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The irreducible-tensor theory is extended to the double group 0*. A complex basis is used
because the representations E'„E", and U' are necessarily complex, and a set of phase fac-
tors are presented. The presence of repeated representations in the reduction of direct pro-
ducts of representations implies that more than one set of V coefficients may be associated
with a given set of representations abc. For the group 0*, representations are repeated a
maximum of two times in any direct product and the corresponding sets of V coefficients are
labeled V~ and V2. This requires a modification in the standard definition of W so that the sub-
scripts on the V coefficients are included in the definition. This in turn calls for a rederivation
of the useful matrix elements of double-tensor operators and several of the more important
formulas are developed with particular emphasis on matrix elements in a spin-orbit basis.
Complete tables of all V and W coefficients for 0* are also given.

I. INTRODUCTION

A decade ago, Griffith developed his irreducible-
tensor method for molecular symmetry groups in
a series of papers' and an excellent monograph. 2

The tensor method is invaluable for evaluating ma-
trix elements of multideterminantal wave functions
and sums of matrix elements. Griffith's work did
not extend to the double-group representations,
those representations which are important in odd-
electron systems when spin-orbit coupling is a
major element in the molecular Hamiltonian. In
this paper, the irreducible-tensor method will be
extended to the octahedral double group O*. There
are two previous papers on this subject. The work
by Golding covers V coefficients, while Mauza and
Batarunas define 5' coefficients, but in a manner
which we believe is inadequate.

The irreducible-tensor method for finite groups
is an extension of the research by Wigner' and
Fano and Hacah on the full rotation group. In the
notation of Fano and Hacah, the Wigner-Eckart
theorem may be written

ficients which are useful in reducing matrix ele-
ments between multideterD inantal wave functions
to matrix elements of individual atomic or mo-
ie cular orbitals.

The Wigner-Eckart theorem, as written above,
depends upon the.group G being simply reducible, '
that is, the reduction of the direct product of the
representations a and b contains c only once for
any a, b, and c. This is true for the full rotation
group and for finite groups with no representations
more than threefold degenerate. The group Q~,
however, contains the fourfold degenerate U' rep-
resentation and, as Table I shows, direct products
involving this representation will have repeated
representations when reduced. In these cases, the
more general Wigner -Eckart theorem must be used:

(aii/ 0„'/)i))& =( —))' )'i
I ) (ii )) 0'll ) &i

V, g 0' b . 2

where a, b, and c are irreducible representations
of a group G and a, p, and y are components. The
V coefficients are constructed in a symmetrical
form so that V (abc; c(py) = a V(bac; puy), with the
sign determined by well-defined rules dependent
upon the particular representations abc. The sym-
metry of V results in a very compact set of cou-
pling coefficients. Of more importance is the fact
that one .nay construct invariant sums of V coef-

Now in any equation containing V coefficients or
invariant sums of V coefficients it will be neces-
sary to specify whether V& or V~ is being used for
a particular triplet abc.

In this discussion, it shall be assumed that the
reader is familiar with the books by Griffith and
Fano and Hacah on the irreducible-tensor theory.
The notation of Griffith shall be adopted through-
out to accentuate the close relationship with his
work. In particular, V and W' will be used instead
of V and 8', and the basis functions used are those
of Griffith's Table A19.
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TABLE I. Representations in the direct products of 0* representations.

Ai
A2
E
Ti
T2
E I

E /I

UI

Ai
Ag

Ti
T2
E I

EII
UI

A)
Ai

T2
Ti
Ell
E I

UI

E
E

A, +A, +E
Ti+T2
Ti+ T2

Ul
UI

E'+E"+U'

Ti
T2

Ti+ T2
Ai+E+Ti+ T2
A2+E+ Ti+ T2

El +UI
E II +UI

E'+E"+2U'

T2

T2
Ti

Ti+ T2
A, +E+T, +T2
Ai+E+ Ti+ T2E"+ U'

E s+UI
E I+E"+2UI

El
El
E II

UI
E'+U'

E II + Ul

Ai+Ti
A2+ T2

E+T,+T,

E II

EII
E I

U'
EII + UI

E'+ U'

Ai+T,
Ai+Ti
E+T,+T,

U'
Ul

EI +EII +UI
E'+E"+2U'
EI +EII +2U&

E+Ti+ T2
E+Ti+ T2

Ai+A2+E + 2Ti+ 2T2

II. PHASE FACTORS

To construct the group O~ from the group O, the
representations E, E, and U', which are neces-
sarily complex, are added to the representations
Aq, Az, E, T» and T» which maybe chosen real
or complex. Since complex representations must
be used, phase conventions which follow Fano and
Hacah as closely as possible shall be adopted.

In the theory of the full rotation group, three
types of phase factors occur naturally.

(i) (-1)"",the factor which determines the
change of sign of a V coefficient when any two rep-
resentations are interchanged, i.e. ,

abc 1„~„bae

(ii) (-1), which equals +1 for a representation
which can be constructed in real form and —1 for a
representation which is necessarily complex. The
factor is actually an abbreviation for (-1)'"'"&.

(iii) (-1)' ", which arises from the structure of
the matrix U which transforms representations to
their contragredient form. When complex repre-
sentations are used, U can be written in the form

0

termine numerical values for phase factors.
(-1)' " occurs for the same reason in the finite

groups as in the full rotation group and alternates
from +1 to —1 for consecutive components of a
representation. The only exception is E where
both components give a +1 factor. The E repre-
sentation is real and we interpret —a as n for both
components. Conventional choices for values of
(-1)' "' are used and they are all listed in Table II.

