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Perturbation-theoretic calculations are carried out for the lowest five states of the helium
atom using a Hamiltonian which is not symmetric in the particle indices such that the zeroth-
order spatial functions can be written as simple products of hydrogenic orbitals. The per-
turbation expansions are reasonably convergent except for the fifth state which is divergent
as expected. By 19th order in the expansion the energies of the first two excited states are
accurate to 2 x 10 and the expectation values of 2(1+ P) are accurate to»& 1o

I. INTRODUCTION

It is general practice to perform perturbation-
theoretic calculations using spatial functions @'p

which possess the exact many-electron symmetry.
Thus, for example, the energies of the first two
excited states of helium have been calculated with

C'0 '
= 1s(1)2s(2) +2s(1) 1s(2),

Zg = 2 (1s(1)2s(2) imam 'i 2s(1) 1s(2)), (2)

as the unnormalized singlet and triplet zeroth-order
functions constructed from hydrogenic 1s and 2s
functions. ' The splitting between the two energies
is called the exchange energy since in lowest (first)
order it is given by

although, in fact, J& is larger than the exact J it-
self by a factor of 3.

There are, however, some advantages to choosing
the functions 4p to be simple products of atomic or-
bitals as was first discussed by Heisenberg and
later by Hartree, 4 but further attempts have been
discouraged by the generally accepted view ' that
a systematic treatment of perturbation theory is im-
possible unless the exact permutation symmetry is
incorporated into 4p itself. The contrary view was
expressed by Musher ' in a discussion of the hy-
drogen molecule where the rather obvious point
was made that if perturbation theory converges then
the particle symmetry will be introduced order by
order by the action of the nonsymmetric perturba-
tion. A necessary requirement for such a procedure
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We consider a zeroth-order Hamiltonian which is
not symmetric under permutation of the particle
indices, i. e. ,

[Ho, P] 40

Ho= h (1 )+ hb(2)

where

(3)

to be valid is that the spatial Cp for a given state be
a nondegenerate eigenfunction of its H p although this
is by no means sufficient to assure convergence as
will be appreciated from the discussion below. An
analysis of the problem for many-electron systems
has been given by Musher and Silbey' and Musher'
and calculations have been performed by Schulman
et al. "on the Li atom using this approach with a
Hartree product 4p giving reasonably accurate re-
sults by third order in electron correlation. A
nonsymmetric 4 p for the hydrogen molecule, which
avoids the symmetrization of the Heitler-London"
valence-bond function, has been used by Saika and
co-workers' "to obtain reasonably good conver-
gence for electromagnetic properties by first order
in electron correlation. The present calculation
on the excited states of the He atom provides the
first convincing demonstration of the convergence
of expansions based on nonsymmetric functions 4p
byutilizing the technique of Dalgarno and co-work-
ers. ' ' to evaluate the perturbation theory energies
to high order.

II. PROCEDURE

which supports no simple physical interpretation,
the J', so obtained is only 30% smaller than the
exact value,

We have calculated the perturbation theoretic
wave functions and energies to 19th order in H&

using the technique applied by Riley and Dalgarno"
to the ground state of He. The procedure employs
a 100-term basis set

+n+m+k e -ar1-Sr2
(7)

for o.'= 0. 75, P= 2. 0, and o= 2. 0, P= 0. 75, chosen
after a brief search as most suitable for the 1s2s
solutions, and where', m, and k are 50 triples of
integers. The procedure diagonalizes Hp in the
finite basis so that the coefficient of each of these
new functions g; in each perturbed function is ob-
tained without the solution of coupled algebraic
equations, e. g. ,

@i=~I~&~)(&; ~» ~C'o)(&o- &;) ',

the zeroth-order approximation to the ground state is
almost symmetric, the expectation value of
—,(1+P) being 0. 998, that for the excited triplet is
far from being antisymmetric and that for the ex-
cited singlet is far from being symmetric, both
having expectation values of —,'(1 +P) of 0. 500. No-
tice that while the singlet-triplet splitting is no
longer given by the simple expression (2), but ra-
ther by the more complicated sum of orbital energy
differences and expectation values of the perturba-
tion

H, = 1/r, 2+ (Zn —2)/rS+ (Zb —2)/t'2,

and

h, (1)= —2 V( —Zn/r)

hb(2) 2 +2 ~bi+2

(4a)

(4b)

where &; are the diagonalized energy values. The
calculations were carried out on the twin CDC 6600
system of Sandia Laboratories.

