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The long-time behavior of space- and time-dependent correlation functions is obtained
including the ring contributions or correlated two-body effects. The latter give rise to anoma-
lous hydrodynamic effects and persistent correlations in the nonhydrodynamic part.

I. INTRODUCTION

Attempts to establish the hydrodynamic equations
of continuum mechanics from the principles of
statistical mechanics have led in a variety of ways
to the Green-Kubo expressions for transport coef-
ficients in terms of time correlation functions of
appropriate microscopic fluxes. More precisely,
these expressions require time integrals of such
functions. Recently, a number of investigations'
have indicated that the long-time behavior of the
correlation functions may be proportional to t
much slower than an expected modulated exponential
decay. In particular, Dorfman and Cohen' have
come to this conclusion on the basis of a resumma-
tion of the divergent density expansion to account
for the most divergent terms of the series. This
selective resummation was suggested by Kawasaki
and Qppenheim, and includes sequences of corre-
lated two-body collisions, or "ring events, " as
well as the usual Boltzmann contributions. The
resulting time-correlation functions have a time
dependence determined by the linearized Boltzmann
operator, plus a "ring operator" arising entirely
from the correlated two-body collisions. The latter
is responsible for the anomalous long-time be-
havior. The correlation functions still decay fast
enough to be integrable, so that the Navier-Stokes
transport coefficients exist; however, the higher-
order (Burnett) coefficients are not well defined.
In this context it is then not clear in what sense
the linear Navier-Stokes equations are a correct
first approximation.

The correlation functions that determine the
transport coefficients are space independent and
do not directly reflect the hydrodynamic behavior
of interest. It is more appropriate, then, for the
investigation of hydrodynamics, to study certain
space- and time-dependent correlation functions.
In fact, under appropriate circumstances these
are the Green's functions for the macroscopic
variables (e. g. , local number density, local tem-
perature, and local velocity). These correlation
functions, or rather their Fourier-Laplace trans-
forms, are calculated here in the ring approxima-
tion for hard spheres and for small k and e (k is

the Fourier transform variable associated with the
space transform, and E is the Laplace transform
variable associated with the time transform). The
conditions of small k and & correspond, respec-
tively, to small spatial gradients and long times,
i. e. , the situation for which hydrodynamic behavior
might be expected. These calculations have already
been carried out by McLennan for the Boltzmann
operator. His results show, for sufficiently small
k, the correlation functions can be written as the
sum to two terms. The first, or hydrodynamic
part, has simple poles at e = —p, (k), where p (k)
are the eigenvalues of the linearized hydrodynamic
equations (Navier-Stokes equations). The second
or microscopic part, has singularities that are
bounded away from the hydrodynamic poles for
small k. The small & behavior is dominated by the
hydrodynamic part as expected, since the hydro-
dynamic poles lie closest to the origin. This means
the space-time correlation functions asymptotically
satisfy the linearized hydrodynamic equations, after
some characteristic time, and is usually described
as aging to hydrodynamics. The calculations of
McLennan have been repeated here to include the
ring operator, and qualitative differences appear.
The "hydrodynamic part" no longer has simple poles
but includes a branch cut as well. ' The time de-
pendence of the hydrodynamic part is thus different
from the Boltzmann result, or that predicted by
the usual linearized hydrodynamic equations. In ad-
dition, the microscopic part also has a branch cut ex-
tending into the region of the singularities of the hydro-
dynamic part. Although the singularities of the
hydrodynamic part include a branch cut, there are
also poles approximating the hydrodynamic poles,
for small k. This is sufficient to give a long-time
behavior approaching the hydrodynamic modes.
The branch cut is more serious in the microscopic
part, since deviations from the corresponding
Boltzmann result increase for long times; for ar-
bitrarily small but fixed, finite density there are
times sufficiently large such that corrections to
the Boltzmann result dominate. These contribu-
tions persist for long times, so there is no longer
an exponential aging to hydrodynamics as in the
Boltzmann case. The Green-Kubo expressions for
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the transport coefficients actually depend on only
the microscopic parts of the appropriate correlation
functions, so it is this anomalous long-time be-
havior which is responsible for the difficulties en-
countered in Burnett order.

