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Computations incorporating the three-phonon interaction process are presented of phonon
spectral functions, yielding frequency and lifetime dispersion curves, for the bcc solid phase
of both He3 and He4. Comparison of the compressibilities obtained from ground-state energy
and elastic constants as functions of molar volume quantify the effects of certain analytical
approximations. A model calculation shows the sensitivity of elastic anisotropy and long-
wavelength dispersions to the precise form of the three-phonon vertex.

I. INTRODUCTION

In a recent publication, we have presented a
theory of the damping and frequency shift of phonons
and of ground-state energy corrections due to inter-
actions between phonons in quantum crystals with
singular forces. We here turn to a numerical
implementation of this theory and present computa-
tions applicable to solid helium (both He and He )

in the bcc phase.
Section II reviews the theoretical approach and sum-

marizes the resulting formulas. ' Some additional
developments are given in order to arrive at a
formula for the phonon spectral function which is
computationally satisfactory. In Sec. III we ex-
hibit numerical results: phonon self-energies,
dispersion curves, linewidths, and spectral shapes
for bcc He at a molar volume of 21. 5 cm and
bcc He at 21. 0 cm . Results are also given for
phonon interaction corrections to the free energy,
and for sound velocities as a function of molar
volume in bcc Hes. Section IV compares this ap-
proach and its results with previous treatments by
other authors, particularly Horner and Glyde and
co-workers. Some schematically parametrized
computations are presented which help to under-
stand and reconcile certain differences between the
conclusions of these authors.

II. REVIEW OF THEORETICAL APPROACH AND SUMMARY
OF FORMULAS

The theoretical approach which we utilize' begins
with the adoption of a trial ground-state wave func-
tion 4'o of the Jastrow form, involving products of
short-range pair functions f,~ and aphonon Gaussian:

of displacements from equilibrium position R,
= (r;). Trial excited-state wave functions are also
constructed, to represent one-, two-, and three-
phonon excitations, by multiplying 4o by mutually
orthogonalized polynomials in the displacement
variables. In the absence of short-range correla-
tions, these polynomials reduce to the usual Her-
mite polynomials in the normal coordinates. Ma-
trix elements of the Hamiltonian

2

X =5~ ' +Q v„(r„)
2M;

(2 2)

can then be evaluated with these wave functions.
If we restrict attention to the submatrix of $C

in the zero-, one-, and two-phonon states, then
it is possible~ to diagonalize the submatrix and to
minimize the lowest eigenvalue with respect to the
variational parameters F,&, or more properly the
combinations

Simple expressions emerge because the minimiza-
tion of the lowest submatrix eigenvalue is equiva-
lent to the vanishing of matrix elements between
the zero-phonon (ground) state and all two-phonon
states, so that the submatrix is factorizable.

The many-body matrix elements are further re-
duced to computationally manageable two-body form
by making the first-order van Kampen —Nosanow
cluster expansion, which for our purposes is ex-
pressed by the approximation for the two-body
distribution func tion,

4',(r„.. . , r„)=II f;;(r„)exp(--,'u, , r, , u, , ),
k&j

(2. i)
where r&&

=—r& —r& and u, &
=—r;J —R;& are differences where

—= p„(r)f„(r),
g&g(r)-=(o

~

&'(r-r&g) ~o&

(2. 4)
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with u—= r —R&&, and where

f ((2(r) =f—(( (r)/f dsr p(((r)f((3(r)

~f„'(r)/&f, '&„.
Before specifying the matrix Y,&, it proves con-
venient to introduce the definition of the modified
potential

(2. 6)

fi, ( )-=j','( )[ T,()—&f
'

7 &, ],
where

(2. 7)

p„(r)=- exp(- —,'u ' y„' u)/ 1d'r exp(- —,'u y„~ u),

(2. 5)

G „=Z,[n/2(M, M, )»' n, ]-(e~ e (*, (2. 12)

and the.y;& are defined through their three-dimen-
sional tensor inverse,

y,.(
~- Q (5(. ( —5(, ()(5(, ( —5(, () G(.(, (

gt gt

frequencies Az and polarization vectors e~, (A = 1,
. . . , 3AT) via

Qa~eg =Z( (M(M() ~ 4'(( e g, (2. 11)
then the G&& which make the lowest eigenvalue of
the Hamiltonian submatrix stationary are given by

vf&(r) = v(((r) —(8/2M('() V lnf(( (r)

and where

M =-[(M-'+M-')]-'

(2. 8)

(2. 9)

~ 20 EI2E~
A.

with the notation

E~" ~((&r, (
—&(,()Mi"'«.