III. RESULTS AND DISCUSSION

The eigenfunctions of h, (1) and h„(2) can be denoted
1s,(1), 2s, (1), 2p„(l), . . . and 1sb(2), 2s, (2), 2p,b(2),
. . . , respectively, and the restriction that Z, 4 Z,
assures that the simple product eigenfunctions of
Ho below the solution 2s, (1)2s„(2)will all be non-
degenerate. We choose Z, = 2, Z, = 1.9 so that the
three lowest-lying eigenfunctions of Hp are

C o(1s 2) = 1s,(1)1s,(2),
C o(ls2s 2S ) = ls, (1)2sb(2),

C o(ls2s 'S) = 2s, (1)1s,(2),

(5a)

(5b)

(5c)

corresponding to the ground state and first two ex-
cited states of He, and the two 1s3s zeroth-order
eigenfunctions are taken analogously. This choice
of Z„Z, is special in that the energy eigenvalues
and the expectation values of H for the two 1s2s
solutions are lower thanthose for the two 1s3s sol-
utions, which is likely to be a necessary condition
for convergence of the two expansions. Although

The calculated energies are given order by order
for the 1s2s S and 1s2s S states in Table I along
with the expectation values of 2(1 +P) and the par-
tial sums are plotted in Fig. 1, where the ener-
gies are given in a. u. Convergence is reasonably
rapid and even if the calculations were taken only
through second order the triplet- and singlet-state
errors would be only 0. 1 and 0. 3%, respectively,
and the singlet-triplet splitting in error by 30%.

The convergence of the solutions is best examined
by considering the differences E„-E„&plotted in
Fig. 2. For the ground state these differences
seem to converge exponentially, for the 1s28 'S
state the differences oscillate with no clear trend,
while for the 1s2s 'S state the differences lie on an
almost exactly straight line. The implications of
the results through 19th order are thus that the
ground state converges quite definitively, that the
first excited singlet might converge in some oscil-
latory way, and that the excited triplet might even
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TABLE I. Perturbation energies and expectation val-
ues. The energies are the correction terms in each or-
der while the expectation values are those of the normal-
ized wave function to the given order.

C'(1s2s 'S}

(x(l-P))(n)

@'(1s2s S}

E„(~(1 +P) (n) ls2s IS

0 —2, 451 250
1 0.354 061
2 —0. 075 244
3 0. 007 799
4 —0. 003 119
5 —0. 001 494
6 —0. 783 x10-'
7 —0. 866
8 —0. 831
9 —0. 678

10 —0. 659
11 —0. 593
12 —0. 465
13 —0. 396
14 —0.332
15 —0. 272
16b —0.218
17 —0. 165
18 —0. 126
19 —0. 088

0.4996
0.6836
0. 7643
0. 8223
0. 8715
0.9093
0. 9375
0. 9580
0. 9727
0. 9828
0.9896
0. 9940
0. 9968
0. 9984
0. 9993
0. 9998
0.9999
0. 9999
0. 9999
0. 9998

—2. 305 000
0.226 784

—0. 074 426
—0, 003 079

0. 004547
0, 783 x 10"3

—0, 860
0.404
1.315
1, 075
0.467
0. 281
0, 454
0. 525
0.372
0, 209
0. 173
0, 190
0. 158
0. 085

0, 5004
0. 7917
0. 7689
0. 7980
0. 8543
0. 9033
0. 9333
0, 9509
0. 9643
0. 9759
0. 9844
0. 9900
0. 9935
0. 9960
0.9977
0. 9988
0. 9994
0. 9997
0. 9999
1.0000

I
C

UJ
I

C
LLJ

Is~ IS —0

Is2s S

8
n= l2 14 l6

I

IS
I

20
I

22
I

24
I

26

FIG. 2. Energy differences for three series as in-
dicated on an arbitrary scale whose zero is given on the
right-hand side. The circled point marked (? } indicates
the onset of the divergence if the plot is extrapolated
linearly and if an asymptotic expansion is assumed.

~The 10 3 is to be understood for all the higher terms
in the table.

The energies through 16th order are —2. 175242 and
-2. 145 972 which agree with the diagonalized solutions
to 0.6x10 and 1x10, respectively, which are the
closest that either series agrees with the exact solution
within the given basis.