The factors (—1)"'"and (-1) "'
& = (-1) are

fixed only if two of the representations in the ex-
ponent are the same. Let us say a = b. If
e belongs to the symmetric product' of axa,
then (-1)'""must equal +1, since a symmetric
function cy constructed from a &&a must contain
ana P and aPa n with identical coefficients. These
coefficients, if one neglects normalization, are
simply V coefficients and so V(aac; &py)
= V(aac; por) Simil.arly, if c belongs to the anti-
symmetric product of a&&a, then (-1)""= —1.
Table III lists the representations of the symmetric
and antisymmetric products of a& a.

For the real representations, Griffith was able
to define

(-1)"i=(-1) =(-1) 2 =+1,

(-1)"3 = (-1)'& = -1

and obtain a consistent set of values for (- 1)"~"

TABLE II. Phase factors (- 1)~~.

0

In the full rotation group all of these factors may
be evaluated by replacing a, b, and c by their J
values and the components a, P, and z by their M
values and evaluating the factors algebraically.
For the finite groups there are no particular num-
bers associated with the representations or their
components and other criteria must be used to de-

C ~ 8 e +1

Ai 1
A2 1
E
Ti
T2
El
E II

UI

0 —1 o.'P K ~ p v
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TABLE III. Hepresentations of the symmetric and anti-
symmetric product of a && a.

Ai
A2
z
Ti
T2
Ei
EII
U

[a2]

Ai
Ai

Ai+E
Ai+E+T2
A, +E+T2

Ti
Ti

A2+ 2Ti+ T~

(a2)

A2

Ti
Ti
Ai
Ai

Ai+E+ T2b

By adding

TABI E IV. Phase factors (- 1)~+~ and (- 1)+b+ i = (- 1)

where 5 = f-l, we can also find a consistent set of
values for every abc except U U T& when T2 is
part of the symmetric product U && U . This prob-
lem is annoying since it means that we cannot, in
general, combine exponents in products of phase
factors and must carry factors such as (-1)"'"
around intact. Golding has used J and M values
for the parent representations from which the oc-
tahedral representations arise under an octahedral
field to find phase factors and this might possibly
lead to a complete set of values for phase factors
without the need to consider symmetric and anti-
symmetric products. That approach has not been
tried by the author.

The values for (-1)" are tabulated in Table
IV. With this choice of factors, all those contain-
ing Aj, E, Tj, and U agree with those of Pano and
Hacah for J=O, —,', 1, and ~, respectively. This
will help ensure compatibility with V coefficients
when we mix space functions with spin functions of
representations irreducible under the full rotation
group.

III. V COEFFICIENTS

V
' = (-1)"(-1)'"~(c) "'
c P-y

x (abcy
~

abet P), (4)

where A(c) is the degeneracy of c and the (abcy ~

ab&P) are vector coupling coefficients. The vector
coupling coefficients are the elements of the matrix
which reduce the representations of a&& b to the rep-
resentations c. The vector coupling coefficients
in Table A20 of Griffith have beenusedas a starting
point. It should be noted that if we use these vector
coupling coefficients for abc to find the V(abc),
permute a and b in V, and then use Eq. (4) to find
vector coupling coefficients for bye, the results
may differ from those in Table A20 by a factor of
-1. In addition, some of the vector coupling ma-
trices of Table A20 were multiplied by —1 to ob-
tain V coefficients compatible with V coefficients
when appropriate. ' For these reasons, the specific
sections of Table A20 which were used are listed
in Table V.

Griffith's coupling tables for the U representa-
tions of Tzx U are unsatisfactory for our purpose.
These U' representations diagonalize the spin-or-
bit coupling Hamiltonian K„, i.e. ,

(U3/2m(R
~
U5/2m) =0,

but the T2 representations of U & U found with
Griffith s coefficients are not symmetric and anti-
symmetric as they must be if we are to define V
coefficients. Koster" points out that a linear com-
bination of U, /2 and U,'/2 may be taken (component
by component) without charging the reduced form
of T2&& U . Using the linear combination

U, = (2/ /5) U3/ 2+ (1/ v'5) U, / 2,

Ub (1/~5) U3/2 (2/~5) U5/2 ~

(5)

we obtain the proper symmetric and antisymmetric

Calculating V coefficients is now a straighti~L ward
matter using the definition of Fano and Hacah":

A3 A33A E Ag

TgAg T3A)

E TETE
TiT2 T2

E2A2

Tf T2Ti

TABLE V. Sections of Table A20 of Griffith (Ref. 8)
used in computing V coefficients. (-) preceding a set of
representations indicates the matrix was multiplied by

1~

A2TiT2

E IE lr E llz IJ Ti i

O' O'Ti O' U'Tib

o' o'A2 o' U 'r~
EIE II T2

E'U'E E 'U'T E "U'T
2 i

ETiT2
E~E'A z "z"A u'u'Af i

O'O'E O'O'T~

E'E "A,
2

z "U'E E "u'r E'U'T
2 i

AiAiAi
A3A3A(
EEAi
EEA2
EEE
r,r,A,
TiriE
TiTiTf
Tjrir2

T2Tp4i
T2TpE

T2T2Ti
T2T2T2
TiT@42

A,z'Z '
A E"E"i
AiU'U'

A~ 'E"
A,U'U
zz'u'
zz "u'
ZU'U'

( )Tjzz
( ) T ZitEII

rg'E"

TiU'Z '

T O'E"i
r,u'E'
r O'E"

2

(-) r,u'U,
(-) r,u u,
(-) r,u'U'.
(-) T,U'U'b
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functions for &2.
. The complete list of V coefficients for 0* are

presented in Table VI. In the U &&U table, the
first set of coefficients for T& and T& will be V~

and the second set will be V2. For T2, the sym-
metric coefficients are the Vq and the antisymmetric
coefficients are the V2.

