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The lowest-order configuration-space Hamiltonian {CSH) for a heavy atom is constructed from
quantum electrodynamics by a variational procedure. A variational potential function 0 is intro-
duced which in effect allows some freedom in the choice of the definition of the difference be-
tween electrons and positrons. The optimization of 0 results in a nonlinear equation from which
it is shown that 0 is probably not small for relativistic electrons. The procedure results in a
CSH which contains a new two-body interaction which is relativistic in origin and which is appar-
ently of the same order of magnitude as the Breit interaction when acting between relativistic
electrons.

.I. INTRODUCTION

In the first paper of this series (I) the problem
of the extraction of a configuration-space Hamilto-
nian (CSH) for a. heavy atom from the usual quan-
tum-electrodynamic (QED) formulation of the prob-
lem was discussed. A review of the existing situa-
tion was presented. The fact that the most obvious
generalization of the Schrodinger CSH, a sum of
single-particle Dirac Hamiltonians with simple two-
body interactions, leads to difficulties' (Brown's
disease) was reviewed. The three-electron poten-
tial interactions were derived for the situation
where there are only a few electrons (i.e. , where
Nn «1, here N is the number of electrons). The
assumption was then made that the derived form
applies even when there are many electrons and that
the total energy residing in the three-body poten-
tial would then be the sum of this form over all
different triplets of electrons in the atom. In that
case it was possible to show that the total three-
body energy is of the order of a few rydbergs, a
small part of the total energy of the atom.

We now return to the problem of the CSH of a
heavy atom retaining only lowest-order terms.
For example, we shall find the leading two-body
potential will be of order e but there will be cor-
rections to the two-body interaction of order e and
smaller. These will be neglected. For this rea-

son we shall never encounter renormalization prob-
lems here. However, extension of this work will
run into these problems and it is not obvious how

they will best be handled. We shall also neglect
three-body potentials because of the author's pre-
vious work. ' This is not completely justified since
the three-body results described in I depend on the
form of the two-body potential and this form changes
in the many electron system considered here from
the form for the few electron system in I. Thus our
neglect of the three-body potentials here is not
rigorous and will have to be reinvestigated subse-
quently.

A method for obtaining a CSH would be to expand
the Fock-space wave function in an infinite series
of terms. The first has N electrons, the second
N+ 1 electrons and one positron, and each addi-
tional term has an extra pair. The amplitude func-
tion of the first term may then be considered the
wave function of the atom. We can then obtain an
infinite set of equations coupling all the amplitude
functions. We could eliminate all but the first,
thereby obtaining the required Hamiltonian but this
procedure would result in an intractable operator
(if it exists at all). We take the point of view here
that the elimination of even one other function would
complicate the resulting CHS beyond the point of
usefulness. Therefore we seek an expression for
the Fock-space wave function which contains only
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a single (N-electron) amplitude function. As was
pointed out in I, there is still a great deal of free-
dom contained in such a function. This freedom
may be described as the ambiguity in the definition
of the distinction between an electron and positron.
The usual definition is accomplished by choosing a
complete set of states and arbitrarily dividing them
into two categories labeling one electron and the
other positron. The usual choice of complete set
is the eigenstates of the free-particle Dirac Hamil-
tonian, and the usual division line is at zero energy.
This last is useful since this separates the elec-
trons from positrons by a large gap in the spectrum
(2~nc~) (and makes the total energy positive in a
simple way) thereby mirroring the physical state-
ment that electrons and positrons are different en-
tities. We shall maintain this division line but we
will insert a single-particle potential Q into the
Dirac Hamiltonian which defines the complete set
for the single-particle representation of the opera-
tors. We shall then attempt to find an optimum
form for 0 within the assumed form of the Fock-
space wave function.

It is clear that the results of the exact theory are
independent of Q but since we will be severely con-
strained by the form of the wave function outlined
above, our results will depend upon Q. Indeed we
shall see that the result is an addition to the two-
body interaction which is not of the Breit form, 3

and is apparently not small compared with it. We
interpret it as a modification of the usual electron-
electron interaction by the medium in which they
are imbedded, the rest of the electrons.

