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A procedure which combines the methods of variable-phase and R-matrix theory is formu-
lated for multichannel scattering processes. R-matrix theory is used to obtain the logarithmic
derivative of the scattering functions at a radius a, beyond which all exchange potentials are
negligible. Variable-phase theory is used to construct a radially dependent reaction matrix
which is integrated from a to infinity. The method is applied to a two-channel model which
has some of the features of the low-energy electron-hydrogen problem. Essentially exact
results are obtained with as few as 40 R-matrix states (20 per channel).

I. INTRODUCTION

In recent publications, ' 3 several computational
procedures have been suggested for studying low-
energy electron-atom scattering which do not re-
quire the direct solution of the coupled integrodif-
ferential equations describing the scattering pro-

cess. In general, such procedures yield only ap-
proximate solutions to the coupled equations. How-
ever, the computational ease of these procedures
is such as to allow for the coupling of more chan-
nels than might be attempted in a direct solution,
and therefore it is hoped that any numerical inac-
curacies introduced will be more than compensated
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for by corrections arising from the additional
channels.

In these methods, the scattering functions in the
"near" region are obtained by an expansion in a
finite basis set and a subsequent diagonalization of
a Hamiltonian matrix. In the asymptotic region
they can be obtained variationally as in the Harris-
Nesbet method'2 or by matching to numerical solu-
tion in the "far" region as in the method proposed
by Burke et al. The ability of such techniques to
give accurate results for a physical multichannel
problem has been demonstrated by Seiler et al.
who have investigated electron-hydrogen scattering.

In the present work we suggest an alternative
procedure which combines variable-phase theory'
and R-matrix theory. The formalism is discussed
in Sec. II, and application is made to a model
problem in Sec. III. Section IV contains a brief
discussion.

II. FORMALISM

A. Variable-Phase Theory

In this section we present a review of variable-
phase theory as applied to a multichannel prob-
lem. "The scattering problem under investigation
is described by the coupled equations

(H —E)e = 0,

equations

4=J5-Na
O'= J'5 —N'n,

(4a)

(4b)

where prime means differentiations with respect
to ~. If the potentials fall off faster than ~ ' for
large r, the asymptotic properties of P&& are

PU (r) —k, '~ [sin(k;r —l;n/2)6;;

or

f '(r) = N(V —W)e-,
n'(r) = —J(v —w)e,

(7a)

(7b)

+ cos(k, r —l, r/2)K, &], i, j open.

We consider the matrix of functions

K(r) = o.(r)5 '(r)

with

(-1)' '5„, i closed
K(, (0) =

~ ~

0, otherwise

such that K„=K,~(~), i and j open, are the ele-
ments of the reaction matrix. Using the properties
of the functions J and N, we obtain the differential
equations

where K'(r) = —(J —KN)[(V -W)e]6 ', (7c)

—d 2

H= 3 +L+V —W+&

L is the diagonal angular momentum matrix with
elements 5„l,(l, +1)/r, V and W are direct and
exchange potential matrices, and & is the diagonal
level-spacing matrix with elements 5,~&,. 4 is a
square matrix with elements g,~ where j denotes
the incident channel and i the outgoing channel. We
allow for the possibility of both open and closed
channels.

We define the real diagonal matrices J and N by

N;~ = 5]j N~

k~ rj,&(k&r), j open
J (k r)=

( —1)'&' (—,'k~)' rh' '(ik~r), j closed

(3)
~

~

k& rn, (k&r), j open
N((kqr) =

i'~'(-', k, )'"rh,"'(ik~r), j closed

where

k, =+ IE-
and j,(x) and n, (x) are spherical. Bessel and Neumann
functions, and hf" (x) and hI~'(x) are Hankel func-
tions. Auxiliary matrices 5, n are defined by the

where the square brackets indicate that the integral
operator W acts only on O. These equations are
of little practical use because of the difficulties
inherent in solving coupled nonlinear integrodif-
ferential equations.

However, if there exists a radius r = a such that

W(r'& a) =0,

then Eq. (7) reduces to

K'(r) = —(J —KN)V(J-NK), r& a . (9)

K(a) = [(J' —Je e ')(N —N e e ') ], (10)

Since the matrices ~J N, and their derivatives
are known, the probelm then reduces to finding
the logarithmic-derivative matrix

[ee ],

This may be obtained from R-matrix theory which
we now discuss.