Certain useful equations involving V coefficients
carry over to V coefficients directly or with slight
modification. The subscripts i, j apply when there
is a choice of V~ or V&. %e have

( ~ s .')
=b„b„y X(c) 5(a, b, c) b, y, (6)

where 5(a, b, c) = 1 or 0 according to whether c is
in a&b or not,

Z~(.)V
'

',
'

V ', ', '
~

=b.„,b, , (V)
c'Y ~Pr ~' 'ri

2

Z V = 5(a, b, c), (8)

TABLE VI. V coefficients V
&

= V
&

&2
&

=1.Ai Ai Ai A2AI Ai

ExE Ai E
8

Tix Ti
(Tlx T2)

Ti
0

T2
0

e e 1//K
e f ~ ~ ~

g o ~ ~

1/P2

~ ~

1/W2
—1/W2

~ ~ ~

1 ~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

0 1
0 0
0 -1

~ 4 ~

1/Ws

~ ~ ~

-1//F
~ ~ ~

~ ~ ~

1/2&3

1/Ws

~ ~ ~ ~ ~ ~

-1/le
1/& -1/v 6

—1/~6 —1/%6
~ ~ ~

—1/W
~ ~ ~

~ ~ ~

1/We

—1 '1
—1 0
—1 -1

1/v s 1/2&3 4 e ~

—1/We
~ ~ ~

1/&6
~ ~ ~

1/We

~ ~ .0

1/vY
~ ~ ~

TiX T2 A2
C

(iv)

Ti
0

T2
0

1 1
1 0
1 —1

~ ~

1/Ws

0 1 ~ ~ ~

p p -1/Ws
0 —1 ~ ~ ~

—1 1
—1 0
—1 —1

~ ~ ~

-1/2v 3

-1/Ws

-1/2&s

e' u
cf p
p'
p' A,

p'
p' v

~ ~ ~ 1/We

~ ~ ~

-1/v e
0 ~ ~

~ ~ ~

-1/2v 3
~ ~ ~

~ ~ ~

~ ~ ~

—1/2&s
~ ~ .~

~ ~ ~

—1/vV
~ ~ ~

~ ~ ~

t ~ ~

~ ~ ~

+ 1/243

~ ~ ~

El xE'
(E"XE" )

(v)

Tf
0

E' XE" A2
C

(vi)

T2
0

u'
~t pt
pl
pl pl

-1/v 2
1/vY

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ]/Q
~ ~ ~ —1/Fe

1/v 3

1/Ws

~ ~ ~

a' a"
~t pll

pt +tl
pl pit

~ ~ 0

—1/vY
1/v 2

~ ~ ~

~ ~ ~

1/WS

~ ~ 0 1/+3
—1/Pe
—1/Pe

E"x Q'

e"

u
v

p"
p"
ptt
p"

~ ~ ~

-1/2WS
~ ~ ~

(vii)

Ti
0

—1/&6
~ ~ ~

0 ~ ~

1/We

~ ~ ~

-1/2&3

T2
0

—1/&6
1/2v 3
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~ ~ ~
~ e ~
~ ~

~ N ~ ~
~ N ~ ~

~ ~ ~
e ~ ~

~ ~ ~
e ~ ~

~ e I ~ ~ ~ ~
~ ~ e e ~
~ ~ ~ e ~ e ~

~ ~ N ~

a b C
( 1)eeoc g+cyiy 0 h C

(9)—n —P —y u Py

Notice in Eg. (9) that the factor is (-1)'
and not (-1)"",as in Eq. (14) of Golding. ' In the
full rotation group u+ p + y = 0 for nonzero V, but this
is not necessarily true for O~.

~ ~
~ ~
~ ~

~ ~ ~
~ ~ ~ ~ '~

~ ~ ~ ~ e

~ ~ ~ e
~ ~ ~ ~
~ ~ ~ ~

IV. V COEFFICIENTS

e ~ e ~ e ~

I N 4 ~ ~ ~ ~ ~

~ Ã ~ ~ H ~ ~
e N ~ ~

The most important of the invariant sums of V

coefficients is the 8' coefficient. The Fano and
Racah definition is

~ Cg ~
~ N ~

e ~ N ~
~ ~ X e

O4 e ~ ~
~ e ~

~ 'N e ~
~ N ~ ~

~ ~
e ~
~ ~

~ N
~ N ~

~ Cg

O4 ~ e ~
~ e e

~ ~ ~
~ ~ ~

gm a

a b C g ( 1)c e+C-ll-+c y+C S-c c-+y e--
eSycce

"'(-'-'-;) (::-)
xV V

~ ~ 4 ~

~ ~ CV e

~ ~ ~
~ e ~

~ ~

I

~ ~ CU ~

(: ~ ~ ~

04 ~ ~ ~

~ N ~ ~
~ ~ ~
e ~ ~

%e shall use the same formula but now we must
not only specify 8' via the six representations, but
we must specify whether the constituent V coeffi-
cients are V& or V2 when there is a choice. In the
worst possible case four labels are required, a
point which was apparently overlooked by Mauza
and Batarunas. Ne shall define 8' as

