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percent in (x ),„. We note that the experimental
dispersion corrections &f ' obtained by CJ are

relatively independent of whichever theoretical
model is used to calculate 6f.
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The possibility of cooling solid He by adiabatic magnetization is discussed using the anti-
ferromagnetic nearest-neighbor spin-2 Heisenberg linear chain as a reference system. The
lack of a phase transition is not important in this discussion since the locus of maximum cool-
ing generally lies outside (i.e. , is unrelated to) the T-H phase boundary, contrary to previous
predictions using mean-field and spin-wave theories. Exact calculations on linear chains
demonstrate a potentially useful degree of equilibrium cooling. The results are in qualitative
agreement with earlier spin-wave arguments, although the details of the energy spectrum are
more complicated than is assumed in spin-wave theory.

The use of adiabatic magnetization to provide a
possible cooling mechanism for solid He was re-
cently discussed by Goldstein' on the basis of a
mean-field analysis of an Ising model. Walstedt
et al. and Wolf et al. 3 have since independently dem-
onstrated that no cooling is to be expected in terms
of a mean-field approach because solid He is an
isotropic Heisenberg spin system, but that a po-
tentially useful cooling effect is predicted using
spin-wave theory. Although there is some evidence
that the relaxation times may be very long, the
equilibrium problem is, nevertheless, of interest
in its own right, and sufficiently controversial to
be worthy of further discussion.

The purpose of this comment is to consider the
ideas of.Refs. 2 and 3 in the context of the spin- &

nearest- neighbor antif erromagnetic Heisenber g
linear chain. At first glance the simplification to
one dimension might seem to preclude any cooling,
since there is no phase transition. However, a
phase transition merely steepens the rate of in-
crease of the entropy isotherms as a function of
magnetic field in the r'egion of the transition which
actually occurs at a lower field than the entropy
maximum, as seen in Fisher's exactly soluble
model. ' In particular, when there is a transition,
the locus of maximum cooling (locus of maximum

entropy) does not coincide with the T Hphase-
boundary, as calculated by Walstedt et al. using
spin-wave theory, but lies outside the phase bound-

ary in the paramagnetic region. This was first
demonstrated experimentally by Schelleng and

Friedberg and later by Reichert et al. , and was
proved by Griffiths using a general thermodynamic
argument. The general behavior of the T-0 isen-
tropes is shown schematically as Fig. 1. ' [It may
be noted that the Griffiths proof, as reported by
Schelleng and Friedberg (Ref. 6), is claimed to be
valid only when the specific heat CH diverges
with a critical exponent 0 & & & & and also o'= 0
(logarithmic). However, it seems likely that this
result still applies when —1 & o.'& 0 (finite cusp for
C„). This range covers the expected behavior of
most model antiferromagnets, both Ising and Hei-
senberg in type. ]

The principle of the theoretical approach used
by Walstedt et al. and by Wolf et al. is very simple.
The thermal properties of antiferromagnets in
zero field are governed by energy excitations from
the ground state of the type &(k) = const xsink, or
e(k) = const xk for small-k wave vectors. An ap-
plied magnetic field close to the critical value de-
presses the (ferromagnetic-type) levels at the top
of the antiferromagnetic spectrum helot the levels
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FIG. 1. Sketch of isentropes in the T-H plane for
antiferromagnetic systems which show a phase transition,
according to thermodynamic arguments of Griffiths. The
isentropes have a point of inflection as they cross the
phase boundary and are also tangent to the boundary at the
crossing point. The locus of maximum cooling (dashed
curve) lies outside the phase boundary (solid curve) over
the whole range. However, both loci tend to H=H~ as
T 0.

near the antiferromagnetic ground state. The low-
lying energy-dispersion relations then have the
ferromagnetic form e(k) = const x(1 —cosk), or
e(k) = const &&k . Using spin-wave theory the en-

tropy is then estimated to behave as So/N aT~ in

zero field, where d is the dimensionality of the
spin lattice, and S,/N-bT ~~ at the critical field,
where a and b are spin-wave constants for the
particular lattice. At low enough temperatures,
an adiabatic isentropic magnetization process be-
tween zero and the critical field proceeds from an
initial temperature T, to a final temperature T&,
and a measure of cooling is given by