-2.I4—

-2. I

C (Is2s 'S)
Zcl =2, Zb=l-9

+~«+ ~

+—+—+—&)

have an asymptotic expansion were the plot to re-
main essentially linear with E„-E„,going through
zero at n = 26 as indicated in the figure. Such as-
ymptotic behavior would not be surprising but it is
of course impossible to distinguish between the ob-
served linear behavior and the beginning of a very

slowly oscillating function. Notice that the expec-
tation value of —,'(1 —P) "turns around" at n= 19,
but this can be attributed to accumulated round-
off errors and incompleteness of the basis set as
well as to any lack of absolute convergence. The
smoothness of the convergence of —,'(1 aP) and of
the energy for the triplet state should be evidence
for the completeness of the basis set sufficient to
give two or three decimal places in the energy for
the latter.

The total energies through 19th order are pre-
sented in Table II for the four lowest states along
with the results of diagonalization of the total Ham-
iltonian within the finite basis and the best calcu-
lated values. ' The ground state is in error by
& 3 &&10, while both 1s2s solutions are in error
by 0. 02%%uz and the 1sss S solution is in error by
0. 16%. The 1s3s 'S solution diverges and this is
presumably due to the fact that the zeroth-order
energy and the expectation value of H of the

-2.16—
UJ

4(ls2s ~S)(?) Z =2, Zb=l

)C
TABLE II. Helium atom energies in a.u.

@(].S $) C)(1S2S $) 4(1S2S $) 4(1S3S $) @(1S3S $)-2.I7
I

-2.18—
4)(ls2s ~S)
Zg= 2, Zb= l.9

2 90367 —2 17563c —2 14554
—2. 90367 —2. 17523 -2. 14595
—2, 903 72 —2. 175 23 —2, 145 97

-2, 06429 ~ ~ ~

—2. 06741 —2. 05729
-2. 068 69 —2. 06127

n=2
I I

IO I2
I

14 l6

FIG. 1. Partial sums E "' of the energy for three
series as indicated. The circled values coincide with the
exact values. The energy is in a. u.

In basis with o.', P =2. 0, 1.0. The result has converged
to the indicated accuracy in ninth order.

"In basis with &, P =2. 0, 0. 75.
'If the series is assumed to be asymptotic, then the

extrapolated "best"' value is -2.17560.
This solution begins to diverge by fourth order.
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1s,(l)4st, (2) solution are lower than that of the

3s,(1)ls„(2) solution. The expection values of the

perturbation theory solutions to different order pre-
sumably do not cross if the expansion converges; there-
fore this 1S,(l)4s„(2) solution would have to converge to
the 1s3s 'S solution. The fact that it does not should
not be considered surprising in view of the differ-
ent nodal behavior of the zeroth-order orbitals.

In order to examine further the nature of the con-
vergence of nonsymmetric expansions, we have
performed the same set of calculations for the case
of Z, = 2, Z„= 1 for which the ls, (1)3s„(2)solution
has lower energy than the 2s, (1)lsb(2) solution.
The ground-state solution converges to the exact
value (- 2. 903 51 a. u. in this basis) by 12th or-
der although the terms from E&4 through E&9 os-
cillate about +10 '. The second solution whose
partial energy sums are shown in Fig. 1 and which
gives E '= —2. 16282 a. u. shows a near-linear
E„-E„&plot similar to that of Fig. 2 which goes
through zero at n = 25 +3 with extrapolated value
of E= —2. 1637 a. u. However the plot of (—,'(1 —P))
which gives 0. 6700 in 19th order is almost exactly
linear from 5th through 19th order with a slope of
0. 0001 and with the 19th order contribution 0. 0081.
Curiously enough such a series would converge to
1.0028 (in 99th order) and this might well be indica-
tive of the eventual convergence of the series. In

any case, the energy through 19th order is definite-
ly not converging with the last term being —1.7
&&10 and the last difference being 4&&10, but such
a slowly convergent series could well give a result
close to the exact by 100th order. Notice the pos-
sibility that the series does not converge but rather
oscillates about some average of the 1s2s singlet
and triplet solutions cannot be ruled out, but that
the convergence of the (-,'(1 —P)) expansion makes
it seem rather unlikely.