o

I

ALAN
~ 'N ~ ~

p~ C ~ pw y
a-e+Qg+g yg-5+g-s+f-y

d» e f, oeyale

j ~ ~ Q ~
~ '~ + ~

~ ~ ~
e ~ ~

'~ ~ ~
~ ~ ~ ~
~ ~ ~ ~

xV~

&o
e e ~
~ e e

~ ~ ~ ~
~ ~ Q ~

K ~

~ ~
~ ~
e e

~ ~ e
~ ~ ~
~ ~ e

~ ~ ~ ~ ~
~ ~ ~ ~ e ~
e ~ ~ ~ ~ e

~ ~ e ~
~ + 'e ~

~ & ~ ~
~ N ~ ~

04 e ~
e ~ ~ ~ ~

I

~ ~ Cg ~
~ e & ~

~ ~ ~
~ ~ ~

e ~ H e
~ X ~

fee u
~ C4 ~ ~ N ~
~ X ~ ~

e
~ ~
e ~

~ W ~

~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
~ ~ ~ I ~ ~ e

~ ~ ~ ~
~ ~ ~ ~ ~

I e ~ ~

~ ~ ~ ~ ~
~ o ~ ~ ~ ~ ~ ~ ~ e
~ ~ ~ I ~ ~ e

It should be clearly understood that the subscript
j, as an example, does not label g but instead re-
fers to the three representations abc together.
Let us suppose we form U3&2from T&~ U' and then
take the direct product of U3&ax T& to form U,'&2.

In the second direct product, it does not matter
whether we start with U3'&2 „as we have, or with

U, ~ z. The subscript has meaning only in the con-
text of the first direct product. For the first prod-
uct V& would be used and for the second product
V2 would be used. This point will be made clearer
in the exa.mple in Sec. VI.

While one might hope that a 8' would be zero un-
less the ijkl were all 1 or 2; this is not the ease.
Mauza and Batarunas' did not realize that for some
choices of six representations, as many as 16 S'
coefficients may occur and in some applications
all of them can prove useful. All of the nonzero
S' coefficients for 0* are listed in Table VII except
for two special cases. Any 8' containing an A& rep-
resentation may be computed with a modified ver-
81011 of 61'lffltll 8 Eg. (4. 2) (Ref. 2) wlllcll we wl'lte
as
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/a, b c, 'i (-1)""
f /I g(b)t/2, ( )1/2 bb ebeP b(b&fbd) bb, t

(12)
Also, any S' containing only T& and T2 representa-
tions is equal to &.

The 8' coefficients of Fano and Hacah and the S'
coefficients of Griffith are invariant under several
permutations of the six constituent representations.
Allowed permutations include the permutation of

.. columns and the simultaneous turning upside down
of any two columns. This invariance holds in most
cases for 0* also. %hen permuting representa-
tions, however, one must consider how the sub-
scripts are permuted since they are not attached
to the representations. The rules are

iag be, id,

hfdf)

(
(13a)

&db e f/ I a( e c~

TABLE VII. 8' coefficients. All nonzero 8' coefficients are listed except those containing Ai, which are evaluated using
Eq. 0.2), and those containing only Ti and T2, which are equal to ~ . The coefficients are divided into sections according
to the number and distribution of U representations. Within each section, coefficients are ordered by first assigning the
numbers 1-8 to the representations At through U', then permuting representations so that a & b &c in W(sbc/dies), and finally
ordering the 8"s according to the numbers abc or eg. When a trio of. representations possesses a Vi and a V2 coefficient,
the coefficient used is represented by an asterisk for V2 and no asterisk for Vi. All coefficients which change sign under
permutation are preceded by —. A number in parentheses is to be raised to the 2 power.

8'(abc/def); coefficients are ordered by the number ad

.A2 E E
A2 z z

1
2

A2 Ti T2
A2 Ti T2

E I Ell
2

A E' E«
2

—1
2

A2 E E
E E E

1
2

T2 1
E Ti T2 3

A2 Ti T2
E T2 Ti

A2 E E —1
Ti Ti T2 ( 6)

A2 Ti T2
Ti Tf T2

A2 Ti T2
ri T2 ri

—1
3

A, E' E'
E" S"

1

1
2

A2 E S
T2 Tf T2

A2 Ti T2
E II El Ell

E E E
Ti Ti Ti

E ri r2
Ti ri T2

E E E
T2 T2 T2

E Ti T2
T2 T2 Ti

1
( 6)

—1
( 6)

1
2( 3)

1
2( 3)

1
6

A2 Ti T2 —1
T2 Tf T2 3

E Ti Ti 1
E Ti T, 3

E E E 1
Ti T1 T2 2( 3)

E .T1 .Ti —1
Ti T2 r2 6

E Ti Ti —1
T2 Ti Ti

E Ti T2 —1
T2 r2 T2 2( 3)

A2 Ti T2
T2 T2 Tf

E Ti T2
E Ti T2

E E S
Tf T2 T2

E Ti T2
ri T2 Ti

E Ti Ti
T2 Tf T2

E T2 T2
T2 T2 T2

1
3

1
3

1
2( 3)

—1
6

1
2( 3)

—1
6

A E' E"
2r E' E"
2

E Ti Ti
E T2 T2

E Ti Ti
Tf Ti Tf

E Ti T2
Tf T2 T2

E Ti T2
T2 Tf T2

Ti E' E
Ti E' E

1
2

:1
3

1
6

1
2( 3)