The long-time effects of correlated two-body col-
lisions appear as a coupling of ordinary hydrody-
namic modes in the spectrum of the (linear) colli-
sion operator. A similar coupling occurs in a
perturbation solution to the ordinary Navier-Stokes
equations if nonlinear convective terms are in-
cluded. Results like those given here for the hy-
drodynamic part of the correlation functions have
been obtained for more general systems using
semiphenomenological arguments to include mode
coupling through nonlinearities. Many of the latter
have been directed at the study of transport near
the critical point and, while the ring approximation
here is limited to low density, the qualitative simi. —

larity may be noteworthy. Correlation functions are
relatedtohydrodynamic variables in Sec. II by lin-
earizing in the initial deviations from equilibrium,
a convergent procedure under reasonable condi-
tions. This is sufficient to show deviations from
solutions of the usual linear hydrodynamic equa-
tions, but comparison with solutions of modified
linear equations or the nonlinear hydrodynamic
equations is not considered.

A number of qualifications must be added to
these comments. First, there is no assurance
that the ring events give the most significant cor-
rection to the Boltzmann operator for long times.
However, Dorfman and Cohen have included in ad-
dition certain "Enskog" contributions and found
these do not change the long-time behavior in any
qualitative way. Second, a perturbation theory
used to calculate eigenfunctions and eigenvalues is
known to have a finite radius of convergence for
the Boltzmann operator, but nothing is known as
yet about convergence when the ring operator is
included; in addition, a variational principle is
used to estimate the eigenvalues, the accuracy of
which is firmly established again only for the
Boltzmann ease. Agreement with Dorfman and
Cohen is maintained in the appropriate limits, but
the results must be considered tentative.

II. CONNECTION WITH HYDRODYNAMICS

To motivate the study of space- and time-de-
pendent correlation functions and aid interpreta-
tion, their role in the special case of initial local

equilibrium will be considered. For sufficiently
small deviations of the initial thermodynamic pa-
rameters from equilibrium, the correlation func-
tions appear as Green's functions for the hydro-
dynamic variables, as follows:

A formal solution to the Liouville equation for
initial local equilibrium is

P{t)=nxPI 0+ dx (l3(x, 0)n(tt, t)

r
—Z ( v'(x, 0) ——,

' m e(x, 0) U'(x, 0) ) n'(x, t)
a=i

—2(x, 0)(((x, 0) )t(x, t)) I, (2. 1)

where T = I/fp~ p is the initial local temperature,
p'= v'/p is the initial local chemical potential for
the oth component, and U is the initial local veloc-
ity. The phase functions u(x, t), n(x, t), and p(x, t)
are, respectively, the local energy, number, and
momentum densities, as functions of the phases at
an earlier time —t. The constant q is determined
by the condition that p(t) be normalized to one.

The average local densities are obtained by
averaging n(x), u(x), and p(x) over the ensemble
p(t). None{luilibrium thermodynamics may be de-
fined by requiring that the average local densities
depend on the nonequilibrium thermodynamic vari-
ables in the same way as in equilibrium. The aver-
age flow velocity is defined as the average local
momentum density divided by the average local mass
density. For simplicity, the independent hydro-
dynamic variables will be taken as the average en-
ergy density, number density, and flow velocity
denoted by, respectively, (u(x); t), (,n(x); t), and
0(x, t).

If the initial values P (x, 0), v(x, 0), and C(x, 0)
deviate only slightly from the final equilibrium val-
ues of the system, p(t) may be expanded in these
deviations to give

p(t) f~ ( —I(ttx(00(x, 0) (n(x, t) —n )

7
—Z 5v(x, 0) (n'(x, t) —n,')

—P,U(x, 0)'p(x, t)) +'' . (2 2)

Here fo is the e(luilibrium distribution function and
quantities with subscript e denote equilibrium val-
ues. Only linear terms have been shown, and 0,
has been taken to be zero. The linear contribution
to the hydrodynamic variables is then

(n'(x); t )= +nl dx'
& 6T(x', 0) (n'(x) (u(x', t) —u, )),

r
+ 2 lln' (x', 0) (n'(x)(n' (x', li —n'. ))t + Ut(x', 0) (n'(x)p (x', l) )t)I

g 0
y T
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&u(x); t)=u, + dx', t) T(x', 0) &u(x)(u(x', t) —u, ))0
AB&

r
oZ Ov'(x', 0) (n(xl(n'(x', t) —n'. ) ) + Uo(x 0) (n(x)to(x t) )o)t'ai kBT

(2. 3)
II, (, t)= dx', ~&(x, 0) &p, (x)( (x', I)- )).

