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The bound-state hydrogen-atom radial functions are used to construct a basis for a unitary
representation of the algebra O(3, 2). With the use of the O(3) subalgebra of this "radial
algebra" matrix elements of / between states of different energy are shown to be completely
expressible in terms of the matrix elements of r 2. Matrix elements corresponding to the
radial matrix elements of the dipole operator are shown to be proportional to the overlap of
the radial functions. The continuum radial functions of constant energy are shown to provide
a basis for a unitary representation of 0(2, 1).

I. INTRODUCTION

The bound-state nonrelativistic hydrogen-atom
wave functions u„, =R„,F, were shown by Malkin
and Man'ko to be a basis for a representation of
the group O(4, 2). The importance of this dynam-
ical group was noted later by Barut and Kleinert,
who used it to calculate dipole-transition probabil-
ities. More recently Armstrong used only the
radial portion of the wave function, R„&, to define
a representation of the group O(2, 1). By defining
"tensor" operators he was able to show that radial
matrix elements of integerpowers of the radial
coordinate x between two radial functions of the
same principal quantum number are proportional
to an O(2, 1) Clebsch-Gordan coefficient. Matrix
elements of r' between radial functions of different
principal quantum number have not yet been as
easily evaluated. ' The difficulty in evaluating these
"off-diagonal" radial matrix elements by group-
theoretical methods lies in the definition of the
tensor operators. The tensor operators are not
functions of z alone but of D&, ) r, where D~,

&
is

the dilatation operator Dt, &f(r) = f(ar) on functions
of x. When the matrix elements are between radial
functions of the same energy, a = 1 and the difficulty
is removed.

The purpose of the present paper is threefold.
In Sec. II we generalize the method used by Arm-
strong to show that a more complete radial dynam-
ical group is O(3, 2). In Sec. III we use the O(3)
subalgebra of the "radial algebra" to investigate
matrix elements of x~. While we do not use x" to
define tensor operators, we do show how matrix

elements with different values of k are related. In
Sec. IV there is a brief discussion of how the O(3)
subalgebra becomes O(2, 1) when the methods used
are extended to continuum radial functions.

&, 0(3, 2) RADIAL ALGEBRA

The method used involves a decomposition of the
I nlm ) space into the product of two spaces,

The I 0„,) are unspecified, but if they are chosen
such that

(2)

we can use the orthonormal I Q„t) I nl) space to in-
vestigate the radial portion of the hydrogen-atom
wave functions. We shall use a functional form
for the [ Q„,) similar to that used by Armstrong.

The radial coordinate will be 0 = ~Z, g being the
nuclear charge. The radial functions R„, are nor-
malized to have the sign (-) ' near the origin, and
satisfy

Je Pn rP. r«=&n" (3)

with P„,(g) = gR„,(g). A space of functions g„, is
defined by

g =(Qs ) e'~e'"'P, 0 s 2s, 0~ t~4w,nlf

I ( I

= l+-' (4)

An important feature of the g„~ is that there are
two g„~ for each P„, since p, = + (l + —,'). With re-
spect to the volume element dQ--dods dt the g„,
are orthonormal,
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We can define several important operators on g„,:

G= ——
et ' (6a)

$8N=- —,
es

a, =Gag,

tZ+Q 2
+

80' 0' 0'

G, =e
l sa, ———+1)N,„,( s a,'

(6b)

(6c)

(6d)

(6e)

A = —,'(G+N),

A, =+-.'[G„N, ],
B=~g(G —N),

B+= v[G„Nv ] ~

(7a)

(7b)

(7c)

(7d)

Direct evaluation of the action of the operators
on the g„, gives

-2
g'n~ —+ g'nu ~

Ggnp I gnp p

G,g„~ = [(p + V)(p + p + 1)]

(8a)

(8b)

p =n ——,
'

(8c)
(8d)Ng'nf =+gnu ~

N, g„,= [(n +I )(n + l + 1)] ~ g„,,„. (8e)

Defining a=~(n+ p) and 5=2(p —n), (7) and (8) are
combined to give

+gnu +gnfj ~

A.g ..= [A+a(a + I)]'"g.a."i,

B.g.~ =
I. r's + &(& + I)1'"g..i ~a ~

(oa)

(ob)

(oc)

(od)

Investigation of the operators in (8) and (9) showl
that their commutation relations are closed, and
we note the following four subalgebras:

si=(G, G,}, ss=(A, A,},
s2=(N, N, }, s4=(B, B,}.