This is a particularly simple equation to solve since
in general the direct potential matrix V can be ex-
pressed analytically when Eq. (8) is a suitable ap-
proximation. Therefore we need only determine
K(a) in order to begin the integration of Eq. (9).
Using Eqs. (4a), (4b), and (6), we obtain
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B. R-Matrix Theory

We wish to expand a column vector of 4, defined
by ~C. where j is the incident channel, into a com-
plete set of states. If f(r) is a function with the
property

f( )
$+1

r-0

1+1
~Em r-0 (lla)

dr),„
I~Sm «a (11b)

then the functions g, , m =1, ..., ~, form a com-
plete basis set for f(r) spanning the region 0 to a.
Here V(r) is an arbitrary potential and b, is an
arbitrary constant. For example, we choose
V(r) =0 and thus

rg, (n, „r/a),
where n,„is the mth root of Eq. (lib), which can
be reduced using standard recurrence relations to
the form

and if g, is a complete set of orthonormal eigen-
states of the operator

d l(l+ 1)
dr2 r2

satisfying the boundary conditions

By defining the R matrix with elements

1 [Xu, X~,],
a (E E) (20)

A practical problem is the rate of convergence
of the R-matrix sum, Eq. (20). Buttle has con-
sidered this problem and has suggested a procedure
to correct the R matrix when a finite basis set is
used. The assumptions are as follows: The omitted
states X contribute predominantly to the diagonal
elements of the R matrix since the off-diagonal
coupling is small for these states. Therefore, the
contribution from these states to the R matrix is
the same as their contribution for the uncoupled
problem. Further, it is assumed that the eigen-
values and eigenvectors for the included states X

are changed only slightly by the omission of higher
states. The correction given by Buttle is then ob-
tained as follows: The exact R-matrix element in
channel i for the uncoupled problem is given by

(23)

and collecting the column vectors 4~ intothe square
matrix @, we obtain

a[4"4 '], =R '(1+RB), (21)

which can be inserted into Eq. (10) to yield

K(a) = ([J(1 + BR) —a J'R][N(1 + BR) —a N'R] '].,

j, ( ) = (&+1 —b, )j,(, ) .
Then we construct the eigenvectors

where

H„u, (r) =Eu, (r) . (24)

C1m ~l1m
x,= ~&

kc„'. ~, „1
(14)

[' ~(0) ~(0) I

&i a (E(0) E) (as)

The contribution to R,', ' from included states X is

where N is the total number of channels and the
coefficients C diagonalize the Hamiltonian matrix

C; H; f„C;„=E~~

if, mn

with

(ls)

e,„,„=(g, ,„~e„~r),,„),
where the limits of integration are 0 to a. Thus
the vectors X~ satisfy the boundary conditions

(16)

a X~(a) = BX ~(a) (17)

where B is the diagonal matrix with elements
s,~b, (b, =—b, ), and serve as a complete basis set
for the vectors 4 J,

@~——Z), A~„Xg (ls)
The coefficient Af„ is given by Lane and Thomas:

[~4. —a-~BC, ],
A~„=X, (a)

( )

'

The formalism discussed in Sec. 0 is applied
to a model two-channel problem with

8'f~ = 0,
Vu = Vqp= —n/(r +d )

V,~= V~~= —P(1 —e ) /r
l1=0, l2= 1

(as)

where

(x,',"
~
e«

~
x,",') = z!',& . (as)

Therefore the contribution from the omitted states
X to the diagonal R-matrix elements is

Romit R(0)omit R(0) R(0) inc
ii

The 8 matrix used in Eq. (22) is then the R matrix
obtained from Eq. (20) with diagonal elements cor-
rected using Eq. (27).

III. APPLICATION TO A MODEL PROBLEM
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TABLE I. Partial-wave cross sections Q;& for a non-
degenerate case. Column A: g =20, uncorrected;
column B: g =10, corrected; column C: m=20, corrected;
column D: numerical.

is well behaved while

ej", N —- e
ou

(31)

&(Hy)

0. 1
0.2
0.5
0.7
0. 749
0. 751

0. 8

1.0

1.5

Q(2

Q22

18.6520
12.5895
7. 9999
5.5814
5. 1441
5. 1270
0. 0000
0. 0479
4. 7172
0. 0072
4. 3126
3.3439
0. 0575
4. 1018
1.7632
0. 1863
1, 9205

18.6592
12.2819
7.9977
5.5861
5. 1669
5. 1508
0. 0000
0. 0452
4. 7783
0.0087
3.7306
3.5162
0. 0642
4. 0455
1.7913
0. 1794
1.8858

18.6307
12.2941
7. 9975
5.5881
5. 1686
5. 1525
0. 0000
0. 0453
4. 7701
0. 0082
3.7292
3.5226
0. 0647
4. 0455
1.7921
0. 17g3
1.8848

D

18.6309
12.2941
7.9975
5.5881
5. 1686
5.1525
0. 0000
0. 0453
4.7703
0.0081
3.7294
3.5226
0. 0647
4. 0456
1.7921
0. 1793
l. 8849

No essential simplification is made by neglecting
the exchange potential since its sole effect in the
present formalism is to give rise to an additional
term in the matrix element H, &„of Eq. (16). In
the present application we choose a=4. 5, d =n,
p= 6.

The dependence of the cross sections

Q,J = (4v/&', . ) ~
[K/(1 —f K)]&& I

' (29)

4 —J-NK (30)

on the logarithmic boundary-condition parameters
b, is investigated. We find that provided the values
chosen for b, are not too large, they do not have
any significant effect on the results. We choose
b, = —5, since in this case the roots n, can be ob-
tained analytically from Eq. (13), and they are well
spaced at intervals of m.