ggm B

+ 2 Ov'(x', 0) (to(x) (n'(x', t) —n', ))o +
X

Ut(x', 0) (tot(x)tot(x', t) )o)uB'r

The correlation functions will be calculated for a
monatomic gas of hard spheres, although the re-
sults are expected to be similar for other short-
range repulsive interactions. A general space-
time correlation function of phase functions A. and
B is defined as

C (r, t) = &W(O, O)B(r, t) )„ (3. l)

where B(r, t) is the phase function B(r) at an earlier
time —t, as determined by Hamilton's equations.
The dependence of A. and B on the positions and
momenta of all the particles has not been made ex-
plicit, although dependence on the space point r has
been indicated. The phase functions of principal
interest are the locally conserved number density,
energy density, and momentum density,

n(r) = Z t) (r —q ),
N 2

u(r)= Z 6(r —q ),
e1 2m

(3. 2)

N

p(r) = Z p.g (r -q.),

respectively (actually, only the kinetic part of the
energy density has been included above for simplic-
ity). Their associated fluxes, e. g. , energy and
momentum fluxes, will not be considered. In gen-
eral, the phase functions A and B will always be
taken to be sums of single-particle functions:

A(r)=Z (z(p )t)(r-q ),

The brackets ( )0 indicate an equilibrium average.
Equations (2. 3) show that, in the linear approxima-
tion, appropriate correlation functions of the locally
conserved phase functions n(x), u(x), and p(x) serve
as Green's functions for the hydrodynamic variables.
In particular, if the linear hydrodynamic equations
are correct for long times, the correlation functions
must reflect the familiar hydrodynamic modes for
long times. Convergence of the expansion leading
to (2. 3) is discussed in Appendix A.

III. RING APPROXIMATION

B(r)= Z b(p )5(r-q ) . (3 3)

nB [g]=n
~ (2 z dvzfo(va)&0) 0 ~t~0, 0). 2r

x [&+ik' ~ vz+i(k-k') vz+nIz+nia]

&& &0, 0
~
t

~
0, 0 ) [g(v ) +g(v ) ] . (3.9)

The correlation function simplifies to

C»(r, t)=n f f dvzdqz

x f0(v, ) a(mv, ) t)(q, ) @8(r —q„v„ t), (3.4)

with

Cz)(r —qz vzt t)= lim f()'(vz)m
Nw co Q» oo

& f dpzdqa''' dp„dq„QB(rt t) po, (3, 5)

Here, po is the equilibrium canonical distribution
function, nfo(v) is the Maxwell-Boltzmann function,
0 the volume and n is the density.

It is convenient to consider, instead of Eq. (3.4),
its Fourier-Laplace transform,

C„,(k, e) = f, dt f dr e'f'-" C„,(r, t)

=n f dv,f,(v, )a(mv, ) Ct)(k, v» &) t (3. 6)

with

Ca(k, v„e)= f dt f dr e'"' "Ca(r, v, , t) .
The "kinetic" equation satisfied by Ca(k, v'z, e) can
be determined only by a detailed analysis of the col-
lision processes in the gas. We assume now that
the relevant contributions for small q (or long
times) at sufficiently low densities are given by the
ring approximation, for which C~(k, v„q) satisfies

(&+zk ~ vz+niz —nB)C()(k, v» e) =4z)(k, vzt t=0),
(3.V)

where nI1 is the usual linearized Boltzmann opera-
tor,

ni& [g]=n fdvafo(vz) &0 -0
I tI 0 0) [g(vz)+g(v2) ]

(3.S)

and nB is the ri.ng operator,
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The definition of the two-body t operators is given
in Appendix B, with a discussion of the ring ap-
proximation. The dependence of B on k, q has been
left implicit.

One final simplification will be made. The ef-
fects to be investigated are dynamical rather than
statistical, so the initial condition Cp(f, v, , t = 0)
will be evaluated only to lowest order in the den-
Sl

Cp(f, v„ t = 0) = b(ynv, ) . (s. lo)

It is convenient to introduce the following notation:

(gy k) = f dvyfp (vg)g (vg) k (vg) (s. 11)

The correlation function (2. 6) becomes, with Eqs.
(2. I) and (2. 10):

C„,(k, &) = n(a, R(k, ~)b),

R(k, e)=(a+if v, +nIq —nB) ' .
(s. 12)

The singularities of C„2(f, q) are therefore deter-
mined from the spectrum of the operator (ik v,
+nIg —nB).