(2. 13)

(2. 14)
is an average mass for a pair of particles. If we
further introduce the effective spring constants
4

&& given by

@„-=Q —,'(&. ..—5, , )(5, , —5, , ) &VVv, , )„,
$t gt

(2. io)
which diagonalize into effective self-consistent

The lowest submatrix eigenvalue is then just equal
to (0 13C I 0),

(2. iS)

The one-phonon states, denoted as IA&, can be
characterized by diagonalizing the matrix

D(( G (( + Z G(( 2Z 2 (5( ( 25( ~ ( )(5(~2( 5( ( 2)( iT P2f((2 ) G(2(
ltl

2
-~is-~= Z (M(M()»~e(( f((„(, + —,E &V(Tf;.( ) ' E~ 2n~ ~ ~ 4n~n~. ),~

(2. 16)

into

D(( =Z(, (M(M() K(D„e((, (2. 17)
&A(2A3~ (&-Eo)

~
Ax2Aa&=—~g~, ~ ~ tI(&~ +~q)

The states lA) are then defined with the aid of the
eigenvectors t&,

~

A)=-, ~0)=(Z, M', "~,', )
~
0), (2. 18)

and the one-phonon submatrix of the Hamiltonian
in this basis is diagonal,

= a-«'g (( 2'" V "u) (2 20)
20 p

where the product runs over the three values
p, =A*, A~, Az, and to

(2. 19)

The phonon excitation frequencies && are not equal
to the self-consistent frequencies Q~; the latter
serve merely to define the Gaussian averages
&''' )

Matrix elements involving orthonormalized two-
phonon states work out to

where here (( = A(, Af, A(, Az. The eigenvalues
of the coupled one- and two-phonon submatrices,
giving the phonon frequencies as modified by inter-
action with two-phonon states, are the roots ~ of
the secular equation,

det~(T((u, -~)&, „—Q Z &A ~X
~
A„A, )

~&A„A,
~
(X-E,-~) ~A'„A'. &

&&(A(, Aa~sc
~

A& =0 (2, 22)

If it is argued~ that the second line of Eq. (2. 21),
which represents an interaction between the two
phonons of a phonon pair state, is not sizable and
as a first approximation can be neglected when in-
serted into Eq. (2. 22), then the secular equation
simplifies to

det~(a ~,-~)f. ,— ~ (A ~X
~
A„A, )

A~, & A2

&& (h&g +K&g —&) (& A(, Aa
~

'K
~

A' ) = 0. (2 22)
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=1(~~ + ~~ + ~~ )4 ~ ~
2 3 1 2 3' i 2 3

(2. 24)

in which mutual interaction among the phonons is
neglected, and

(o ~z ~
A„A„A,)

l 1/2

-=Z rr
I

E'. ' ~ .„(2.28)
2Q )

where ]L(. =A» A» A, . If we also neglect matrix
elements of X between three-phonon states and all
one- and two-phonon states which are of only minor
significance in affecting the ground-state energy,
then the improved value Eo is given by the simple
result

z,'=z, — Q ~(o~z~ A„A„A, &~'
W1-X2-a3

x(5&z +R&z +k&z ) . (2. 28)

The solution of a very large-sized secular equa-
tion such as Eq. (2. 23), which arises naturally in

a matrix approach to quantum mechanics, is not
the most convenient method for numerical evalu-
ation. It is preferable to make use of the well-
established body of computer techniques developed
around the more traditional formulas for anharmon-
ic corrections to phonon spectral functions based
on time-dependent methods. Some care is neces-
sary in order to establish proper contact between
the matrix and the time-dependent approaches. In
systems for which the latter approa, ch is naturally
appropriate, the Hamiltonian can be written in
terms of creation and destruction operators. Even
though it is not usually made explicit certain char-
acteristic reciprocal relationships then exist be-
tween various matrix elements of the bare and

perturbation parts of the Hamiltonian. For ex-
ample in the phonon case the element (k& IKlk2ks)

Enlarging the Hamiltonian submatrix by including
three-phonon states in the basis provides the lead-
ing correction to the value Eo for the ground-state
energy. Approximations analogous to those used
with the two-phonon states lead to the expressions
for matrix elements involving three-phonon states,

(A„A„A,
~
(X-&)

~

A'„A,', A,')

has a definite connection to (0~X [k,kzks), which
obtains if the bare Hamiltonian is quasiharmonic.
If matrix elements of a Hamiltonian evaluated in
some arbitrary basis set obey these reciprocal
relationships, then the frequency-dependent re-
sults of a field-theoretic development can be taken
over just by identifying the factors which would
enter the field-theoretic Hamiltonian.