1
6

1
6

A2 Ti T2 —1
EI EIP El ( 6)

E T2 T2 1
E T2 T2 3

Ti Ti T2 2( 3)

E T2 T2 1
ri r2 T2 6

E Ti Ti 1
T2 T2 T2 6

Ell E II
1 1

E dl E ll
1 6

E' E'
1

E II Ell
2

El E I
2

Pl Ell
1
6

r, r, r,
E El El 3

T1 T2 T2
EI E II Ell

—1
3

rf
EII E II Ell

—1
3

Tf T2 T2
E» E' EI

—1
3

W(abc/dev), +'(abc/dvf), +'(abc/Uef): coefficients are ordered by the number abc

A2 E E
U E' E"

1
2

A2 Ti T2 1
v E' z" ( 6)

A2 Ti
U Ell

T2 —1
E' ( 6)

E
El

Tf Tf 1
E' U 2( 3)

E Ti r 1 1
E'I E'I U 2( 3)

E Ti T2
E' E" U

—1
2( 3)

E T, T, 1
E" E' U 2( 3)

E Ti
E' U

T2
E I

1
2( 3)

E
E II

Tf T2 1
V E" 2( 3)

E T2 T2 —1
E' E" V 2( 3)

E T2 T2
Ell El V'

Tf T2 T2
E' E" U

—1
2( 3)

Ti Ti Ti - 1
E' E' U 6

Tf re T2 1
U E' E' 6

T1 T
E II E II

Ti T2
V SIP

Ti
U

T2
E tl

1
6

—1
6

Ti
E I

Ti
E Il

Tf T2
E II

T2 T2E' V

.1
2( 3)

Tf Ti T2
Ell V Ell

T, E' E'
Ti E' U

—1
2( 3)

—1
3

T E' E'
1 E" V2

1
3

E II EIP
1

Ti E" U

—1
3

T Ell
1

T2 E'
E Il

U
T2
El

T2 T2 1
E" U 2( 3)

E ll
2

T2 E' U

-1
3

W(abU/deU): coefficients are ordered by the number ad

E E' U

E E' U

E E" U

Ti E" U

Ti E' U

r Edl v1

E E' U 1
E E" U 4

Z E' V 1
r, E' v 4

Ti E" U -1
Ti E" U 12

II

E E

E E'
E II

2

Ti E'
T2 E'

U

U

U

U

U
U

—1
4

—1
4

E E' U

ri E' U

E E" U

r, s" v

Ti E' U

r E" v2

1
4

1
4

—1
12

E E' U

ri E" U

Ti E' U

ri E' U

T E" U1

T E" U2

1
4

—1
12

T2 E' U

r2 E'
. U

—1
12

T2 E' U

T2 E" U

—1
4

r Eel2

T E"
2

U
U

—1
12
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TABLE VII. (Continued)

@'(ab&/dUU), P(abc/UeU), W(abc/UUf): coefficients are ordered by the number abc

A2

Ti

E
Ell

E
E I

T
E I

Ti
E I

—Ti
U

T
E

Ti
E

E'
U

Ti
EI

Ti
E /I

Tf
U

T2
U

T2
E /I

T2
U

T2
E /I

E /I

U

E II

U

E /I

U

Ti
U

Tf
U

T2
U

T2
U

T2
U

T2
U

El
U+

E II

U

E II

U'

1
2( 2)

—1
2( 2)

1
2( 3o)

—3
2(3o)

—1
2( 6)

—1
2( e)

—1
2( 6)

1
(30)

2(1o)

1
3( 2)

(10)

—1
2(1o)

A2
E /I

A2
T2

Ti
E I

Ti
U

Ti
E /

Tf
U+

-T2
Ti

E'
U

Ti
E I

Ti
E II

Ti
E /I

T2
Et

Ti
U

T2
Ell

E I

U

E I

U

Ett
U

/I

U

Ti
U

Ti
U

T2
U

T2
U

Tf
U

E'
T2
U+

T2
U

E'
U

E/I
U

E I

U

—1
2( 2)

-1
2( 2)

3
2( 3o)

1
2( 3o)

1
2{3o)

—1
2( e)

5
e(1o)

—1
2( 6)

2
3( 1o)

—1
6( 2)

e(1o)

1
3( 2)

1
2( 10)

A2
El
E
E I

E'

Ti
E/I

Ti
E I

U

T2
El

Ti
T2

T2
Tf

Ti
U

Tf
U

Ti
U

Ti
E/I

T2
El

Ti
U

T2
El

T2
U

E'
U

E'
U

E II

U

T2
U

E
U

T2
El

T2
U

T2
U

T2
U

Tf
U

T2
U

T2
U

T2
UQ

E/I
U+

E/I
U

1
2{ 3)

1
2( 2)

2( e)

2( e)

3
2( 3o)

1
2( 6)

1
2(1o)

—1
2(3o)

—1
3( 2)

1
2( 6)

1
2{10)

—1

e( 2)

2
3(1o)

A2
El/

E
E /I

-E
U

E
Ell

Ti
E ll

Ti
El I

Ti
U

T2
Ell

Ti
T2

-T2
T2

Ti
T2

Ti
U

Tj
U

Ti
E'

Ti
U

T2
U

Ti
U

Ti
U

T2
E'
T2
U

E I

U

El
U

E /I

U

T2
U

E
U

T2*
E I

T2
U

T2
El

T2
U

T2
U

T2
U

El/

U

E /I

U

1
2( 3)

1
2( 2)

—1
2( 6)