IV. SELF-DIFFUSION

—n Jq [g]=n I dv2 fp(0, 0
l tl 0, 0)g(v, ),

[g] n
2 3 dv2fp(v2) (o, o ltlo, o)
dk'
2v

(4. 1)

x [a+if' vs+i(f -f')v2+nZq+n12] '

x (o, o
l
t

l o, o )g(v, ),
where n J is the linearized Boltzmann-Lorentz op-
erator. The subscripts 1 and 2 indicate that the
domains of the operators are functions of v& or vz,
respectively.

Eigenfunctions and eigenvalues of (ik vq+n J~
—nB') will be obtained by perturbation theory,
treating i k ~ v& as the perturbation, in a manner
analogous to Ref. 4. The unperturbed operator has

The correlation functions just introduced involve
sums of single-particle functions and describe
many-particle correlations. The basic ideas will
first be illustrated with the simple case of single-
yarticle correlation functions, of interest in de-
scribing self-diffusion. The simplification is due
to the fact that there is only one locally conserved
single-particle function n&(r) = b(r —q, ). The aver-
age of n, (r) may be interpreted as the probability
density for the position of the diffusing particle,
and is thus the only "hydrodynamic variable. "
The modifications of Eqs. (S. 12) for single-particle
correlations are

C„p =—limQC„2(k, e) = (a, R'(k, e)b),

R'(k, 2) = (e+ ik ' v~+ n&~ —nB3) ',

an eigenvalue 0 with eigenfunction 1 [the Fourier-
transform of nq(r) ]. There are other (unknown)
points in the spectrum of n J& —nB', so the correla-
tion functions will be written as the sum of two
parts-a hydrodynamic part arising from the per-
turbation of the zero eigenvalue, and a microscopic
part due to the remaining spectrum. This termi-
nology is justified when the Boltzmann-Lorentz
operator alone is used, as mentioned in the Intro-
duction, because the perturbed zero eigenvalue is
smallest and determines the long-time behavior.
(The perturbed zero eigenvalue and eigenfunction
determine the Chapman-Enskog solution to the
Boltzmann equation. ) This dominance of the hydro-
dynamic part for long times is no longer assured
here due to the q dependence of nB'. Denoting the
perturbed zero eigenvalue by p(f, &) and the cor-
responding eigenfunction by g(k, &), the first-order
results are (for fixed q)

g(k, e)=1 —if V(2),

P(f, e) = D(~, k)k',

where V(e, f) satisfies (1, V(q, k))=0 and

(nZ, nB, )-V(~, k) =v„
D(&, k) is defined by

D(~, f)=-,'(v, , V,.(&, f)).
The correlation function becomes

(4. 2)

(4. s)

(4. 4)

C„',„,(k, E)= '„, +-,'tk,.(V„R'(f, ~)v,),
-k,.k, D'

+(v, , R'(k, e)v, )q+ Dk
C„",„(k, q) =

(4. 6)

The k, q dependence of D(q, k) has been left implicit.
In the Boltzmann case the functions correspond-

ing to D and V can be estimated using a variational
principle. A similar estimate will be used here.
First, direct calculation shows that n J—gB' satis-
fies, for real f, k:

(f, (n J—nB') k)=(k, (n J—nB')f) . (4. V)

Let F(v) = (V, , [2v, —(n J—nB') V, ])for a, real func-
tion V, with (V, , 1)=0. Varying F(V) with respect

C„p(f, e)= '
k 2 + (a„R'(k, e)b,),«g) (g, b)

$+D gyk Q

(4. 5)
where a, and b, are the projections of a and 5 or-
thogonal to g.

a, =a —g(g*, a), b, =b —g(g*, b).

The relevant correlation functions for self-diffusion
are those formed from the locally conserved nq(r)
and the associated flux v, (r) = v, b(r —q). In the
above approximation these are

C„,„,(k, q) = (&+ Dk') ' ——,
' k'( V, , R'(k, e) V,. ),
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to V locates the extremum,

F(V) =0=(5V, , [2v, —(nZ-nB') V,])
The function D(e, k) is now

D(e, k) =Do [1 —&(e, k) ]
' . (4. 13)

or

—(V, , (n J-nB )5 V)

(5V„[v, —(nZ-nB') V, ])=0.