The commutation relations of sq are seen from (8)

a
N, =D(,N 1/Ã)e +~g

~
- —.+N —" NgN 4 kI)

(6f)
The N, are similar to those used by Armstrong
(cf. also Ref. 2), the difference arising from his
use of a different normalization for the radial func-
tions. The variable z„= 2o/N and D(N+ 1/N) is the
dilatation operator. Additional operators related
to those in (6) are

to be

[G, G, ]=.G„
[G., G ]=2G

and those of s2, s3, and s4 are

[w, w, ]=+w„
[w„w ]= -2w,

(12)

with W=N, A, and B, respectively. The relations
in (11) are isomorphic to those of the Lie algebra
O(3) -SU(2), and those in (12) are isomorphic to the
commutation relations of O(2, 1)-SU(1, 1). The
unitary representations of O(2, 1) are well known. s

They are specified by the invariant Q~g„, =q
&& (q + 1)g„„with

Qg = W(W —1) —W, W (13)

TABLE I. Radial O(3, 2) subalgebras.

Subalgebra q(q + 1)

s 1
——O (3)

s 2
——0 (2, 1) l (l + 1),

Spectrum of
diagonal element

p, =+2, + 2, . .., +(n —2)

n=l+1, l+2, ...

Re pre sentation

dimension = 2n

+I) I+ I

s3= 0(2, 1)

s =O(2, 1)

16

16

3
16

3
16

1a=g,
a=——3

4s

5
~ ~ ~

7

4 7 ~ ~ ~

1
4 ) 4 y ~ ~ 0

4 p ~ ~ ~

+I/4

I)3/4

1/4

+ 3/4

The value of q determines the representation. In
addition W.W is positive definite. For O(3) the
well-known invariant is QGg„„=p(p+ 1)g„„with

Qg = G(G —1) + G,G

The dimension of each irreducible O(3) representa-
tion is 2p+1.

The properties of the four subalgebras are listed
in Table I. For each of the O(2, 1) subalgebras the
representation is either a positive or negative dis-
crete series, labeled S', .

We shall not list the additional commutation
relations except to note that the subalgebra s3+s4
is isomorphic tothatof O(2, 1)&&O(2, 1) since [ss, s4)
= 0. The above properties of the Lie algebra
S =(G, G„N, N, , A„B,}are sufficient to establish
that the commutation relations of S are isomorphic
to those of O(3, 2).

It should be emphasized that the generators of
the radial O(3, 2) are defined only on the g„, space.
For instance, using G, and G from (6) we see that
(11) should actually read

[G„G ]= 2IG,

with I=HN being a representation of the identity
operator on g„~.

Direct computation shows also that [G, H]
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= [G„H]=0. That G, and G. commute with the
radial Hamiltonian H suggests that they are related
to the Runge-Lenz operator, which is associated
with the O(4) symmetry of the complete bound-
state-hydrogen-atom wave functions Inlrn). 7'8

This is indeed the case, and investigation of the
reduced matrix elements of the Runge-Lenz oper-
ator with respect to the O(3) rotation group results
in radial operators similar to those of G, .

We should note also that the recursion relations
on the P„, obtained with the t", operators are well
known from the factorization method of Infeld and
Hull.

III. RADIAL O(3) AND RADIAL INTEGRALS

Matrix elements on g„„are easily evaluated, but
some care must be taken when transforming the
results in this space to the space of functions P„,.
This point is best illustrated with an example. Let
m and d be integers and define f=e'"e'" o". Then

= (n ™u+dlf nu)6n'n+m6u ' u+u (16)

The identification of (16) with a radial integral of
the type

(n l Io" Inl) = J P„~, .o P„,do

depends upon the sign of p, +d, since I p, j=l+-,'.
Thus (16) becomes

(n+mu+dl flnu) = (n+ml o" Inl),

with l =l+d if u, +d &0, and l = —(l+d+1) if u+d
&Q.

A similar evaluation of matrix elements of the
operators

and

[G 0 l s f«~] el s k«[GG & ]

[G,G, e' 'No]

leads, respectively, to the following relationships:

I

(l -l -k —1)(n l lo' fnl) =&„r(n l
I
cr" fnl+1)-&„r q(n l —1 cr Inl) —

li l 1
(n l

I

o'" fnl), (19)

(E'-&)(n'1'Io'I«)=
l 1(n l lo" 'Inl)+2kB i(n'1'Io" 'I«+1)+(l+k 1')(1+k+1'+1)(n'1'lo' 'lnl), (20)

I
and for n&n,

za(n l
I

cr" lnl) =kA„r(n l
I
o '

fnl +1) -kA„r(n l +1 fo 'lnl), (21)

with

[(n+l+1)(n -l —1)]
n(l+ 1) nr n't& ~

Equations (19)—(21) are valid for any real k, but
our primary concern is with the integer values of
k. There are two cases of interest.

