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The rate of absorption of energy from a weak signal field by an atom driven by a strong
pump field is evaluated. The pump field and the signal field are assumed to induce transitions
between the same pair of states, and their frequencies are both assumed to lie near the atom-
ic resonance frequency for the transition in question. We find that the signal-field absorption
line-shape function takes on negative values, representing stimulated emission rather than
absorption, even though population inversion does not occur. This amplification of the signal
field, which is most pronounced at high pump intensities, is shown to occur primarily at the
expense of the pump field, which suffers an increased rate of attenuation. The results are
discussed in the context of a theorem which expresses the absorption line-shape function for
general atomic systems in terms of a suitable atomic correlation function.

I. INTRODUCTION

In two previous papers ' we have evaluated the
frequency spectrum of the radiation emitted during
transitions between a particular pair of levels by
an atom which is driven by a (possibly) strong
harmonically oscillating external field. In this
paper we consider the complementary process, that
of the absorption of radiation by a similarly driven
system. The atom is thus assumed to be excited
simultaneously by two fields of nearly equal fre-
quency, a strong pump field and a weak perturbing
or "signal" field, and the rate of absorption of en-
ergy from the signal field is found as a function of
its frequency. '

Our analysis is carried out within the context of
a simple two-level model, in which atomic relaxa-
tion is treated in general terms. The pump field
and the signal field are both treated classically,
and both are assumed to oscillate harmonically at
frequencies near the resonance frequency of the
atom. ' The absorption line-shape function is
found by first finding the effect of the signal field
on the equilibrium atomic density matrix, and then
using this solution to evaluate the rate of absorption
of quanta from the signal field.

A striking feature of the expression we find for
the absorption line-shape function is that in some
cases it takes on negative values, even though pop-
ulation inversion never occurs. The negative val-
ues, whj. ch are appreciable for intense pump fields,
correspond to stimulated emission rather than to
absorption, and imply amplification rather than at-
tenuation of the signal field. Energy balance is
discussed, and it is shown that for very intense
pump fields the amplification of the signal field oc-
curs primarily at the expense of the pump field,
which suffers an increased rate of attenuation due
to the presence of the signal field.

Our analysis is discussed in the context of a gen-

Ej —Ep = hmgp . (2. 1)

It is convenient to represent atomic relaxation
by introducing separate off-diagonal and diagonal
relaxation coefficients K', Kp&, and Kgp in terms
of which the equations of motion for the matrix ele-
ments &(t)= pgp(t) & (t)=ppg(t), n(t) = p»(t), and
m(t) = ppp(t) may be expressed, in the absence of
external excitation, as

(
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d—+ K —gCOgp CY+ t = Q,

(
d

+ ~ps n(t) —sspm(t) = 0,

+ Kgp m(t) —Kp&n(t)= 0

(2. 2a)

(2. 2b)

(2. 2c)

(2. 2d)

eral relation which expresses the absorption spec-
trum of an atom in terms of a certain atomic cor-
relation function, which is similar to, but not iden-
tical to, the one which determines the emission spec-
trum for the same system. ' The possibility of
extending our results to include more general pump-
ing mechanisms emerges naturally from this dis-
cussion.

The basic model of a pumped two-level atom with
general relaxation coefficients is introduced in Sec.
II. In Sec. III the absorption line-shape function is
evaluated, and the limiting cases of interest are
treated. The results are then discussed in Sec.
IV in the context of the general correlation-function
theory of absorption.

II. DRIVEN TWO-LEVEL SYSTEM WITH GENERAL
RELAXATION COEFFICIENTS

Let us consider an atom with two energy eigen-
states 10) and I l) and corresponding eigenvalues
Ep and Ej, where

2217



2218 B. R. MO L LOW

n (t)+ rn (t) = 1 (2. 3)

is represented by vanishing off-diagonal matrix
elements, and by the diagonal elements

The equilibrium solution to these equations and
the trace relation

~ = i& h, (m -n)/z*, (2. 11a)
m-n=(m"& n"')K ~z ~'/("fl'+K ~z ~'),

(2. 11b)
m+n=1, (2. 11c)

where the parameters 0 and ~ are def ined as
—(p)n = KSO/K

m = Kp&/K,
—(p)

where the parameter K is defined as

(2. 4a)

(2. 4b)

n-=2
[

~Sp [,
g:—K + JAN,

A(d = (d —(dp .