In Sec. II we derive the CSH. In Sec. III we find
the optimum 0 and find that its contribution to the
two-body potentials in the CSH are apparently of
the same order of magnitude as the usual Breit
interaction. A brief discussion of the results is

contained in Sec. IV.

H= 00+0'+III . (2. 2)

The zero-order Hamiltonian which defines the
representation in which we work is

H, = fd'~(x), y,(a,(x)I)(x —x')+ n(x, x'))

x g(x') d'x'+ H„, , (2. 3)

where the usual Dirac Hamiltonian is

hp(x) = C~ p + Pm C —ze jx (2. 4)

and H„~ describes the noninteracting photon field.
The modified Coulomb interaction is

ac=&c- &a ~ (2. 5)

where H„ is the counter term just canceling the 0
term in Ho and the usual Coulomb interaction is

2

Hc = —,
' J d'xg(x)y4((x) I-,

~

g(x')y4y(x')d'x' .

(2 6)
Finally, the transverse matter-photon interaction
ls

H, =- f dlxj (x) A(x). (2. V)

We now construct a trial wave function in Fock
space of the form

II. DERIVATION OF CSH

Our starting point' is the Schrodinger equation
of @ED for the electron-positron field and the
radiation field in ihe presence of an infinitely
heavy point nucleus with charge number Z,

(2. 1)

where B is written in the Coulomb gauge and in a
somewhat unusual form

@' = J (d'x)" @(xg x~)A,(x„x,') A, (x„,x„')y'(x,') ~ ~ y'(x„')(d'~ x')"
~ 0), (2. 8)

where 10) is the matter-photon vacuum state' and

A, is a positive-frequency projection operator
defined by

(2. 9)

where the p„are eigenstates of the zero-order
Hamiltonian

(2. 10)

and where the sum in (2. 9) is restricted to eigen-
states of (2. 10) for which h, & 0. This restriction
is just the implementation of the dividing line men-
tioned in the preceding section. The factor e "
is the result of the contact transformation in the
interaction representation which decouples the

I

matter and radiation fields to lowest order. It is
given by

& f d~ ~(~) e- &How H ejHot (2. 11)

where &(r) = sgn(r). Note that the factor e "gen-
erates terms in 4 [Eq. (2. 8)] with an arbitrary num-
ber of pairs but in a very special way. There are
other ways of accomplishing this decoupling but
this seems to be the simplest.

This wave function is now inserted into a Bay-
ieigh-Ritz variational expression which is equiva-
lent to Eq. (2. 1):

(4, H4) (O', H'4')
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where

H'=e' He" '

=HO+e"(Hc —Ho)e "+Z i", I,-t- Cn[o, Hi],

(2. 13)
where C„ is the repeated commutator of HI with 0;
n times. The wave function 4 and the potential Q

will now be optimized by use of the stationary
principle 5E = 0.

%e note that the photon-vacuum expectation value
is taken in (2. 12), that we are dropping higher-
order terms in the sense described in Sec. I and
that three-body and higher interactions will be
neglected. W'ith these restrictions the term
e"H~e "can be replaced by H~. For the H„ term
we expand in powers of 0 yielding

e"H„e "=Z —', C„[o,H„].
5+0

The first term (n= 0) in the sum just cancels the
H„ term in Ho, the g = 1 term is off diagonal in
photon operators and is dropped and the n = 2 term
yields a contribution to H' of the form

—,'[o, [v, H„]]-—,'EX(f„'f;t,.b„.)C..., , , (2. 14)

where N is the normal ordering operator and the
Hermitian operator C is given by

t

4s,. i ~ = &~fits'/x„)lm'I' &I &-ns, n s n-in, s n ~

(2. 20)
We note that the new term generated by 0 [Eg.
(2. 14)] is a two-body term which just addeds to
Eq. (2. 20) and that if 0 is of order e or smaller
then C is negligible according to the rules estab-
lished in Sec. I.