(i) o ', s = 2, 3, . . . : With repetitive application
of (19) to the matrix elements of o ', it is evident
that nea, rly ail matrix elements (n l I o 'Inl) may
be expressed in terms of those with s = 2. The ex-
ceptions are those elements with / =l = 0, but they
present no problem since they are infinite for
S 3o

In addition, for k =0, (20) reduces to

(23)

This is the orthogonality property of Pasternack
and Sternheimer, ' which was shown by Armstrong
to be a selection rule resulting from the use of
radial O(2, 1) tensor operators.

(ii) o', s = —1, 0, 1, . . . : Of interest are the ma-
trix elements with n4n . By letting k- k —1 in
(19) and substituting this equation into the right-
hand side of (20), we obtain for l &0

(E -&)(n'1'I o'I«)

=(E -E)(n l Inl), (22)

a result previously derived by Feinberg. When
n =n, (22) becomes the familiar result that the
matrix elements (nl I o 2Inl) vanish unless l =l
This is of interest because repeated use of either
(19) or (20) when n = n shows immediately that if
s 2~

(l +l+ 1)(l -l —s —1)
(n l Io' Inl)

—(l +l —s+1)&„,(n l lo' 'Inl+1)

+(l +l+s+1)A„.r ~(n l —1lo' Inl) . (24)

The matrix elements with l =l =0 may be obtained
using (21). Thus just as was the case with o ', we
see that with repetitive application of (21) and (24)
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IV. CONTINUUM RADIAL FUNCTIONS

For the continuum hydrogen radial functions we
define the space of functions f„,by

f„„=(4~)'"e"'P„„o&f 4~, ~l ~=f+ '. . (2-8)

The radial Hamiltonian in this space is

O~Qh= — 2+ '2
~g g g

(27)

with a, defined in (6). The P„, are chosen to be
energy normalized, ' and have the sign (—)

' near
the origin. The label n is defined by

hf„„=n 'f„, , 0&n&~ . (28)

For subspaces of constant energy we define the 6,
in (8) to be

2

Gp= e kg~ — + 1a,
'~g 0

with [G„h]= [G, h j = 0, and

(28)

[G, G,]=+G, ,

[G„G ] = —2IG .

(30a)

(30b)

I is the identity operator on f„„I=hn By com. -
paring (30) with (11) we see that the O(3) subalgebra
for bound-state radial functions becomes O(2, 1)
for the continuum radial functions. By direct cal-

all matrix elements of 0' for n&n may be ex-
pressed in terms of the matrix elements of g

A case of special interest is the matrix element
(n l + 11 olnl). The corresponding reduction of
(24) for s = 1 is to

(g l + 1
~

o~ n l ) = 2 [(l + 1)(E —E )] (n l + 1
~

n l ) .
(25)

These matrix elements of g are of importance be-
cause their square is a linear factor in expressions
for the ele ctric-dipole -transition probability. Thus
(25) confirms for the hydrogen atom the intuitive
notion that transition probabilities are proportional
to the square of the overlap of the radial functions.

We emphasize that the results of this section are
not dependent on any group-theoretical arguments
since they may be obtained from the results of
Infeld and Hull. In particular we note the work of
Feneuille, '3 who obtained Eqs. (20) and (23) in this
manner.

culation,

Gfn~ = &fn. ~ (31a)

(32)

might provide a basis for discrete representations
of O(2, 1). This is indeed the case, although we
shall not discuss the matter other than to give the
generators which commute with h,

G,'= (h') '"e'"(+a, S/&o -a,'/o) . (33)

The continuum radial functions will not be dis-
cussed further in this paper.

V. DISCUSSION

We have shown how radial matrix elements of
integer powers of the radial coordinate g between
states of different energy may be expressed in
terms of the matrix elements of g . Use was made
of the generators of the O(3) subalgebra of an

O(3, 2) radial algebra. While this is a, significant
step towards evaluating the matrix elements group
theoretically, we have not answered the question
of how tensor operators may be defined in order
to facilitate the eva. luation. The O(2, 1) subalge-
bras s3 and s4 might be of use in such an investiga-
tion. The O(2, 1) algebra used by Armstrong cor-
responds to the subalgebra s2 in this paper.