2(3o)
—1

2( 6)

—1
2( e)

2
3(10)

1
{30)

—1
6( 2)

—1
2( 6)

2
3{1o)

—1
3( 2)

5
6(1o)

A2

E
E tt

E
U

Ti
Et

Tf
U

Ti
E Il

Ti
E

T2

T2

Ti
U

Tf
El

Ti
U

T2
E II

Ti
U

Ti
U

El
U

E lt

U

Ti
U

Tf
U

T2
U

T2
EII

T2
U

T +

Ell

T2
U

E I

U

El l
U'

Ell
U

—1
2( 2)

—1
2( e)

—1
2( 6)

—1
2( 30)

—1
2( 6)

—1
2( 6)

-1
2(3o)

1
2( 6)

6( 1o)

1
2( 1o)

1
2{ 2)

—1
6( 2)

+(abc/UUU): coefficients are ordered by the number abc

E
U

E
U

Ti
U

Ti
U

1
2( 2)

—2
5( 6)

-A2
U

E
U*

Ti
U

Tf
U

T2
U

U

—1
(1s)

2
5( 6)

Ti
U

T*
2

U

Ti
U

1
(15)

3
1o( 6)

-A)
U

Ti
U

T2
U

T2
U

Ti
U

—1
2( 15)

3
10( 6)

A2
U

Tj
U

T2
U

Ti T2
U U

—1
2(15)

1
2( 3o)

Tf
U

Ti
U

Ti
U*

Ti
U

Ti
U

Ti
U

T2
U

T*
2

U

T
U

T2

T*
2

U*

U

T2
U

1
2( 30)

—1
3( 10)

1
2( 6)

—1
10( 6)

—1
3( 10)

—1
2( 6)

-E

Ti
U+

Tf
U

-Ti
U

T2
U

Ti
U

Ti
U

T2
U

T2
U

T2
U

T2
U

Tf
U

T2
U

U*

2

U

—1
(30)

1
2(1o)

—1
2( 6)

—1
6( 10)

1
6(1o)

—1
2( 6)

E
U

Ti
U

Ti
U

Ti
U

of(

Ti
U

T2
U

T2*
U

T2
UQ

T2
U

1
(3o)

1
2(1o)

—2

5( 6)

1
3(1o)

—1
6( 10)

Ti
U*

Ti
U*

T2
U

Ti
U

Ti
U

T2
U

T2
U

T2
U

Ti

U

T2
U

—1
2( 6)

1
2( 10)

—1
5( 6)

—1
3(1o)

2
3( 10)

Ti
U*

Ti
U

T2
U

T2
U

Ti
U

Ti
U

T2
U

T2
U

U

Ti
U*

UQ

U

T2

1
2( 6)

—1
3( 1o)

—1
s( 6)

1
3(1o)

—1
2( 6)

E I

U

—1
4

E I

U

U
U

E I

U
U
U

—1
(2o)

E
Tj

~(abU/dUU): coefficients are ordered by the number ad

E'
U

—1
2( 2o)

E
Ti

E /I

U

U
U

I
(2o)

Tf
T2

Ti
T2

T2
T2

gll
U

I

U

El
U

EII
U

E II

U

U
U

U

U

1
2( 2o)

—1
10

e( 2o)

1
3( 2o)

1
12

T2

Ti
Ti

Ti
T2

T2
T2

T2
T2

E I

U

E li

U

E I

U

El
U

E Il

U
U

U
U

U
U

1
4

1
60

1
(2o)

1
12

-1
6

T2

—Ti
T2

T2
T2

—T2
T2

E /t

U

E II

U

E I

U

E I

U

E I

U

U
Ug

U
U

U
U

U
U+

1
4

2

3( 2o)

—1
6

—1
6

Tf
T2

—T2
T2

-T2
T2

E I

U

Ell
U

E /I

U

gtt
U

U
U

U
U

Ug

U

1
6

1
5

1
(2o)

Ti
T2

Tf
T2

Et
U

E I

U

EII

—1
3( 2o)

—1
2( 2o)
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TABLE VII. (Continued)
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Ti U
Ti* U

U*

U

Ti U U

U U*

Ti U

T2 . U

—Ti U

T2 U

U
T* U

T2 U

T2 U

U
U

U

U

U*

U*
UQ

A2 U U

A2 U U

A2 U U*

Ti U U

E U

Ti U

-1 A2 U U —1
4 E U U 4

1 A2 U U 1
T2 U U 4

—1
10

3
20

E U U* -1
Ti U U 10

Ti U U —1
T2 U U 10

A2 U

Ti U

A2 U

T2* U

E U

T2* U

Ti* U

Ti U

U

U

u'
U

U*

U

3
20

—1
10

A2

E
Ti

-1
10

3
20

T, U

Ti* U

Ti* U
T* U

U -1
U* 10

U —1
U 20

Ti* U

Ti* U

Ti* U

T2 U

U

U

-1
10

1
30

Ti
T2

—1 —T1* U U*' 1
6 T2 U U 6

1
15 T ~ U

1
15

T* U

T2 U

T2 U

—1
6

Ti~
T2

T +

—1
6

T2* U

T2 U
T,* U
T2* U

-1
6 T2

W(aUU/dUU): coefficients are ordered by the number Qd

U U

U U

U U

U U

U U

U U

U U

U U

U U*

U U

U U

U U

U U

U U

U U*

U u

U U

U U*

—3
20

1
20

-11
60

—1
10

:1
10

1
30

1
10

1
12

1
12

A2
T*i
E
T*

1

Ti+

Ti
T2*

T2*
T2*

T2
T+

U U

U U

U U*

U U

U u*
U U*

U U

U U

U U

U u"