(2. 12a)

(2. 12b)

(2. 12c)
K —= K)p+ Kpy (2. 6)

We may note that in the strong collision model of
atomic relaxation, ~ is the mean collision rate,
n' ' and nz' ' are the mean thermal occupation num-
bers for the states I 1) and I 0), respectively, and
K = K. In the case of (zero-temperature) radiative
relaxation, on the other hand, ~ is the spontaneous
emission rate, n' ' = 0, m ' ' = 1, and &' = 2~.

Let us now suppose that the atom is driven by an
external field, with positive- and negative-fre-
quency parts S(t) and $*(t), respectively, and po-
larization specified by the unit vector ep,

W = —in~So*n+ iySp ~*

= 20 KK'(rn' ' n' -') /(
K'0 ~ K

~

z ~2), (2. 13)

The time-dependent solutions to the linear homo-
geneous Eqs. (2. 9) for the matrix elements o'(t),
o.'*(t), n(t), and m(t) have the form of linear func-
tions of the initial values n(0), n*(0), n(0), and
m(0). The solution for o'(t), for example, takes the
form

(t)=&-(t) (o) &..*(t)~*(0)

The rate at which quanta are absorbed from the field
is

E(t) = (I/V 2 )ep[$(t) + S*(t)] . (2. 6) +& „(t)n(0)+u (t) m(0) . (2. 14)
We assume that the field oscillates harmonically

S(t)= S,e '"' (2. 7)

at a frequency nearly equal to the atomic resonance
frequency,

By directly solving' Eqs. (2. 9) we find that the La-
place transform functions

~(s) -=f,"dte "'u(t) (2. iS)

CO=&go . (2. 8)
of %l,'4 „, and '4 may be obtained from the rela-
tions

+ K + io&&o
~

n(t) =

ikey(t)

[rn(t) —n(t)],
~

~

d
dt

( n*t = —i~*S*t m t -n t

~

—+ K n(t) —Kn' '[n(t)+m(t)]fd — —&o&—

I, dt

(2. 9a)

(2. 9b)

= —i».* S*(t)o.'(t)+ i&S(t) o.*(t), (2. 9c)

In the presence of the driving field the equations
of motion for the atomic matrix elements, in the
resonant approximation, may be expressed with the
aid of Eqs. (2. 4) as

(
.

)
(S+z)(S+K)+ ~20

f (s) (2. i6a)

—i»ho(s+z) [s -K(m"'- n"')]
qi „(s—i&u) = Is sl

(2. 16b)
i & S,("z)["K(m&p&-n&p&)]

S &P&) f (
(2. 16c)

where f (s) is the third-degree polynomial

f(s) =-(s+K)(s+z)(s+z+)+0'(s+K') . (2. i7)

We note that in the case of collisional relaxation,
the three roots sp, s, , and s of f(s) are

= i&*S*(t)o(t) —i».S(t) o.'*(t), (2. 9d)

where the parameter ~ is defined in terms of the
dipole matrix element p, &p as

so= —K,

s = —gagQ',

where

(2. 18a)

(2. 18b)

X —= (ep ' &ufo)/Av 2 (2. 10) n'= [fl'+(~~-)2]'t' (2. 19)
The equilibrium solution to Eqs. (2. 9), (2. 7),

and (2. 3) is characterized by constant diagonal ele-
ments n and m, and by off-diagonal elements n(t)
= &e '"' and o*(t)= o.'*e'"'. The parameters &, n,
and m may be obtained from the relations so=— (2. 20a)

In the case of strong driving fields, the roots are
well approximated for general relaxation coefficients
by the relations
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sq= —
p (K+K )+1 fl (2. 20b) z(O u, )* —2i~* S )O n = 2ix'* S'p+ q, (s. 7b)

III. LINE-SHAPE FUNCTION FOR ABSORPTION AND
STIMULATED EMISSION

Let us now suppose that a weak perturbing or
"signal" field, with positive frequency part

gO n+ iX*S(Ouo —iXS o(Ouo)*

= —tx'+ S',*Ou, +is'Sp(Ou. )* . (3. 7c)