An interesting feature of the decomposition of
I nlm) in (1) is that there is a symmetrical counter-
part

(34)

which suggests that the spherical harmonics are a
basis for a representation of a group larger than
O(3). This is indeed the case, and it may be shown
that the corresponding group is O(3, 2). A discus-
sion of this point will be given elsewhere.

G~fnu =[(P +1)P -P(P+1)] f,~ g, (31b)

with P = —
2 +in, a complex number. Using (13) we

see also that the O(2, 1) invariant Qo =p(p+1).
From Ref. 5 the corresponding unitary representa-
tion of O(2, 1) is found to be the principal series,
with the G spectrum being p. = +-,', a —,', . . . . As the
energy approaches infinity p- 0, and for z = 0 the
principal series splits into two discrete series
Sf~2. This suggests that the solutions Po, e'"'(4v) '~2

of the radial Hamiltonian
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Using recently calculated values of radiative, Coster-Kronig, and Auger transition rates,
and the hypothesis that the satellite structure arises from doubly ionized atoms (with L and N
holes), and an assumed incident x-ray spectrum, we calculate the relative intensities of the
Ag L-series x-ray spectrum. The calculations are in best agreement with Parratt's measure-
ments when Ag L~-L3M4 5 Coster-Kronig transitions are forbidden. Comparison of the calcu-
lations with the satellite components leads to unsatisfactory agreement. Reasons for this are
discussed. Modified values of f~2, f&3, and ~& for the Ag and Sn L shells are reported.

I. INTRODUCTION

In a 1937 review article on x-ray satellite struc-
ture, Richtmyer pointed out that while a multiple-
ionization theory could adequately account for the
Kn satellite spectrum it was unable to predict the
peculiar phenomena associated with L-shell satel-
lite spectra. To account for the latter, Richtmyer
argued that Auger processes were necessary. How-
ever, it is only recently' that reliable calculated
Auger transition rates have become available. In
the future, we plan an extensive comparison of
calculated and experimental satellite structure but
for the present we confine our examination to sil-
ver. Parratt' has made a precision measurement
of the Ag L-series x-ray spectrum. As an indica-
tion of the sensitivity involved, Parratt measured
the intensity of the L~-Nj line as 0. 28 compared to
the Lz-M, line with intensity 100. As we shall see,
the calculation leads to 0. 30 for the intensity of
La-Nj when L,-M, is set equal to 100. The motiva-
tion for this study arose neither from the diagram
line intensities nor from the satellite structure but
rather from the value of the width (lifetime) of an
L, hole. Parratt measured an average width for the
L&-M2 3 transition as 6. 25 eV, while for the much
weaker L~-M4 ~ transition (a nondipole transition)
he found a width of 5. 8 eV. The author has recently
calculated the M4, and M2, widths as 0. 44 and 3. 80
eV. ' Thus, from the measured L&-M, , width one
deduces 2. 45 eV as the width due to the lifetime of
the L, hole; yet from the L&-M4, width one deduces
an L, width of 5. 4 eV. In addition, the author has

e, (Z) =- E„,(Z)+E„,(Z)+E„:,„(Z+1),

e, (Z) = —E„,(Z)+ E„,„(Z+ 1)+E„„,„(Z),
e, (Z) = —E„,(Z)+-,'[E„., (Z)+ E„., HZ+1)

(2)

(3)

+ E&aqra(Z)+E&~ei(z+ 1)] (4)

For instance, estimate (1) would allow a large
Ll -L3M5 Coster-Kronig transition rate at Z = 73.
The other estimates indicate such a transition is en-
ergetically forbidden. Experimental measurements
on f, ~ indicate the transitions do not occur. For the
silver L,-Ls(M4, M5) transition estimate (2) leads to
e2 = (+ 44 eV, + 51 eV) for the continuum electron
energy, where we use the ESCA tabulation of ion-
ization thresholds. Estimate (3) leads to e, = (-105
eV, —99 eV), while estimate (4) leads to e 4

= (- 31
eV, —27 eV). Thus two of the estimates predict
the transition is energetically forbidden, one pre-
dicts it is allowed. The point of this paper is to
examine the effect of the presence or absence of

calculated an L, width of 9.03 eV while Crasemann
et al. obtain 7. 56 eV. The calculated values are
so large because it is assumed L&-L,M4, Coster-
Kronig transitions are energetically allowed. An
inaccurate way of estimating the continuum electron
energy in an nl-n l n / Auger transition is to use

~,(z) =-E„,(z)+E„„.(z)+E„, (z),
where E„, is a one-electron ionization threshold
and c& is the estimated energy of the continuum
Auger electron. Three more accurate procedures
are