The Hamiltonian matrix constructed in Ref. 1 and
reviewed here does notprecisely obey all the neces-
sary reciprocal relationships, although they are
obeyed in the limit f2-1. However with the ap-
proximations which lead to the secular equation
(2. 22) and matrix elements (2. 20) and (2. 21), a
form is arrived at which would obtain in a time-
dependent matrix development of the self-consis-
tent phonon theory, 4 but with the replacement
u - v and the distinction between (A~, e~~) and (&~, e~).
Thus we argue that a time-dependent propagator for-
mulation of the present problem with short-range cor-
relation would, to a good approximation, produce
the result that the phonon spectral function takes
the same form as in self-consistent phonon theory
but with the modifications as cited. ' Thus the spec-
tral function 8 ~~, (&u) is given by

Q~~. (&) = Im [~ 5~ ~,- @~& (&+ io')] ', (2 27)

where the self-energy is of the usual form but with
the matrix elements (2. 20)

C~~, ((u)=(u~~5~ ~, — Q (A~KjA„Ap)(A„A~~X~A )
A1» A2

x k-' [((u~ + (o~ —~) '+ (~~ + (u~ + ~)-'] . (2. 28)

&ofe added in proof: A more rigorous justifica-
tion of gqs. (2. 27) and (2. 28) has been constructed
by one of us [T.R. Koehler (unpublished)].
Considerable further simplification is possible

in the present case of a periodically regular Bra-
vais lattice in which A - (k, X), where k is a wave
vector in the first Brillouin zone and A. is a polar-
ization index, and in which

Then with further notation as per Bef. 4,

~t~~, ((u) -a (Q(u) =-™(~—~.„-2~-„,[A,(k~)+ ir, (%~)]j '

=Im
~1~1 ~2~2

(2&; ) ( ((RMQ„)

@'[( ~ ~ +

—e '") ') e,"~ V
~
v(7+ u)

)

td)-'+ (~-„...+~-„...+ ~) ')I'. (2. 29)

The product runs over )L),
= (-k A., k, X„kaA2), and we neglect polarization mixing along high-symmetry di-

rections. Similarly the ground-state energy equation (2. 26) simplifies to
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ED=ED ——,1P' Q Z Z b(kq+kq+kq)
j1X1 kP)l,a fcghg

&& —p g I
(1 —8 ~ )e '~ U(r+u) „8 (~„+(d &+(d „)~.2; . . 2m&, ~

(2. 30)

It is these formulas, (2. 29) and (2. 30), which we
implement numerically in the work reported here.

III. NUMERICAL RESULTS

The primary quantities generated by the com-
putation are the complex self-energy and the spec-
tral weight as functions of frequency . An ex-
ample of typical results is illustrated in Fig. 1,
for bcc He at a molar volume of 21.5 cm . For
each of the three phonon branches at the point q
= (0. 8, 0.8, 0)(2m/a) is shown the real and imaginary
parts of the self-energy 4+iF and the spectral
function C. A significant feature of these results
is that whereas the two transverse phonons have
narrow symmetric line shapes, the longitudinal
phonon is quite broad and asymmetric. The asym-
metry is characteristically in the form of a steep
rise on the low-frequency side of the maximum
and a more gradually sloping tail on the high-fre-
quency side.

Because of this asymmetry, which occurs over
a large region in the Brillouin zone, ambiguity
arises on how to parametrize the line shape in
order to present dispersion curves. We chose
to evaluate as functions of q both the position of the
maximum in 8 as well as the mean of the two half-
maxima. Significant differences between these two
alternative quantities are an indication of substan-
tial line-shape asymmetry, or equivalently of

strongly frequency-dependent damping. Another
aspect of the sizable variation of the self-energy
over a frequency comparable to its magnitude is
that the maximum and width of I do not coincide
with the values that would have been obtained from
evaluating ~ and F at the unshifted frequency. The
latter procedure is what would arise from a strict
application of Rayleigh-Schrodinger perturbation
theory, and is a prevalent one in more traditional
perturbation treatments of weak anharmonicity.
The examination of 8 (&), however, is much closer
to Brillouin-Wigner perturbation theory, and is
the more appropriate procedure in the present
case of sizable shifts and broadening of phonon
modes.