The contribution from the correlated two-body
collisions, ~, becomes asymptotically

(e+ nk')'t '
lim &(e) C—
6-0 6nwRmDo (Do+go/nm)'

Therefore, I (V) is an extremum when V,. = V, . As

a trial function choose

(4. s)

(4. 14)

Q is a constant depending on k . For small k and

D(e, k) is

where n is determined by the condition 6 E(n v, ) =0.
The result is

3
[(v, , (ne-nB')v, .)] ', P= (k, T) '-.

D(e, k) -D —HmD a(e+ n k )'t

a=—[(PmDo) 6'(Do+go/nm) i
] ',

o = qo Do (nmDo + go)

(4. 15)

(4. 9)
Here, ka is Boltzmann's constant. T is the tem-
perature, and m is the mass. Use of Eq. (4. 8)
in (4. 3) and (4. 4) gives the desired approximations,

D=(pm) o', (n J-nB')v, . = n v; . (4. 10)

The latter equation indicates that z,. is an approxi-
mate eigenfunction of ~J- ygB' with eigenvalue
n i(k, q). Further, for small k, the streaming
term i k v in It'(k, e) may be neglected in calculat-
ing the microscopic part. This enables Eq. (4. 6)
to be further simplified to

—i k, D(q, k)c' (k, ~)= '( „-'), +

- k, k, D'(~, k)
g+D(q k)k

(v, , nB'v, ) =

dk'

2

nDPm
-1

e+Dok' + (k —k'), k'(k

3
z(k, e),

( pm) Do
(4. 12)

where Do is the diffusion constant determined by
the Boltzmann-Lorentz operator and qo is the vis-
cosity determined by the Boltzmann operator. The
k' integration is cut off at some k, since only the
small k part of the integrand has been calculated.

1 PmD (e, k)k
q+D(&, k)k e+ [pmD(e, k) ]

ik,D(~, k)
+[pmD(e, k)] '

( pm)-'6, ,

~+[pmD(~, k)] '
(4. 11)

The evaluation of D(e, k) from Eq. (4. 9) requires

(v, , nB'v,. ) with B' defined in Eq. (4. 1). The opera-
tor B in turn contains [e ik+v; +i(k —k') ' vo+n&g
+nI2]-'. For small e, only the small eigenvalues
of ik' v~ + i(k —k') ' vo+ nJ,+ nio are required, and

these are just the sum of the hydrodynamic eigen-
values of (ik' v, +n J~) and [i(k —k') vo+nio] (the

latter are given explicitly in Sec. V). The re-
sulting expression is found to be

1
&+Dk —pmaD (&+ o.k )'to

PmD k
~+ ( PmD) '+ a(e + nk')'"

For long times, the inverse transforms of the hy-
drodynamic and microscopic parts are, respec-
tively,

c"„„(r,t)-

y2 /'4Dt

(4oDt)'" '

3a(smD)'&'1'
2o'(2nt)'

e-r2/40t t

(4. 17)

Therefore, while Eq. (4. 11) shows the hydrody. -
namic part is not in general a solution to the usual
diffusion equation, it approaches one for long
times. However, the microscopic part also re-
flects a diffusion mode and decays only as t

Finally, the velocity autocorrelation function,
from which the usual diffusion constant is deter-
mined, is

(v v(t)) . 1
lim

(v ) „o 2oi
de e"C,

' "(e, k) .

(4. ls)

D is proportional to the Boltzmann diffusion con-
stant Do, and g, is the Boltzmann sheer viscosity.

The first terms on the right-hand side in Eqs.
(4. 11) are the hydrodynamic pa, rts and the second
terms are the microscopic parts. The Boltzmann
result is regained on setting a=0, D= Do. There
are two essential modifications of the Boltzmann
result in Eq. (4. 11). The hydrodynamic part no

longer represents a simple diffusion mode, due to
the e dependence of D(e, k). In addition, the mi-
croscopic part, as well as the hydrodynamic part,
has a branch cut extending to —nk'. The singu-
larities of the two parts are then not well sepa-
rated, and contributions from the microscopic part
persist on the same time scale as those from the
hydrodynamic part. As a specific example,
C„„(k, e) for small k, e is
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(v v(t) )/(v') - (PmD)'a/2m'I't'~',

which agrees with Dorfman and Cohen.