The third solution gives E ' ' = —2. 064 83 a. u. , a.
reasonably good result were it to be associated
with the (ls3s S) solution, violating the noncross-
ing rule. However, although the E» is only —1. 7
&&10 a. u. the corrections have been increasing
slowly since 9th order so that the convergence

should be suspect.
These results show that perturbation expansions

for excited states cannot be trivially assumed to
give convergent results in accord with previous
work. ' The ordering of the energies through
first order does play an important role in determin-
ing the convergence but it is not necessarily pos-
sible to assign a Priori convergence or divergence
of a given expansion. The behavior of the (1s3s 'S)
solution of the Z, = 2, Z, = 1 problem illustrates the
way an accurate result can be obtained in a series
wh'ich is possibly divergent. Similar behavior is
expected in nonproj ected perturbative calculations
on intermolecular forces. Such calculations can
thus give good results even though the perturba-
tion series will either diverge or converge to an
incorrect solution. '

IV CONCLUSIONS

The results of the high-order perturbation-theory
calculation show that nonsymmetric functions 40
can indeed be corrected perturbatively to solutions
having the correct permutational symmetry. As
it seems reasonable to expect that many-electron
systems will behave in an analogous manner, we
infer that as long as appropriate caution is exer-
cised in the choice of 4o and IIO one should be able
to obtain justifiably good results for many-elec-
tron systems based on nonsymmetric Hamilto-
nians;" The use of such nonsymmetric Hamilto-
nians, e. g. , the Hartree Hamiltonian, can greatly
reduce the computational labor involved in accurate
calculations by eliminating large sets of cross
terms in the correlated functions as can be seen
explicitly in Ref. 11. When, however, a small
number such as a singlet-triplet splitting is itself
the quantity of interest, although it t."an be calcu-
lated as in the present paper, it will generally be
preferable to use a method which possesses the
correct permutational symmetry for the outside
two electrons which give rise to that splitting,
while retaining the nonsymmetrical function for
all the inner electrons.
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We present a simple Fermi-gas model for the low-temperature Kapitza resistance (KR) of a
nonmagnetic liquid-He —solid interface in which the vibrational quanta of the solid surface atoms
are carried away by single fermion states. A one-dimensional calculation of the energy-ex-
change process is made assuming that a fermion interacts with a single solid atom through a
Morse potential. For temperatures T small compared to the Fermi temperature TJ;, the KR
R, is found to be of the form

RT =a() 1+ 46 ~ —18

where kz denotes the Fermi wave vector and a the inverse range parameter of the Morse po-
tential. The constant of proportionality ao is generally independent of the nature of the fermion-
solid-atom interaction potential and depends on the properties of the Fermi gas only through its
dependence on the fourth power of k~. As a function of increasing T, RT3 decreases rapidly on
account of the largeness of the (T/T~) correction. The theoretical results can therefore ac-
count for the pressure and temperature dependences of the KR of the liquid-Hes —copper inter-
face observed by Anderson et al. The success of the model tentatively suggests that in the phe-
nomenon of the liquid-He3 KR, the vibrational quanta of the surface atoms are carried away by
individual quasiparticle states rather than by the zero-sound modes considered in the acoustic
mismatch theory of Bekarevich and Khalatnikov.

I. INTRODUCTION AND SYNOPSIS

At the present time the only experimental studies
of the Kapitza thermal boundary resistance' R be-
tween a normal Fermi liquid and a simple mon-
atornic solid are those of Anderson, Connolly, and
Wheatley, Zinovyeva, ' and the earlier and higher-
temperature data of Lee and Fairbank. ' In these
experiments the monatomic solid under study was
copper. There are several definitive features of
the Kapitza resistance (KH) data, which for the
convenience of the reader are reproduced in Figs.
1 and 2. In Fig. 1, RT' has been plotted vs the
absolute temperature T for the various liquid-He'
pressures investigated by Anderson et al. , and in
Fig. 2 the 1/R data of Zinovyeva has been plotted
vs T. The salient features of the data are the
following: (a) For a given liquid-He pressure (den-
sity), A ~ T ' at the lowest temperatures, where
the appropriate constant of proportionality ao= RT
is of the order of 10 ' cm sec deg/erg in the ex-

periments of Anderson et al. but is some five times
smaller in the work of Zinovyeva. (b) As the pres-
sure of liquid He is increased from 1 to approxi-
mately 395 lb/in. , Anderson et al. observe that
ao decreases by a factor close to 1.6. (c) Anderson
et a/. find that at a temperature TO=0. 12 'K the
product RT3 abruptly begins to decrease with in-
creasing T, where T, is, within the experimental
error, independent of liquid-He pressure. In
contrast, Zinovyeva' finds an increase beginning
at T=O. 2'K.

The experimental findings of Anderson et al.
have been compared by them and by Gavoret' with
the theoretical predictions of the acoustic mismatch
theory of Bekarevich and Khalatnikov' and of
Gavoret. 5 In the acoustic mismatch theory of the
latter authors, sound energy from the solid is con-
sidered to be transferred at the interface to the
collective zero-sound modes of the Fermi liquid.
It was found that while the acoustic mismatch theory
correctly predicted the limiting low-temperature