Figures 2 and 3 show parametrizations of ~ and
F as functions of q along symmetry directions in
the Brillouin zone, for bcc He at 21. 5 cm'/mole
and bcc He' at 21.0 cm'/mole, respectively. Il-
lustrated for each of the three branches are the
values of ~ and F at the unshifted frequency, at
the mean of the half-maxima, and at the maximum
of g. Regions of the Brillouin zone where these
three values are substantially different are the
regions where the three-phonon process is strong
and significantly frequency dependent. It can also
be seen that phonon damping, as measured by F,
has dramatic variation with q, even across a Bril-
louin zone face. Figures 4 and 5, again for He3
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FIG. 1. Phonon spectral function
8(cu) (solid curves) and complex self-
energy A(cu)+ I'(&) (dotted curves) as
a function of ~ for the three q= (0.8,
0.8, 0) modes of bcc He3 at a molar
volume of 21.5 cm3.
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FIG. 2. Several parametrizations
of the real and imaginary parts of the
phonon self-energy, as a function of
wave vector along the principal sym-
metry directions, for bcc He at
21.5 cm3/mole.
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and He', respectively, plot dispersion curves for
the phonon frequencies along symmetry directions.
The three-phonon process always lowers the fre-
quencies from their base unshifted values. Partic-
ularly in the vicinity of q= (1,0, 0)(2w/a) there is
spectral-function asymmetry, as measured by the
differences between the positions of the maximum
of 8 and the mean of the half-maxima. Also in
these regions the Rayleigh-Schrodinger result
("bare frequency+ &") is not the same as that of

Brillouin-Wigner ("peak of 8 ") result.
The ground-state energy, as computed from

formula (2. 30), is plotted in Fig. 6 as a function
of molar volume for bcc He3. Both the unshifted
energy Eq ("first order") as well as the three-
phonon-corrected energy Eo ("second order" ) are
shown. Because we use throughout the Lennard-
Jones 6-12 interatomic potential, which is now be-
lieved not to be a sufficiently accurate representa-
tion of the true helium potential, we chose not to

0,4

AT BARE F REQUENC Y——FROM HALF MAXIMUM"'""'AT PEAK OF
SELF —ENERGY
DISPERSION CURVES
FOR SOLID bcc He4
AT 21.0 cm&/mole
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FIG. 3. Self-energy dispersion
curves similar to Fig. 2, but for
bcc He at 21.0 cm3/mole.
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FIG. 6. Ground-state energy per particle for bcc Hes

as a function of molar volume, using the present theory
to first and to second order, and a comparison with the
Monte Carlo results of Hansen (Ref. 6).

extracted from our computations with little addi-
tional effort. Long-wavelength extrapolation of
our renormalized phonon frequencies leads to elas-
tic constants shown in Fig. 7, as a function of
molar volume for bcc He'. Here we compare our
results with experiment, despite possible inade-
quacy of the Lennard-Jones potential, in the belief
that this will not be the primary cause of discrep-
ancy. The squares give the measurements of
Greywall7 at 21.6 cm'/mole, while the circles show
the results inferred by Wanner. ' Agreement both
in magnitude and in trend with molar volume may

be considered as satisfactory (within order of 15/p)
considering the approximations involved. Further
insight into the effect of these approximations may
be gained from the compressibility, shown in Fig.
8, as calculated in two different ways: from the
ground-state energy of Fig. 6 and from the elastic
constants of Fig. 7. Experimental data equivalent
to the elastic constants of Greywall'and of Wanner, '
are also shown. The order of 30% inconsistency
between the calculations can be traced to two
sources, first the neglect of interactions between
different two-phonon states [as represented by the
second line of Eq. (2. 21)J, and second to the man-
ner in which short-range correlations have been
superimposed, by Jastrow functions of the Nosa-
now form, onto the long-range phonon correla-
tions. The latter cause of inconsistency is related
to the differences which arise in our treatment be-
tween the self-consistent frequencies and the phonon
frequencies, which has been discussed at some
length by Horner. '0

IV. DISCUSSION

One of the most unusual features of the phonon
spectrum of bcc helium is the extraordinarily low
frequencies of the lower transverse branch (Tz)
in the [110Jdirection. This situation has been de-
duced from experimental observations both by
Greywall and by Wanner, and also has been found
in previous theoretical work by Horner~ and by
Glyde et al. ' However, the existing theoretical cal-
culations have been in considerable quantitative
disagreement with each other, as well as with the
present work. Although this disagreement might
be due to differences in details of the numerical
techniques employed, it is our belief that the pre-
dominant source is the differences in effective po-
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FIG. 7. Elastic constants for bcc He as a function of
molar volume and a comparison with the experimental
values of Greywall (Ref. 7, squares) and%armer (Ref. 8,
circles) .

