3—

0.2—

O.t—

0 12

I

20 24 8
{degrees)

with

~ 00

dr exp —i kr ~ r'- —
~~ Uz(b, z ') dz e "F(k„r'),

f gz

(4.6)

and p = »» pZ. Using cy]indrica& coordinates with the z axis along the incident momentum k», and writing

K= K, +Zgu, , r'=5'+z'Fc»,

we have

p(y yl z I) f de- ~ f ~ f d& (~ 2++ 2)-1&»z»b'cosa&»z~g'
w»0
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x [(4+K, +K, +k( -2K, k, ) —2( 4+K' +K, +kq —2K,k)) 'j, (4. 7)

where a is the angle between the vectors K, and b . The integration over ~ is easily performed, and yields
\

with

F(k), b, g ) = 2w[Fg(k(, b, z') -o Fo(k), b, z' )j,

y OO

$Ke
Ft(kgi b 1 g ) = dKwKiJo(Kib ) dK* (K q+K )P+K +K +k —2K k )

(4. 8)

(4. 9)

'30 )KgI I e' (K +K )( '+Ki +—K +k( —2Kgk))~I 'w

(4. 10)

0.9- E =100aV

0.8

0.7

0.6

FIG. 5. Same as Fig. 4, but
for E=100 eV.

0.4

0.2

12 20 24 8
(degrees)
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0.9—

( a.u.)
Q

E = '150eV

0.8

0.7

0.6

0.5 FIG. 6. Same as Fig. 4, but
for i=150 eV.

0.4

0.3

0.2

0 l2
I

is
Fig. 6

20 24 8
(degrees}

Finally, the quadrature over the K, variable may
be performed by contour integration in the complex
K, plane, leaving a one-dimensional integral to be
performed for each value of k„b, and z . By
substitution of the resulting E(k&, 5, z ) in Eq.
(4. 5), we then find the contribution of the term
l r —r j

' to the eikonal distorted-wave matrix ele-
ment (4. 2).

As an example, we show in Fig. 10 the Argand
diagrams corresponding to the transition matrix
element (4. 2) at an electron incident energy of 100
eV and for various scattering angles. As in the
case of direct scattering there are significant phase
differences between the distorted-wave values and

the corresponding Born quantities obtained from
the expression

&'.:"=&x~~v, (or v, )~x. &, (4. 11)

by using the Feynman parametrization technique "

and performing the last integral numerically.
Moreover, we note that the magnitude of the ex-
change matrix element is profoundly modified near
the forward direction.

The differential cross section for the excitation
of the 2s state of hydrogen by electron impact,
including exchange, may be written (for a random
mixture of initial spin states and all final spin
states)
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QtX
(2&)4 f (L.

)
ysA+ Z

slk
~

2+ &

~

yekk Zest~ 2)

where T~I, is obtained from Eq. (3.9) and 7',„'" is
given by Eg. (4. 2). Since the direct transition
matrix element compLetely dominates the exchange
one at small angles, the large difference between
T,„'"' and T,'„'" near the forward direction has only
little influence on the differential cross section.
In fact, as we see from Figs. 11-13, distortion
effects on the direct transition amplitude (i.e. , of
the type calculated in Sec. IH) are by far the most
important ones near the forward direction, even

at an incident energy of 50 eV. As the scattering
angle increases, exchange effects become more
important until the two effects are comparable for
8 & 20'.

Although exchange effects are overwhelmed here
by the direct transition amplitude at small angles,
it is worth insisting on the fact that distortion ef-
fects significantly modify the exchange transition
amplitude near the forward direction. Such effects
could be responsible for important departures from
the Born approximation when the direct term is
not present. This is the case, for example, in the
excitation of triplet states of helium by electron
impact, in particular the 2 8 state, where experi-

E =50eV

FIQ. 7, Differential cross sec-
tion for direct excitation of the 2p
states of atomic hydrogen by elec-
tron irnI. J.ct at an incident electron
energy E =50 eV. Solid line: ei-
konal DWBA (case g; dashed line:
first Born approxlD1atlon.
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E ='}508V

1Q2

FIG. 9. Same as Fig. 7, but
for E=150 eV.
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es onding to the excitation of the 2s statechan e transition matrix element correspon xng o eFIG. 10. Argand diagrams for the exchange ra
ener E =100 eV and various scattering ang es. io en b electron impact at an incident electron energy E = e

row. eikonal DNA; dashed arrow: first Born approxi
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0.9— E = 50 e'll'

0.8 ~o, ~
~ ~

0.7-

0.6

0.5

0.4

FIG. 11. Differential cross
section for excitation of the 2g
state of atomic hydrogen by elec-
tron impact at an incident elec-
tron energy E =50 eV. Solid line:
eikonal DWBA with exchange; dot-
dashed line: eikonal DWBA with-
out exchange. The direct matrix
elements are those evaluated in
case II. Dashed line: first Born
approximation (without exchange);
dotted line: first Born approxima-
tion with exchange (Born-Oppenhei-
mer approximation).