An increase in the matching radius a enlarges the
space to be spanned by the basis set and more
bases are needed to ensure comparable accuracy
of the results. For example, we find that doubling
the value of a requires approximately a doubling of
the number of basis functions in order to retain the
same degree of precision. Hence, a is chosen to
be the smallest value of x such that Eq. (8) is a
suitable approximation. In this paper, we choose
a=8.

We first consider the nondegenerate case e, =0,
E2 = 0.V5. Below the threshold for excitation only
one element of the K matrix, K», is physically
meaningful. The occurrence of nonphysical K-
matrix elements and, in particular, their divergent
behavior for large r, has been discussed by
Zemach. Since

for closed channels j, the closed-channel elements
of K must diverge to cancel the divergent terms

In principle, this behavior has no effect on the
physically meaningful K-matrix elements. How-

ever, due to the cancellation of large numbers,
loss of significant figures can result when solving
Eq. (9). For this reason, we find it convenient,
when closed channels are present, to eliminate ex-
plicitly the exponer. tial behavior of J,- and ¹ for
closed channels j by transforming Eq. (9). io

In Table I we give cross sections both below and
above threshold for the nondegenerate case. The
numerical results, column D, which are obtained
by solving Eq. (9) from zero to infinity, are com-
pared with three calculations made using the pres-
ent formalism. In column A, we use 20 basis func-
tions in each channel [associated with the 20 lowest
roots of Eq. (13)]but omit the Buttle corrections
to the R matrix. Additional calculations are made
with 10 and 20 bases; columns B and C, respec-
tively, including these corrections. We observe
the substantial improvement obtained by correcting
the R-matrix elements according to Eq. (2V). Es-
sentially exact answers are obtained in a corrected
20 bases calculation. However, as few as 10 bases
yield entirely satisfactory results when the Buttle
correction is utilized. We note that no anomalies
occur near the threshold.

Similar calculations are performed for the case
of degenerate channels, e, = &~ = 0, and results are
presented in Table II, where the columns are as
described for Table I. We note that, as in the non-
degenerate case, it is important to include the
Buttle correction and that as few as 10 bases then
give results of acceptable quality.

&Sy)
0. 1

0. 2

0. 4

0. 6

A

9.7781
9, 2239

16.3390
0.2376
1.4917

16.7936
0. 7655
0. 0304
8. 8579
l. 1398
0.3964
4. 5350

10.0224
9.2674

16.1334
0.3320
1.6483

16.4998
0.6821
0.0323
8. 9679
0.9879
0.4683
4.5591

10.0370
9.2767

16.0897
0.3390
1.6610

16.4739
0.6732
0. 0312
8. 9662
0. 9829
0.4652
4.5544

D

10.0364
9.2766

16.0899
0.3393
1.6615

16.4727
0.6731
0.0312
8.9661
0. 9828
0.4652
4.5542

TABLE II. Partial-wave cross sections Q;& for the
degenerate case. Column A: g = 20, unoorrected;
column B: g=10, corrected; column C: g =20, corrected;
column D: numerical.
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The degenerate dipole coupling considered here
is typical of the 2s-2p coupling in e -H scattering
and is of interest because of its extremely long
range. " One of the advantages of the present for-
malism is that Eg. (9) can be numerically integrated
from a to ~= ro, where the oscillations of the open-
channel K-matrix elements have become small,
and then a generalization of the Levy and Keller'
technique can be used to extend these elements to
a practical infinity. The effects of closed channels
for large r can be given in terms of polarization
potentials in the open channels. '3

IV. SUMMARY AND DISCUSSION

We have presented a computational procedure for
obtaining approximate solutions to the coupled in-
tegrodifferential equations which describe scatter-
ing processes. This procedure combines the
methods of variable-phase theory and R-matrix
theory. In the R-matrix calculation, a series of
eigenvalue problems is solved and the results are
used for all energies. Additions to the basis set

can be made in a systematic manner. Variable-
phase theory is used to extend the reaction matrix
from a matching radius to infinity. One of the ad-
vantages of this approach is the ability to monitor
directly the convergence of the elements of the
reaction matrix.

The method detailed here can be readily extended
to scattering problems where the dominant asymp-
totic potentials are Coulombic, by replacing the
functions J and N of Eq. (3) with Coulomb func-
tions. '

If the scattering functions needtobe orthogonalized
to atomic states, this can be accomplished by a
Schmidt orthogonalization of the basis states to
these atomic states. The boundary conditions for
these orthogonalized Bessel functions, Eg. (11),
give rise to the same roots as the nonorthogonalized
Bessel functions, since the atomic states are as-
sumed to have vanished for r~ a. In this case, an
additional change, which must be made in the for-
malism presented here, is the modification of the
Hamiltonian and overlap matrices of the eigenvalue
problem.
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