The rate %' at which quanta are absorbed from
the signal field is

S (t) S s kvt- (s. 1)
vv = —iX'* S p Ou, + iA Sp(Ou, )* . (s. 8)

and polarization specified by the unit vector eo, is
applied in addition to the "pump" field given by Eq.
(2. 7). We assume that the signal-field frequency
v nearly coincides with the atomic resonance fre-
quency, and hence also with the pump frequency,
so that the frequency difference

O'N= —iA+S( Oup+ iAS p(Oup)+ . (s. 9)

The sum of these two quantities, according to Eq.
(3. 7c), is

Similarly, the increase in the rate at which quanta
are absorbed from the pump field is

(3.2)
~e n= O~+~', (s. 10)

is a small quantity. The equations of motion for the
atomic matrix elements, in the resonant approxima-
tion, may then be obtained simply by making the
substitution

xS(t ) -~S(t)+~'S'(t) (3.3)

n(t) =(n+On)+rte 'P"' prt +e""',
m(t ) = (m —On) —pe '~"' —r) *e'P"'

(s. 5b)

(3. 5c)

(s. 5d)

where u, n, and m as given by Eqs. (2. 11) are de-
termined in the presence of the pump field alone,
and 5@0, 5n, 5n, , and g are small constant pa-
rameters. By substituting Eqs. (3. 5) into Eqs.
(2. 9) and (2.3) and making the substitution (3.3),
we find that to lowest order in the signal-field
strength the parameters in Eqs. (3. 5) satisfy the
equations

(-trav

+z*)Ou, + 2i XS,r) =t X'S,'(m- n),
( —ibv+z) Ou —2iX*Sf q=0, (s. 6b)

(-iav+ ~)r, +iX+S(Ou, —iXSpOu = t), 'S'p u+,
(3. Gc)

and

8+6&o+ 2iA. Bo~ n = —2iA. '~op* ) (3.7a)

in Eqs. (2. 9). The parameter X' in this relation
is defined as

X'-=(ep' p„)/SV 2 (s.4)

The effect of the weak signal field on the equilib-
rium solution for the atomic density matrix is to in-
duce small components oscillating at frequencies
which differ by + ~v from the frequencies of the un-
perturbed components, as well as small corrections
in the unperturbed components themselves. The
atomic matrix elements thus have the form

u(t) =(u+Ou, )e '"'+Ou, e '"'+(Ou )*e ""
(S. 5a)

+u(t)=( uO+)u*oe' ' (Ou )*e'"'+Ou e"

f(0) = ~' i~ + ~
I
z

l
(3. 13)

By substituting Eq. (3. 12a) and its complex
conjugate into Eq. (3. 9), we find that

O'VV= ] t —2A. *cp*XSozz*r~+c.c. ] —g'6, %'] .
(3. 14)

and is equal to the increase in the net rate of dis-
sipative transitions from the atomic state ~ 1) to
the state 10).

By solving the three coupled equations (3.6) for
the quantities 5n„hn, and g in terms of the quan-
tities on the right-hand sides and then making use
of Eq. (2. lla) for u, we find the relations

ix'Sp(m —n)[(- iav+ ~)( —ib.v+ z)+-,'iA &v/z ]
f( —i&v)

(3. 11a)

5n =
2i~'S', (m —n)(~*So)'(- i~ v+ 2K')

zf( i&v)-
(3. 11b)

& &p(m -n)A.*So(-H v+z)(-ihv+2g')
zf(-i&v)

(3. 11c)
where f is the polynomial defined by Eq. (2. 17).

The absorption line-shape function 'PV'(v) for the
atom in the presence of the pump field is thus given
quite generally by Eqs. (3. 8) and (3. 11a), in terms
of the parameters defined by Eqs. (2. lib), (2. 12),
and (3. 2).

By solving the Eqs. (3.7) for the quantities Oup,
(Oup)*, and On in terms of the quantities on the
right-hand sides, we find, with the aid of the re-
lation (3. 8),

[-2t~'S;(~z+-,' n')q++ 4t~' *SP (&Sp)'q

2tzS,z ~'], (3. 12a)

On=
( )

] I —2A. +Sp+Abpz+q+c. c. ]+ lz

(3. 12b)
where f(0), according to Eq. (2. 17), is just
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Thus the increase 6n in the population of the up-
per atomic state and the increase 6W in the rate
of absorption of quanta from the pump field are
given by Eqs. (3. 12b) and (3. 14), respectively,
where rI is given by Eq, (3. llc). It is worth noting
that %",5~, 5 yg, and 5no are all proportional to
the square of the signal-field amplitude 8~, while
Dc', and g are simply proportional to vp.