FIG. 8. Compressibility of bcc He3 as a function of
molar volume, calculated both from the elastic constants
of Pig. 7 as well as from differentiations of the ground-
state energy of Fig. 6, together with experimental values.
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FIG. 10. Relative anomalous dispersion of phonons in
the [110]direction of bcc He at 21.0 cm3/mole, parameter-
ized by the quantity p defined in the text, as a function
of the three-phonon parameter n.

FIG. 9. Sound velocities of bcc He4 at 21.0 cm3/mole
in the [110]direction, as a function of a three-phonon
process parameter G', scaled relative to the longitudinal
velocity at 0.'=1.

tentials which are used to evaluate the three-phonon
vertex. Rather than to review the analytical for-
mulas employed by each of the respective authors
or to reproduce their computations, we choose to
study this question by inserting a phenomenological
factor a multiplying the three-phonon part of the
self-energy in Eq. (2. 28) and by varying & away
from the nominal value of unity. The way in which
the parameter & is introduced corresponds to simu-
lating changes in matrix elements (VVVtI) via an
over-all scaling by a factor &' . Sound velocities
in the [110]direction for bcc He' are shown in Fig.
9 as a function of &, with the velocities scaled rel-
ative to the longitudinal velocity at &=1. It is
remarkable how sensitive is the Tz velocity to the
three-phonon interaction, an increase of 20%%u& in
(VVVtI) producing a drop in the Ts velocity by more
than a factor of 2. We believe that variations of
this size are more than sufficient to explain the
differences between the theoretical treatments.

The earlier investigations, particularly that of
Horner, ~ also emphasize anomalous dispersion of
the Ts branch in the [110]direction and the signif-
icance of this dispersion for understanding the
unusual temperature dependence observed for bcc
He in the low-temperature specific heat. We
parametrize this dispersion by a deviation ~ from
linearity at small wave vector,

& —= [&(0.2, 0. 2, 0)/2to(0. 1,0. 1, 0)]—1;

& is plotted vs & for each of the three branches in

Fig. 10. Whereas the dispersion is light for the
I. and T, branches, the Ta branch develops dramat-
ic upward dispersion for those» 1 where the Ta
velocities are substantiall. y reduced. Again the
results of Horner~ can be understood on the basis
of a slightly larger three-phonon vertex than in the
present work. It would seem that a good quantita, -
tive understanding of the unusual low-temperature
thermodynamic properties of bcc helium, as well
as of the large elastic anisotropy, depends critical-
ly on a reliable cal.culation of the three-phonon
vertex, even though most of the phonon modes in
this structure are rather insensitive to this pro-
cess.

~T. R. Koehler and N. R. Werthamer, Phys. Rev. A

3, 2074 (1971).
2H. Horner, Phys. Rev. Letters 25, 147 (1970); Solid

State Commun. 9, 79 (1971).
H. R. Glyde and R. A. Cowley, Solid State Commun.

8, 923 (1970); H. R. G&yde, J. Low Temp. Phys. 3, 559
(1970); Can. J. Phys. 49, 761 (1971); H. R. Glyde and
F. C. Khanna, ibid. 49, 2997 (1971).

4N. R. Werthamer, Phys. Rev. B 1, 572 (1970).
5A similar conclusion has been arrived at using related

arguments by P. Gillesen and W. Biem, Z. Physik 242,

250 (1971). We contend, however, that these authors have
frequency-independent terms contributing to their self-
energy which are spurious, due to double counting of dia-
grams in perturbation theory. The Gillesen-Biem ex-
pression does not reduce to that of self-consistent phonon
theory in the absence of short-range correlations.

6J. P. Hansen, J. Phys. (Paris) Suppl. 31, 67 (1970).
'D. S. Greywall, Phys. Rev. A 3, 2106 (1971).
R. Wanner, Phys. Rev. A 8, 448 (1971i.

9L. H. Nosanow, Phys. Rev. 146, 120 (1966).
H. Horner, Z. Physik 242, 432 (1971).