(4. 19)

The hydrodynamic part of C „'„'(e,k) does not contrib-
ute in the limit k - 0, and the cor relation function
1s

(v ~ v(t) ) a(pmD)'~

( v')
p 00 -ytf 8mD

x d
(y —1) + PmDa y

For short times the integral behaves as e ' ~

which is the Boltzmann result. For asymptotically
long times the velocity autocorrelation function is

V. CORRELATION OF LOCALLY CONSERVED QUANTITIES

The calculation of correlation functions con-
structed from the locally conserved number density,
energy density, and momentum density is similar
to that for the self-diffusion problem. Returning
to Eq. (3. 12), the eigenvalues and eigenfunctions
of (ik ~ v, +nIq —nB) resulting from lowest-order
perturbation on the zero eigenvalue of nI& -nB are
sought. The latter is fivefold degenerate with the
two-particle summational invariants as eigenfunc-
tions. The resulting perturbed eigenfunctions
g„(k, e) and eigenvalues P (k, e) are formally the
same as those found by McLennan, except for the
E and k dependence:

kv= ()!m)' e,' '
(v,. — ' k!;e(k, i), ee= (l!m)' e! ' v, — ' v!v(k, e))

ev = (-', )
i !)v —

k
——ik,

(
i,. (k, i) —— v (k, e))

p f 2 nv,

ke, r= (A)'" I!)e-—(k; ', (k, e)+
k (

v)(k, e)- k(k, e)
B

v!„(k, i) ——,', eJ" I v (k, i) — v (k, i) ) ()e—
2m

v(k, i)
B

(5. 1)

(- )
q(k, E

k = (k, e), P(k )
2)(. (k, c)k

P4, , (k, e) =+ I ac+ r(k, ~)I,' . (5. 2)

The vectors e'", e'2', and e'" are an orthonormal set with e'" along the direction of k. Also, g&(e, k) and

B;z(e, k) are orthogonal to the summational invariants and satisfy,

(I —B)+(g=D)g—= m(v)v( —3 v 6(y), (I —B)S(—-S(=—[u —(5/2p) ]v( . (5. 3)

Finally, we have

A(&, k)—= 3keP (S, , Sq),

q(e, k) =—
g() p(D, ~, S))),

u —= —,
' mv, c —= (5/3 pm)'~

(5. 4)

To this order in k, the various correlation functions of the conserved local densities are found to be

2

C„„(k,«) n
~

' +
( E+P3

C„„(k,e) = 15n

3 'E+3 (Pl+P3) 4 k (» )
5 (~+P,) (~+P,) 3 (Pm)'

e+g P) 5kn (- )

4 2

(~+P,)(e+P,) 2mP' ~' '

(5. 5)

(5. 5)

k(k, n,m e+ 3P3 2 m nP&k
k' p (&+ p4) (e+ p5) 5 e+ p~

3n e+ —', Pq+ Pq

2p (e+P ) (e+P )

4k
3P 8 e,(k, e)), (5. 7)

(5. 8)

2 mPk-' 1 1 —-', &k 'PmP, 4 k2~
(5. 9)
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5n 1-& ek PmP&
Cup(k) ~)= —fk'(

2 p
( p ) ( p )

The microscopic parts, g, (k, c) and gp(lj ('.) are defined by

g, (k, E) -=7', (c. + ~, ') ', i = 1, 2

(5. 10)

(5. 11)

7'&(e, k) = (P m/n) (2/5k p) X (a, k), vp(e, k) = (P/n) q(a, k) . (5. 12)

The correlation functions are fully determined when z(e, k) and (7(e, k) are known. The small &, k be-
havior is found to be

X(e, k)- )(.(1 —p™Dr[ a&((-'+ o!gk ) + ap(6+ Fp k + 'Lck) + ap(E'+ ~2Ipk —lck)~( p]),

with

1/2
tl(ek)-tl I),— as a+

2
k + ac (c+-,'I'nk + )ck)~~~ .+a~ (&+ —', )' y~ —)ey)~&~

(5. 13)

-1 2 3/2" -1

'qp+ —
) aq =— pmDro 6 n(( +—,ap —= [72''2 (pmDro) nvI op ~p

]

)2O&r 2

240' 2 " «r'p"
n Dr = 2 A/5nKp .