However if 0 is not small then Cpresents a
modification of the Breit interaction between two
electrons in an atom. The mytrix elements in
(2. 12) may now be simplified with the result

z= &c „[0A,(q)I,(q)a, (q)
$~1

where

C.= &.(I) A,(X)C,

ho is given by (2.4) and U is the total two-body in-
teraction given by

u(12, 1'2')

-~4.(1)4)(2) [&«l (e /xi') I «& n. r .-& n). &;-

+-,'C„, „, +-,'C...,„,]y„*,(1')y,*,(2') . (2. 22)

Variation' of (2. 21) with respect to 4 yields the
CSH and the Schrodinger equation

2+ (Qln. mn' 8 t, nmn '
tits'l' il g + g

hatt i f3'e ml:

(Z- H„)4.=0 (2. 23)

g ~SlN'a k 5 lSIt tl'

h„,„+8,:, H„=Z A, (~)I,(f)a,(f)

Here 8,„=h„.—S„and

n„, = fd'xy (x)y,fl(x, x') y, (x') d'x' (2. 16)

and g is the elementary two-body transverse inter-
action given (I) by

g g', n'g' e e
~

d xg d xm Pn(xg)'}'n& P '(xg) 4'g (xp)'Yn~

. ~1a~en
X $,.(X3) [hnin V —V„p'na]xgp n

+13+e'o

(2. 1V)

The b's are the creation and destruction operators
obtained from

& = fd x 4 *(x)g(x) . (2. 18)

The n = 1 term of the sum in (2. 13) is just the usual
transverse two-body interaction which can be com-
bined with H, and written as

This is the CSH we set out to find. It is essential-
ly a. sum of single-particle Dirac Hamiltonians
(with the nuclear Coulomb potential included) plus
a two-body interaction surrounded by positive-fre-
quency projection operators to prevent "Brown's
disease. "' The effect of the positive-frequency
projection operators around ho are small, since
A, = 1 —A and the A operator is important only for
relativistic single-particle states. The two-body
potential depends upon 0 through the states in
(2. 22), or through the h operator in (3.10). In
addition there is the linear dependence of C on Q
which we shall see provides a new potential, added
to the Breit interaction (q) which is probably not
negligible compared with it.

HI. OPTIMIZATION OF Q

n&&(&nb's&r ~ b )Ar, .~ i ~ (2. 19) Variation with respect to Q will yield an equation
for the determination of A. For that purpose we

' rewrite (2. 21) by using the antisymmetry of 4, :
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N(C „{A,(1)h&&(1)A+(1) + ,'(N——1)A, (1)A, (2) 'U(12)A, (l )A, (2))e+ )
(e„e,)

We define one- and two-particle density matrices by

p, (1, 1') = fd x2 . ~ d x«& e".(1, 2. . . , N)e. (1 2 ~ ~ N)

pg(12, 1'2') = fd~xq d~x„e,*(1,2, 3. . . , N)e, (l ', 2', 3. . . , N),

yielding4

Ntr[A, Iz&A~ &+ ,'(N-1—)A,(1)A,(2)'U (12)A,(1)A,(2)p2]
(e„e,)

(3. 1)

(3.2)

(3.3)

where tr indicates the trace over all free coordi-
nates. We now vary (3.3) with respect to Q. Us-
ing (2. 9) and (2. 10), we obtain

with

h=, &o+ ~ (3.3)

BA, = A QA, +A,Q'A

Q= f d&& e"'BOe "',

(s. 4)

(s. 5)

The quantities p& and p~ are not varied since
(Be), is independent of BQ in the variation process
so that this variation of E comes from variation
of A, and a&(12). If we consider the A, variation
first, the substitution of (3.4) into BE results in'

Ntr [(Q'A I&+ hA Q)p&+-,'(N- 1),Q'(l)A (1)+ Q'(2)A (2))'U(12)p2+-,'(N- 1) U(12)(A (1)Q(l)+ A. (2)Q(2))pm]
(e„e,)

where we have used the result obtained from (2. 23):

A pal=A pa=0 .
Using the symmetry of p2 and 'U in their arguments this may be rewritten as

(3.7)

(s. 3)

Nfo dgtrBQ(l)[A„e I&&&p&e
""+e ""p~hoe""A +(N-l).e" & '"A (I)'Up&e "' &" +(N-1)e "' &"p 'UA2(1)e" .&]

(e., e, )

Before proceeding with the variation of U it is useful to write it in a more compact operator form. Equa-
tion (2. 22), after some straightforward manipulation becomes

2 &&0

'U(12)=- -+ 'e f dt—[e '"""f(12 t)e'"' "+e '"' "f(12, t)e'"' "]+&e fd(tu)[e"' 'f(12, t-N)e "' ', O(2) —G(1)].
&18

(3.10)

The second term is just the operator form of the
transverse interactions [the &I term in (2. 22)] and
f(12, t) is defined by

y(12, f)e "'=—
(&&.