(T; —T&)/T& = (h/a) ~ T, ' —1 = (b/a)~~ T,',

neighbor spin- & antiferromagnets. ' Even at rela-
tively high temperatures (where the finite-N calcu-
lations quite accurately define the large N value),
where corrections to simple spin-wave theory may
be expected to become important, the entropy near
H, lies above the entropy in zero field. Therefore,
cooling is theoretically possible by magnetizing
adiabatically from H= 0 to H=H, . [Note that the
locus H=H, (T) tends to H, as T-0. ]

It is necessary to discuss the behavior in the
limit as N becomes very large, however, to verify
Eq. (1). For the zero-field entropy it has already
been estimated that the limiting curve follows the
N= 10 curve down to temperatures of about kT/8
= 0. 6, but that at lower temperatures the functional
dependence on temperature is quite different. "The
N= 10 curve goes to zero exponentially, on account
of the energy gap between the antiferromagnetic
ground state and first excited states. In the limit
N- this gap disappears, the energy levels closing
up to form a continuum, and the thermal behavior
is governed by a power law in temperature. It has
been estimated that the entropy at low tempera-
tures behaves as So(T)/Nk = 0. 35 kT/8, where the
power of T is the same as that givenby spin-wave
theory for one-dimensional systems. The constant,
however, differs considerably from the constant
3 m given by simple spin-wave theory. '

For the entropy near H =H, (T) a different and
rather complicated pattern of convergence with in-
creasing N is observed, which resembles quite
closely the pattern of convergence for a ferromag-
netic linear chain at zero field. From Fig. 2 it
appears that for temperatures above kT/8= 0. 3
the convergence is monotonic from below and fairly
rapid, indicating a limiting curve lying appreciably

which becomes very large as T& - 0.
We shall now test these ideas using exact calcu-

lations for finite linear chains. Our rationale for
this approach is that the spin- ~ linear chain is well
known to represent the worst case as regards the
applicability of spin-wave theory. If the linear
chain behaves in reasonable accordance with spin-
wave theory, and illustrates the predicted cooling
principle, there is a strong presumption that two-
and three-dimensional antiferromagnets of simple
type (including the bcc phase of solid He~) should
do likewise. In Fig. 2 we show the entropy func-
tions both along the locus of maximum entropy,
H=H, (T), and in zero field, and we at once observe
the features described by Walstedt et al. and Wolf
et al. This figure represents an extension of ear-
lier work by Bonner and Fisher on the behavior of
the entropy as a function of field and temperature
(and also of anisotropy) of one-dimensional nearest-
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I'IG. 2. Entropy curves in zero field and along the
locus of maximum cooling for linear antiferromagnetic
Heisenberg chains. The solid curves are exact calcu-
lations for chains of length K=10, 8, and 6, and the
dashed curves are the corresponding N ~ extrapolations.
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FIG. 3. Plot of important classes of energy levels for
the spin-~ Heisenberg linear chain. The states are too
numerous for all to be shown individually. The spectrum
is shown for the first Brillouin zone 7t «k & —7t.. The
energy levels displayed are the lowest lying for a given
k and a given S' (also for a given total spin S for H =0
only).

8 to S'= 3, branch D to S'= 2, and branch E to S'
= 1. Since this is an antiferromagnetic represen-
tation the (single) state corresponding to maximum
S' (S'= 5=N/2) is shown situated at k= 0 at the top
of the spectrum. This state is the ferromagnetic
ground state. The antiferromagnetic ground state
corresponds to S'= 0, and occurs at k = m (or —m).

The states near the antiferromagnetic ground state
(curves D and E) appear to be distributed along
dispersion curves which have a sink-like dependence
on k, in accordance with exact results of des
Cloizeaux and Pearson' (curve E). Near the ferro-
magnetic limit, the curve A corresponds to a
single overturned spin on the chain (single-spin-
wave dispersion curve) and obeys the well-known
dispersion law (energies measured from the ferro-
magnetic ground state) e(k) = 2J (1 —cosk). How-
ever, we see from Fig. 3 that other classes of
states are also low lying. Curves B and B' repre-
sent the upper and lower limits of the two-over-
turned-spin (two-spin-wave) continuum, obeying the
dispersion relations E(k) = 4Z (1 + cos—,'k) in the limit
of large ¹ %e observe also a special class of
states, which may be identified as bound states, ly-

-l2

above the 8= 0 limiting curve, thus implying po-
tential cooling. At lower temperatures the con-
vergence is more complex, becoming monotonic
from above very close to T= 0, where the entropy
goes to zero with increasing N as N ' ln2. In the
case of the ferromagnetic linear chain in zero
field, the entropy has already been estimated both
from purely numerical techniques and from a study
of the spectrum to behave as const & T~

T = 0. To examine whether the antiferromagnetic
linear chain near the critical field shows similar
behavior we now choose to study the spectrum.