(5. 14)

The constants X and g are proportional to, respec-
tively, the Boltzmann thermal conductivity Q and
the Boltzmann sheer viscosity qo. The proportion-
ality constant depends on an undetermined cutoff
such as that used in Eq. (4. 12). Finally, we state
without proof that evaluation of the flux-flux cor-
relation functions occurring in the Green-Kubo ex-
pressions for the transport coefficients leads to

pc, =- lim lim z (k, c),
60 k0

r(cp-=lim lim)7(k, c),
5-0 a0

with X(e, k) and (7(e, k) given by Eq. (5. 13).

The formal solution to the Liouville equation for
initial local equilibrium, Eq. (2. 1), may be written
as

p(t) =fp (Pp vo Up) exp( —6q(X) —f dx' 5P(x') u(x', t)

- [5v(x') --,'m5(BV') (x') ]n(x')

-5yU)(') ~ p(
'

f)& ~

where 5P (x') —= [P(x', 0) —Po) is the deviation of the
initial value P(x'0) from the final equilibrium value

Po, with similar definitions for 5v(x'), 5(P U ) (x'),
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APPENDIX A' CONVERGENCE OF EXPANSION ABOUT
LOCAL EQUILIBRIUM

I

5(p 0) (x'), and 5q. Expansion to lowest order in
the deviations leads to Eq. (2. 2). For simplicity,
it will be assumed 0~ = 0(x', 0) =0 =5v(x'); analy-
sis of the more general case is similar. Let
z=max ~5P(x', 0)

~

and define 5P(x', 0)=A5P'(x', 0).
The average of a phase function A(p, ' p„,
q, ~ ~ ~ q„) is then

(A; t) = e "+)(A exp( —X) f dx' 5P'(x', 0) u(x', t))o

and the following theorem holds:
Let (A; t) denote the average of the phase func-

tion A over a solution to the Liouville equation with
initial local equilibrium for a system with repulsive
interaction. Further, let the partition function Z
and the equilibrium average of ~A

~
by analytic in

P in some finite interval. Then (A; t)(A) is ana-
lytic in A. about zero, and the expansion converges
uniformly in time t.

Proof. Since the product of two analytic func-
tions is analytic, it suffices to show e "'~' and

(A exp[- & fdx' 5p'{x')u(x', f)]),
are each analytic in ~. Consider first e"'"'.
From normalization of p(t),

e " '=(exp[- &f d Px'( )x(xu', f) ])p

( —x)"
(

nW
fO

,

dx' 5 P '(x')u(x')

' dx'u(x')
f1=0 n 0I
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(H")0 ——Z( p —A)..=o nt
The expansion is bounded by that of the analytic
function Z and is analytic. Since e"@'=1, e "' '

is analytic for sufficiently small ~. Similarly,

(A exp —A. dx' b p'(x')u(x', t))o

fl - n

A „dx'bP'(x') u(x', t)
o fg I 0

~n
"&0 = ( I~ I""&o

which shows convergence under the assumption
that (!A I )o is analytic in X. The bound is
independent of time, so the expansion converges

uniformly,
APPENDIX B: RING APPROXIMATION

The ring approximation is discussed in detail in

Ref. 8 (although in a slightly different context) and
is only briefly summarized here. The "kinetic
equation, " Eq. (3.7), for 4"' is obtained from an
exact equation of the form

[~+K"'+B(~)]c'"'(p1 e1 ~)=b(pl, el),

where K"'=—(p1/m) (8/sq, ) and B(&) is an operator
on functions of p, , q, . If B(e) is expanded in a
power series in the density, the leading term is a
Boltzmann operator. Terms cubic and higher in
the density (four-body, or more, terms) diverge
in the limit e-0, so convergence, at best, is not
uniform. Since it is just the small & behavior that
is required to determine long-time behavior, the
density expansion is not applicable. The ring ap-
proximation consists of a partial resummation,
containing most divergent terms of each power
of the density as &-0. This leads to'

B(e)= -f '(l)n f dxp t,2(1, 2)(1+P1p)RO(1, 2) -f '(1)n f dx~t ~(1, 2)Z 1n J dxa [t13(123)(1+P13)
w= 1