'" o. "'v'- o. '" en&" v)

q(12) = fl (I)+us(2), (3.12)
l

"l,g„S 2'
The last term in (3. 10) comes from the C terms in
(2. 22). It represents the new electron-electron
interaction. The exponential factors are given by

I

and the domain of integration in the (f, u) plane is
defined by

fd(fu)=f, deaf„df f, df f„-du. (s. is)

Variation of U with respect to 0 may now be ac-
complished by noting that f is independent of Q
and by the use of

Oe = u. e"Oae""-" .
0

(s. i4)

After some lengthy algebra we obtain the contribu-
tion to 5E from the variation of W:

~ 2

N(N I) ~
! fdf d&&t Bg(1) -&»&'&' ['"&~&&f(12 f) -'"' " p (12)]e&"'&"~

~ co wQ
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—ie d(tu) tr6 Q(l)[ ph(12), e'" 'y(12, t —u)e '" ']

+ie, d(tu) d&&tr5Q(1)itive" "'" 'f(12, t —u)e "' ' [Q(2)- Q(1), ph(12)]e&h(('~h'
4 {j

—e '"""[n(2)—n(1), p, ((2)[e"++}'(12,t-u) 8" M A+})(5„S}' (3 ((()

The equation 5Z= 0 may now be written by adding the expressions (3.9) and (3.15) and setting them equal to
zero. Now we note that 5Q(1) is an arbitrary function so its coefficient in the trace over index 1 must van-
ish. The resulting equation is

f dv e"' '"A(1)[-Q(1)p&(1) + (N 1) tr—g3(12)ph(12)] e "' '
0

+-'ie (N-1) f tdt f dXe ' ' " tr [e'"' "f(12 t)e '"' "
p (12)]e'"' ""

co

+-,'ie (N-1)f d(tu)trh[e'~' 'f(12, t —u)e '~' ', ph(12)]

,'e (N-1—)f d(tu) t f d&&trhe '~' ' [e""'f(12, t —u)e "' ', [Q(2) —Q(1), ph]]e'~' '+H. c. =0, (3.16)

to 4,. In that case it becomes evident that the fac-
tor (N-1) gets replaced by a sum over orbitals,
and that only the relativistic orbitals contribute
significantly. ' Therefore the factor (N- 1) is rough-
ly replaced by N„, the number of relativistic elec-
trons in the atom (as in Ref. 1). Q is then rela-
tivistic in origin, entering H« through '0 [(3.10)]
and A,. These are also relativistic effects which
are probably not of overriding importance in H~~
so that @, is probably a slowly varying function of
Q. For this reason p& and p~ will not be expanded
in Q.

If we project with A, (1) on both sides of (3.16)
the first term vanishes. We may then linearize
the remaining terms (which are explicitly Hermi-
tean) with the aid of the lemma: If a= ao+ ta, then
&fe &- $a )go - gao

I
+ i f dg [e&&((0t„e &f((&& e&((og-e «()0]+ O(g-) (3 iq)

The result is

where we have used the relation A gA, = —A QA, .
Evidently the solution of this equation for Q is a

formidable task. We shall not attempt it here but
instead we assume that Q is small and expand in
it. This will yield a linear integral equation for
Q which is still not readily solvable. However we
can give a plausible argument to show that the
solution of the equation for Q is not small violating
our initial assumption. This indicates that Q is
not small and therefore that the new terms in (2. 22)
representing a modified electron-electron interac-
tion are probably not negligible.