0.3

0.2

o.i

0 12 20 2I B
(degrees)

serious difficulty at small angles, where the transi-
tion amplitude diverges logarithmically as the mo-
mentum transfer tends to zero.

Inelastic electron-hydrogen scattering has re-
cently been studied using the Glauber method by
Tai et al. and Byron. In order to simplify the
matrix element (2. 13), the first authors make the
assumption that the momentum transfer is orthogo-
nal to the incident momentum k, . For inelastic
scattering, this assumption is not reasonable for
both small and large scattering angles. This leads
for example to the selection rule &m = +1 for s- p
transitions and hence to an energy-independent
polarization fraction P= —~ of the light emitted
after the excitation of the 2p level. In addition, Tai

et a/. neglect exchange effects and find that the
Glauber method improves on the first Born approxi-
mation at rather low energies and large angles,
where the eikonal approximation is not on firm
grounds.

The work of Byron is also based on the Glauber
eikonal approximation but does not make use of the
assumption that the momentum transfer is perpen-
dicular to the incident momentum. The multidimen-
sional integrals appearing in Eq. (2.13) are then
performed by the Monte Carlo method. The results
obtained by this procedure are very encouraging,
particularly with respect to the total cross sections
and the polarization fraction of the light emitted in
the 2p- 1s transition. Although no angular distri-
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butions for the excitation of atomic hydrogen are
given in Ref. 12, the total cross sections obtained
are in qualitative agreement with those which we
find by integrating our angular distributions. Sim-
ilarly, our values of the polarization fraction are
in much better agreement with those of Byron than
those of Tai zt a/. Finally, we have also performed
calculations for positron scattering which at small
angles yield smaller intensities than for the corre-
sponding electron case. These results are again in
agreement with the calculations of Ref. 12 but dis-
agree with the predictions of Ref. 11, which are the
same for electrons and positrons.

Although the application of Monte Carlo tech-
niques to evaluate the multidimensional integrals

appearing in the Glauber method has been very suc-
cessful in dealing with simple target atoms as hy-
drogen and helium, ' ' it seems difficult to extend
this technique to more complex targets. This is not
the case with the eikonal distorted-wave method
presented in this paper. Indeed, since the optical
potentials U& and U& which are "eikonalized" depend
only on the relative coordinates R; and Rf, the re-
duction of the direct and exchange scattering ampli-
tudes proceeds for any atom as in the case of hydro-
gen. Recent calculations' have been done along
this line for the excitation of various states of heli-
um by electron impact, and the results are in good
agreement with the absolute measurements of
Chamberlain et al.
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An obvious improvement over the method reported
here would be to use the true optical potentials—
describing the elastic scattering in the initial and
final states —as a choice for U, and U&, instead of
the static potentials chosen here. Such an approach
has recently been proposed to analyze elastic
electron-helium collisions at intermediate energies,
where absorption effects were found to be important.
However, there are some difficulties in extending
this method to inelastic collisions, since the param-
etrization of the absorptive part and of the long
range behavior of the optical potential may be tedi-
ous, particularly in the final channel where the
target is left in an excited state. It is for this rea-

son that we have chosen here for U, and U& the static
potentials which contain no adjustable parameters.
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I. Diatomic Molecules
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The multiple-scattering theory of Glauber is used to investigate the importance of double
scattering in the collisions of fast electrons with diatomic molecules. By representing the
atomic potentials as a sum of Yukawa terms, comparisons of scattering amplitudes calculated
by the partial-wave analysis and the high-energy approximation (Moliere) are made over a wide
range for several atoms. At 40 keV the amplitudes are found to be numerically equivalent to
within a few percent, with the agreement worsening with decreasing energy. Calculations for
N2 at 0.5 and 40 keV and for I2 and U2 for 40-keV incident electron energies are presented;
these results can be regarded as quantitative estimates of the importance of double scattering
for a system of two atoms as a function of atomic number. Our U2 calculation is compared with
a similar calculation by Hoerni. In contrast to his findings, the double-scattering contribution
to the differential cross section is seen to be negative in the small-angle region. In any event,
for all cases considered, the multiple-scattering correction is quite small, amounting to no
more than +2% of the differential cross section for any angle of scattering.

I. INTRODUCTION

It has been suspected for some time now, that
intramolecular multiple scattering may have a
marked influence on the results of the electron-
diffraction analysis of polyatomic molecules having
two or more heavy atoms in close proximity. In
fact, recent experiments by Jacob and Bartell' and
others have suggested that the reliability of molec-
ular parameters determined by such analyses is
questionable. In addition to this a number of other

experimental investigations in the medium to high-
energy-electron range have indicated that the neglect
of multiple scattering in theoretical models is
perhaps an important source of error. &

'
For the energy range being considered here

(-0.5-40 ke V), the usual approach to the determi-
nation of theoretical molecular intensities is to
assume that incident electrons do not undergo more
than one scattering within the molecule, and that
the effect of chemical bonding on the scattering can
be neglected. The first detailed calculation of