&& Ro(123) + t2, (123)RO(123) (1+P12) ]f (3)] t,2(12)R0(12)f (1)f (2),

where

R (12) -=[&+K"'(1)+K"'(2)] ',
Ro(123) = [&+K"'(1)+K"'(2)+K"'(3) ]

'

and the I, operators satisfy,

t,&(ij) = e, &+ t &Ro(ij)e,&,

t;)(i jk) = 6;1+ tORO(i jk)B1~,

sv(l r, —r I ) .9 8
e]~ =

8 r& ~p; Bp&

Also, dx,. denotes dp, dq; and P, z is a permutation
operator, P,zg(l, 2) = g(2, 1). Rearranging the ex-
pression for B(q) gives

B(q) = n f dx2—f (2) t,~(1+P»)

nf dx, f(2) t13[~+K"-'(1)

+K"'(2) —L(1, 2)] ' t,3

dk'
B (p„k, e)-=I dpi' f(2)(k, 0 It» lk " " )

x e+i k' ~ +i k-k' ' —L k', k -k''m m

L(k', k —k') =—j dp,

1

Fourier transforming this equation leads to, after
some lengthy computation,

[~+tk p1/~) nf d-»f(2)(»0I t»(1+P») I»0&
nB"(k, ~) ] e—(p„k, ~) = b(p„k) .

Here, the notation is that of Ref. 3:

(k1k2
I

t12
I

k', k2 &
= f dq, dq e '""""~'2 t» e' 1 ""~ '2,

and

with

—= —n f dxzf(2) t12(1+P») —nB (p1, q1, ~)
& f(3) [(k', k —k', 0

I
t (1+P ) I

k', k —k', 0)
+(k', k-k', 0

I
t»(l+P, ~) Ik', k —k', 0) ] .

L(1, 2) = n f dx, f(3) [t~,(123) (1 + P2&) + t12(1 + P13) ] ~

t,=f '(i)f '(j) t f( )f(j) .

Use has been made of the fact that f dx2 t12Rp t12
vanishes for hard spheres. The equation satisfied
by 4' (p1 i q1 & q) is now

[c+ K"' —n f dx2 f(2) t,a(1+ P1&) —nB"(p» q, , g) ]

&& c (p„q„~)= b(p, q ) .

The dependence of ( I t, &
I ) on k and e for small

k, e is weak and may be reasonably neglected (this
neglects space and time variations over distances
of the order of the force range and overtimes of
the order of the two-body collision time. With this
approximation,

f dpaf(2) (o, o
I

t»(1+Ply)
I
o, o)

becomes the usual Boltzmann operator, and the
resulting B is that used in Sec. III.
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Perturbation-theoretic calculations are carried out for the lowest five states of the helium
atom using a Hamiltonian which is not symmetric in the particle indices such that the zeroth-
order spatial functions can be written as simple products of hydrogenic orbitals. The per-
turbation expansions are reasonably convergent except for the fifth state which is divergent
as expected. By 19th order in the expansion the energies of the first two excited states are
accurate to 2 x 10 and the expectation values of 2(1+ P) are accurate to»& 1o

I. INTRODUCTION

It is general practice to perform perturbation-
theoretic calculations using spatial functions @'p

which possess the exact many-electron symmetry.
Thus, for example, the energies of the first two
excited states of helium have been calculated with

C'0 '
= 1s(1)2s(2) +2s(1) 1s(2),

Zg = 2 (1s(1)2s(2) imam 'i 2s(1) 1s(2)), (2)

as the unnormalized singlet and triplet zeroth-order
functions constructed from hydrogenic 1s and 2s
functions. ' The splitting between the two energies
is called the exchange energy since in lowest (first)
order it is given by

although, in fact, J& is larger than the exact J it-
self by a factor of 3.

There are, however, some advantages to choosing
the functions 4p to be simple products of atomic or-
bitals as was first discussed by Heisenberg and
later by Hartree, 4 but further attempts have been
discouraged by the generally accepted view ' that
a systematic treatment of perturbation theory is im-
possible unless the exact permutation symmetry is
incorporated into 4p itself. The contrary view was
expressed by Musher ' in a discussion of the hy-
drogen molecule where the rather obvious point
was made that if perturbation theory converges then
the particle symmetry will be introduced order by
order by the action of the nonsymmetric perturba-
tion. A necessary requirement for such a procedure