Before proceeding we note that all terms in (3. 16)
are relativistic in origin. This is readily seen
since f [Eq. (3.11)]is the result of a transverse
photon interaction and the first term in (3.16) de-
pends upon the connection between (-) and (+) states
by the operators Q and 'U(12). The factor (N 1)-
is simply illustrated by replacing p& and p& by those
resulting from a Slater determinant approximation

CO 1
i f tdt f dy e- & ( &thtr [e&h&&&ty(t) - &th&&&] &h&&&A. ~ fd(t

+-,' f t'dt f ) dye d]tr [e-&h«&&h&Q(1)e&a&&&&h& e-&&ha&i&[e&h&»&y(t)e &h&»& ]-&a&1»h]

(&0 1.' f t'dt--dX f dye-&h&'&«trh[[e&a&~&h&Q(1)e &a&~&«e&a&»hy(t)e-&a&»&] ]e&h&a&th

1—fd(tu) fo dhtrh[[e' (tQ(1)+uQ(2))e ™,e"f(t —u)e "]}pal

1—fd(tu)t f d&(. trhe &~[e&'f(t —u)e ",[Q(2) —Q(1), ph]]e&~=0, (3.16)

where the (+ i i+) matrix element is implied.
Here Q has been extracted explicitly so that all

other quantities are now evaluated at Q= 0. Notice

that the equation is homogeneous in p3 and that the
correlations in p3 are crucial to the equation. If
4, is a product of uncorrelated orthogonal orbitals
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then p2 is yroportional to the unit matrix and the
equation becomes an identity. However, even the
correlations introduced by the Pauli principle in
the Slater determinant form of 4, are sufficient to
give the equation content. In order to get an order
of magnitude estimate for 0 we shall make this
approximation. That is, we take C, to be a Slater
determinant of orbitals and for additional simplicity
take the orbitals to be eigenfunctions of ho (Cou-
lomb-Dirac functions). Then the matrix elements

of p2 in any single-particle basis are

I

1) [6

o, o', p, p' & N (3. 19)

and since the first term is propor'tional to the unit
matrix it does not contribute in (3. 18). lf we take
the &s I I

s' ) matrix element of (3. 18) (s and s' are
both positive energy states) the result after exten-
sive calculation is

~ &»IF(&.~) -F(&~. ) I»'&+~ ~ ~- &&' IF(h.»-F(~.. )+ - (F(S,.) -F(&.,)) l. 'f, )
b ab a:s'

&- & flF(h;)-F(~.»," (F(~.)-F«..)) lb &

-x„(s(~s(g„)-z((',. )+s'(('..)-~((',.)las'))=0 (3. 20)

Here

(3. 21)

and F($) is the Fourier transform of f(t) given by
the right-hand side of (3.11). The sums in (3. 20)
extend only over the N-occupied (positive-energy)
orbitals of 4 so that (3.20) is a finite set of linear
algebraic equations for the unknowns X„..

The structure of the difference of, two I' func-
tions was encountered in I. Each I' is essentially
the two-body potential due to the exchange of a
transverse photon and its matrix element is pro-
portional to (v/c), (v/c)2 (through the ~ factors).
It is therefore important only for relativistic
states. The fact that we always encounter the dif-
ference of F's in (3.20) further reduces the con-
tribution but we note and emphasize that this struc-
ture occurs in both the inhomogeneous term and
in the kernel of (3.20). Thus the unknown X is
essentially the ratio of the same kind of structures.
When only one of s and s' is relativistic then the
inhomogeneous term is small (-v/c) but in the
sum over (a, 5) in the homogeneous term there will
occur matrix elements of (F-F) between states all
of which are relativistic and such matrix elements
are not small. Hence the X for nonrelativistic
states will be small.

On the other hand, if both s and s' are relativis-
tic then the inhomogeneous term and the kernel are
the same order of magnitude and so Xis of the order
of unity. Then 0„, is the order of S„,, the differ-
ence of two relativistic energies which is a fraction
«mc . Consequently we may expect that the single-
particle potential Q is of the order of the nuclear
potential - (so. ) mc for relativistic electrons.
This conclusion is of course not valid since the re-
sult violates the assumption that Q is small which
allowed us to linearize (3. 16) to obtain (3.20).