U U

U U

U U

U U

U U

U U

-1
30

3
20

-1
10

1
20

1
12

—1
6

~(a, b c,
) ~(c, b a,

)
a; b c, l b, c a;
d, e f; ) e& f d,

(13b)

(13c)

The cases for which the representations are not in-
variant involve V& and V2 for U U'T2 as might be
expected. Specifically, an odd permutation of
columns introduces a factor

a; b c&
( 1)a&+m+2& ( 1)a+&+c&( 1)a+e &'&

d&, e f&

1)b+f+d& ( 1)mdte& II&

fy e d&j

The factor is always equal to +1 for the full rotation
group and the single groups. With our choice of
phase factors, it is always +1 for 0* unless an
odd number of the triplets abc, aef, bfd, and cde
which form II& are U U' Ta, . In this case the factor
is —1. Equation (13b) should be rewritten as

gf '& &

( ] )tl(&& U r2 ) g&
'& &

l
(I 3b&)

d, e f& f& e d&i

where n(U U T&h) is the number of U U T2, trip-
lets. In Table VII any W coefficient which changes
sign under an odd permutation of columns is pre-
ceded by a minus sign.

There are several relationships between V and
W coefficients which are useful in applications of
tensor theory. They are generally derived from a
variation of the definition of W:

Multiplying both sides by X(c)V(abc; c& P y) and sum-
ming over c and y, we find that

(
a b c) (

a n c,
)

g (-1)'-"'-"'-' ~(c) V
aA'6& &t,c

abc
V

ae

We drop the subscript i since the sum over c is
over all the representations contained in a&&b and
both Vq and V2 would appear in the sum if c were a
repeated representation. Using Eq. (7) and then
dropping the primes we obtain the most important
of the V, W equations:

g bc't a& bcr abc &a2bcr

= & (-1)' '" "'' I'&I
66&i&

b„„b„.~(c)-'W „'

1)a-a+b-&&+c-v+0-6+e-6+I-0

eg kg

The form of the equation above is the most general
and occurs if c is a repeated representation in
a&& b. If this were not the case, the left-hand side
of Eq. (16) would contain only one term
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V. DOUBLE-TENSOR OPERATORS

labe&&= 2 &aber lab()(p& labe(p& ~ (17)

In an identical manner, operators D and E which
operate only in the spaces A and B, respectively,
may be combined to form irreducible-tensor op-

The real power of the irreducible-tensor method
lies in the formulas for the evaluation of double-
tensor operators. If we have two syaces A and B,
we may combine functions in the two spaces to
form i reducible representations in their direct-
product space C using vector coupling coefficients

erators in the direct-product space

(D xE')~ =~& &defQ l debt&D", E,' . (13)

Vfe would like to be able to express matrix ele-
ments of operators in the combined space as func-
tions of matrix elements in the separate spaces.
An often encountered case is that of A being xyz
coordinate space and B being spin space. If the
functions in these spaces form bases for irreducible
representations of the groups 0 and SU(2), respec-
tively, the product group is 0*. If, as is the case
with 0 and SU(2), the groups are simply reducible,
a matrix element in which the functions and opera-
tors are simple products may be written

I I

( b b[aD'aE',
f

b ab )'=a( —'&)' "" V(, I V I, ) (a IID lla') (( IIE'lib ). '

The V in each case would be those appropriate to
the groups 0& and 6~in the spaces 2 and B. As
discussed in an earlier section, the V coefficients
for 0* have been chosen so that they are identical

I

to those of Fano and Racah for SU(2) for spins of
Oto 2.

A matrix element written in terms of irreducible-
tensorial sets of the product space would be

I

(abc;y~(D'xE')y ~a'I'ccy')=( —&)'"V,(, )(abc, ll(D xE') ll
'a' Ic),c

I
a(-&)'" Va( )(abc& ll(D xE )alla'I'c, ')a

Multiplying both sides by (—1)' " V„(ccf; —'Y'Y (t&) and summing over y, y, (t&, we find

I

(abc,. ll(D xE ) lla'I'c, '. ), = 2 (abc,. y~(D'xE')', ~a'I'c';I')(-()'"V, )
where p is equal to ]. or 2 as in Eq. (2). Using Eqs. (17)-(19), this becomes

I

, &abc, II (D'x E')~ If a'b'c, '&, = + (-1)' "y, , (-1)' y, &a II
D'

ll a'&
(E()()b(Eay()ay&IaY Y (t'

(2o)

(21)

I
x (-&)' V( I, ) (I II E'll (') (abc;y~a( ab& (a' I c&y'~a'I'a' 'I )(Eayb ~ Eaba) .'(bb&

Finally, replacin tne vector coupling coefficients with V coefficients according to Eq. (4), we may write
the matrix element as

(abc, II (D"x@') lla'b'c. ,'), = X(c)' 'Z(c')' 'X( f)' &a IID" II a'&(b II@'ll b &(—1)

OI 86e O'8're' (Ib

) 1rD aeb&c- aD-naby)ba b c y d e f y a b c
o. p —y t) s —(t)

' c(' p' —y'

(23)

Two important special cases occur whenever either E or D is the scalar operator 1. Using the fact that
V(bbA„—PP b) = (- 1)~ ~/X(b)'~, Eq. (23) reduces in the first case to