In Figs. 3 and 4 we show the salient features of
the spectrum of energy levels for 0= 0 and 0 = &, ,

respectively, for a linear chain of 10 spins with
periodic boundary conditions. ' In Fzg. 3 we show
classes of energy states which are, in general,
the lowest states in energy as a function of wave
vector k for a given value of the total z component
of the spin S'= g,",Sf (alternatively, of the magne-
tization). These classes of states lie on dispersion
branches denoted by A, B, C, D, and E, where
branch A corresponds to S' = 2N —1 (= 4), branch
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FIG. 4. Corresponding plot to Fig, 3, showing the

energy-level spectrum when H = H, exactly. Whereas
in Fig. 3 the complete extent of the spectrum is displayed,
here we show only the lowest-lying portion. Again we
show only the levels which lie lowest for a given S».

C3 indicates the lowest-lying bound-state dispersion
curve and the only such curve within the energy range
of the figure.
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ing on the set of dispersion curves t(k) = (2J/r)
&&(I —cosk), where r=2, 3, 4, and 5, i.e. , bound
spin complexes of 2, 3, 4, and 5 spins, denoted by
C; where i=N/2 —v=8'. It is by no means a priori
obvious which category of states will dominate the
low-temperature ferromagnetic properties in zero
field, and hence we have the well-known result that
spin-wave theory is of dubious validity for the fer-
romagnetic linear chain.

Let us now consider the effects of an applied mag-
netic field' on the dispersion curves of Fig. 3. The
sets of states will be depressed in energy by an
amount proportional to their value of S'. As H ap-
proaches the critical field at zero temperature, H„
branches of ferromagnetic-type states from the top
of the spectrum will become roughly degenerate in
energy with branches of antiferromagneticlike states
from the bottom of the zero-field spectrum. The
situation will become more complex than in the
zero-field case illustrated in Fig. 3, where it is
apparent that the upper half of the spectrum is fer-
romagnetic in dispersion type while the lower half
of the spectrum is antiferromagnetic in type. In
Fig. 4 we show the low-lying portion of the whole
spectrum at H =H, exactly. The ground state of the
system is no longer the zero-field antiferromagnet-
ic ground state but the former ferromagnetic ground
state, which, at H„ is degenerate with a single-
spin-wave state at k =+ m, belonging to branch A.
However, the first excited state of the system is
not a branch-A state but a k = 0 state belonging to
the two-spin-wave continuum bounded by B and B',
and, generally, one- and two-spin-wave states are

interlaced in energy. There is also a fairly low-
lying dispersion branch D which is apparently anti-
ferromagnetic in type: On the other hand, the fam-
ilies of bound states, curves C, now lie quite high
up the spectrum and are relatively unimportant.

We therefore draw the following conclusions con-
cerning the validity of spin-wave theory near H, for
the linear chain: (a) Bound states which complicate
the theory of the zero-field ferromagnetic chain are
not important; (b} the ground state and the lowest-
lying excited states show a similar distribution to
the case of the H= 0 ferromagnetic chain, since this
distribution is materially unaffected by an inversion
in energy; (c) however, antiferromagnetic-type
classes of states are degenerate in energy with the
one- and two-spin-wave continua, unlike the case
of the zero-field chain. Despite the complication
(c), it seems that the predictions of spin-wave theo-
ry near H, should be qualitatively correct, i.e. ,
should yield the correct functional dependence on
temperature, at least for very low temperatures.
At higher temperatures, where corrections to spin-
wave theory may be expected to become important,
the entropy calculations for finite-N systems extrap-
olate with increasing accuracy and predict cooling up
to a temperature kT;„/J=l. 28, the'temperature of
the maximum in the zero-field susceptibility. Thus
the cooling principle is established theoretically for
antiferromagnetic linear chains. Since the linear
chain is well known as the worst case for the applic-
ability of spin-wave theory, we therefore agree with
previous authors that magnetic cooling in solid He'
may be expected if equilibrium can be achieved.
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