[

However it does show that Q is probably not small
for relativistic states and that the new two-body
potential in (2. 22) is not negligible compared with
the Breit interactions [the q's in (2. 22)] for rela-
tivistic electrons.

The Breit interaction is relativistic (2. 17) con-
taining a factor (v/c)q (v/c)z explicitly. The new
term (C) [E(l. (2. 15)] contains these factors in q
and in addition the potential Q. So we may expect
that these new terms are "more relativistic" than
the Breit terms and die off in importance relative
to the Breit term as the electrons become more
nonrelativistic. The new terms are therefore prob-
ably less important than the Breit terms in the
over-all structure of the atom but may be just as
important for the inner electrons.

IU. DISCUSSION

The main results of this paper are summarized
by the CSH, [E(l. (2. 24)], and the two-body poten-
tial [E(l. (2. 22)]. The optimization procedure in
Sec. IG is then used to define Q which is needed to
define the CSH and (12). We have raised the very
strong possibility that the additional two-body inter-
action obtained is as imyortant as the Breit inter-
action for inner electrons.

There still rema. in some rather unpleasant fea-
tures of this formalism embodied in the nonlinearity
of the results. The CSH depends weakly upon 4
through the p dependence of Q. Strictly speaking
this results in the statement that different states
of the same atom are not orthogonal. This is un-
pleasant, but true. The atom is not an isolated
system. It is coupled to the radiation field which
is eliminated from the Hamiltonian by the approxi-
mate decoupling of the radiation and matter fields.
The state of the atom will affect the state of the
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radiation field. For example, if the ground state
is spherically symmetric the field state will be
different from an excited state with a quadrupole
field. It is only the atom plus radiation field which
has orthogonal states. Fortunately this is a weak
effect and without the loss of significant accuracy
one may chose p& and p2 to be formed from, say,
the ground state of the atom in which case the atomic
states are orthogonal.

We have exploited the freedom of the representa-
tion of g(x, f) and the consequent freedom of the
definition of the electron in obtaining the CSH. A
similar freedom exists for the radiation field.
That is, (2. 8) describes a photon vacuum but the
photons discussed are described as plane waves.
This is clearly not the optimum quantization basis
for the photon field. We can exploit this freedom
of definition of the photon (and the photon vacuum)

in the same way as we have introduced Q here.
This will modify the two-body interaction, since
it will no longer be plane wave photons which are
exchanged and there may well be other effects.
We shall return to this matter subsequently.

The nonlinear equation for 0, (3.18) may not be
linearized in the straightforward way that led to
(3.18) since Q, is not small when s and s' are
relativistic. However it is possible to linearize
for the nonrelativistic components and for 0,
which we can show is small. We shall also return
to this later.

The CSH may be reduced to its nonrelativistic
form by the usual "two-component" reduction of
the wave function. The new effects we have intro-
duced here will yield new terms there which are
probably small compared with previous relativistic
corrections. This will have to be investigated.
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5The symbols &, A„etc. , are used interchangeably for
the operator and theirconfiguration-space representations
O(g, g'), A, (g, g'), etc. This should lead to no confusion in
context.
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We propose a new type of expansion for obtaining accurate wave functions for '3$ states of two-
electron atoms, expressing + as a sum of "configurations" of the form (1 +P~2) exp(- &~r~ —Pp2
-p;xf2). Matrix elements of both H and H can be easily evaluated for these configurations. Re-
sults of an illustrative calcu'ation of the 2 '38 states of H, which proves them to be unbound, are
given.

We have found that trial wave functions of the
form @= Q, C, g„with "configurations"

~ exp(- p, ~, —o', ~,))exp(- y~~ta)

can give very accurate eigenvalues and eigenfunc-
tions for the ground and excited ' S states of two-

electron atoms. The set of parameters («, p„y,)
were either generated by (a) a random-number
generator on (0, 1) followed by a mapping onto
physically realistic ranges of values, (b) direct
choice of what we think should be "good" values,
(c) direct optimization of a small set which min-
imizes the energy, or (d) a combination of these
approaches. The form of the trial wave function