C

&abc(IID" lla'b'c, '&„=&(c)"'~(c')"'bb(, (-1)""((-1)'"'")'(-1) '"' '
ly I

' &a IID" lla')
0 5 0 ~

and in the second ease to

(24)



IRREDUCIBLE- TENSOR THEORY FOR THE GROUP O~ I. 2385

I

&abc( II&'lla'b'cy&a=&(c)"'&(c')"'b. . (-1)' ' "& (-1)"'""(-1)"'" &i ' '
I &b II&' lib'& . (25)

An interesting variation of the special cases occurs if either of the groups to which a, a and b, b belong
are not simply reducible. For example, if the group in space A is O*, Eq. (1S) would have to be rewritten
in the more general form

&aboPIDlE' ia'b'n'P'&=(-1)' '& ' ' '
l(b ll~'iib'&—p p

I

x(-1)' yi i
b&I

&a IID lla'&a+ Ya,
b

1&a IID lla'&g . (26)

Carrying this through, we find Eg. (24) would become

(abc) [i D' [[ a'b'c') = X( )' X( ')' '5 .(-1)"' '~ (-1)"' '"~ (-1)
I I

&a IID' ll a'&a+ &,
i
(a IID' lla'&2 . (27)

ag a~ a2 b a& ]

Matrix elements for functions in a spin-orbit
basis, designated Sht7, are easily expressed in
terms of matrix elements in the I -S coupling basis,
designated by ShMO, with the use of 8' coefficients
when the operator is a one-electron operator. For
the spin-orbit Hamiltonian operator K„ the rela-
tion is expressed using 0«. coefficients:

(Shtg7' iK„ iS b tg

I

I Sh X~ S h
h h t (28)

Griffith showed that for S = 0 or 1, the 0 coeffi-
cient is proportional to a 8' coefficient. In fact,
the relationship holds for spins of & and —,

' as well:

I
1

( 1)2s ( 1)sos +T»( )s1+/l+tg
h h t

J' J
In the above expression, one replaces the spins S
and S by the appropriate representation Aj, E
T&, or U ~ When S and S equal —,', the correct
U U Tq to use is U U T&, . In using this formula
and others involving spin-orbit coupling, one must
remember that our U functions arising from T2
are not the states which diagonalize K„and we
must transform back to the U functions of Griffith
in most physical problems.

The double-tensor formulas derived in Sec. V
may be applied directly to the calculation of one-

This particular equation plays an important part
in the development of the theory of j-j coupling
in an octahedral molecule in the strong-field limit.
This theory will be presented in a subsequent pa-
per .

VI. SPIN-ORBIT COUPLING

electron operators which operate only on the space
or only on the spin portion of a spin-orbit wave
function. This is an extension of Griffith's Sec.
9.f7. To illustrate the application of the formulas
and to clarify the W coefficient notation, all of the
reduced matrix elements of the U states of 'T& for
the ma, gnetic moment operator p, = —PL —2PS shall
be evaluated in some detail in terms of matrix ele-
ments in the L-S basis. From Eq. (2) there are
two reduced matrix elements for any pair of U

states. Abbreviating (T& ((
—PL ~( T~) as &L ) and

(~I[ —2PS[] —,') as (S&, we maywrite

8 ', ll V, II ~', &. = ~(ft')(-1) (-1)' "'»
I

( 1)U'+U'+rgq ~ li 1 j &L)
Tg U Tg]

+(-1)'""»W
" ' '

i (S& (20)
U& T& U, )

In writing the subscripts for the U representations
of Tq~ U, Griffith uses the —,', —,

' notation while we
use 1 and 2, respectively, in the W coefficient to
indicate which V coefficients are being used to
form the representations. Using Egs. (13), we

may rearrange the 5' coefficients

W
O'„T~ U)

W
T~ T2 T~

and

Un T) Ug W T~a O' V]

to facilitate use of Table VII. The subscript 1 in
the above W coefficient arises from the spin matrix
element (—,

'
li —2pS ~~ —,). Using the tables we

find

(~3)2 II u II ftgt2&g=-4((-1/3&lo)(L& + —,'g' &S&),
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&U'/ ll )3ll f/'/ ) =-4(0&L)+0&S))

(f/'3/3 II )3 II U'3/3)3= —4 (0 (L) + 0(S )),
(U», ll ) II f/«3), =-4((&/2&») &L)+ +30 &S)),

&U3/3li)3li fP3/, )3= —4((&/2&&0)&L)+ k&S))

&U'3/3ll all U3/, ),= -4((—l/3 Klo) (L)+ Qj &S)) .

VII. CONCLUSIONS

Elements of the irreducible-tensor theory for the
octahedral double group O* have been presented.
The choice of phase factors is such that the theory
is compatible with the work of Fano and Racah for
spin functions. In addition, W coefficients and phase
factors involving the representations A~, Aa, E,
T~, and Tz agree with those of Griffith~ and his
formulas may be used for evaluating reduced ma-
trix elements for these representations. All of
these formulas must be altered to some extent for
the E', E", and U' representations, as will be done

in future papers in conjunction with two particularly
interesting applications. The first is the develop-
ment of a theory of j-j coupling in octahedral
molecules in the strong-field limit. Here, octa-
hedral symmetry orbitals are first combined with
spin functions to form e', e", and u' molecular
spin-orbitals which are then used to form config-
urations. The second application, and the one
which initially prompted this investigation, is the
calculation of the Faraday-effect parameters A/D,
B/D, and C/D for electronic and vibronic transi-
tions.
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