Before proceeding further with our discussion,
it is convenient to check the consistency of our ap-
proximations by considering the limit in which the
signal-field frequency v approaches the frequency
co of the pump field. In that limit the atom is ef-
fectively driven by a single monochromatic field,
with the slowly varying complex amplitude co~a
+eoboe ' "'. We should therefore expect the
atomic matrix elements to adiabatically maintain
the values which have been found for them in the
presence of a constant pump field, i. e. , to be ob-
tainable by making the substitution

A.go A.80+ A. 80 (3. 15)

in Eqs. (2. 11) and (2. 12a). When this substitution
is made and the resulting expressions are expanded
to second order in bo (and first order in harmonics
of ~v), it is found that the atomic matrix elements
indeed have the form givenby Eqs. (3. 5), where
the small parameters 6z„g, 5zo, and 6 n are
given as

x,='-.'(m-n)~n'(n'+'~)/f'" lzl'. (3. 18d)

For the case of very intense pump fields exactly
on resonance (b,"= 0), we find that the value for
'N'(v) given by Eqs. (3. 8) and (3. 11a) is well ap-
proximated for general relaxation coefficients by
the relation

W'(v) = I z''() I'(m —n)Q'
K

( (kv) —0 (6P) 2«
)zIf(- i~v) I

(m-n)n
K

(3. 19a)

((~~)'-~'I((~~)'-2«"/")
)If(-i&v) I'

(3. 19b)
for D(d= 0 and 0» K, K'. The denominator
in these relations, according to Eqs. (2. 20), is
given approximately by the relation

lf(- ~ ) I'=H' )' "'][(~ -")"-.'(" ')']
'[(~v+0) +g(K+K) ]. (3.20)

The function'W'(v) is plotted for z'=g, bu)=0,
and Q= 5K in Fig. 1.

A noteworthy feature of the function%'(v) as
given by Eq. (3. 19b) is that it is negative for values
of ~v —= v —~ satisfying the condition

2vz'/0 &(~v) &0 (3.21)(3. 16a)

(3. 16b)

6n„= iX'$()(m -n)~z/f(0),

6u = 4i z'8(m —n)~'(A*So)'/z f(0), This interval of signal-field frequencies thus cor-
responds to stimulated emission rather than to
absorption, and the signal field is consequently
amplified rather than attenuated by its interaction
with the strongly driven atom.

As a means of discussing the question of energy
balance in the process under consideration, let us
evaluate the increase O'VP in the rate of absorption
of quanta from the pump field and the increase
Kpz in the rate of energy-dissipating transitions,
in the limit described by Eqs. (3.19). We find from
Eqs. (3. 14), (3. 12b), (3. llc), and (3. 19a) that
these quantities are well approximated in the limit
in question by the relations

( —w)A —(~v) fP(~) —4«'
)K I f( i~v) I'-

(3. 22)

I ~'8o I'(m —n)~
K

If( i~v)I-(2z' —')(av)' —3n'z'(av)' —20'g"
]!

(3. 23)

M, = (m n)n"'/n-"!. l', (3. 18a)

xo= —(m-n)n'~~~/n" z l', (3. 18b)

M ='(m-n)~(I "~/" ) II'~"("'+ lzl')« lz ]

(3. 18c)

fOr 4~= 0 and 0» K, K

Except for very small values of ~v, the quantity
Khn in the limit we are considering is small com-

q = 2x'So'(m- n)~'X*B*o/f(0), (3. 16c)

6~o=-8il~'~o l'(m-n)«'z»o/! f(0)]' (3 16d)

6 n= —2
l

x'h ',
! '(m -n)~'(z' f"—'!z l')/[f(0)]'.

(3. 16e)
These are exactly the values given by Eqs. (3. 11),
(3. 12), and (3. 8) in the limit ~v-0.

The absorption line-shape function%" (v) as given
by Eqs. (3. 8) and (3. lla) may be expressed in the
case of the strong collision model of atomic relaxa-
tion (K = K) in the form

Mo —No'v M, —N, (~v+0')
(EV) +K (kv+0) +K

M B (~u-A')I (~ (7)-.
(~v —0) +K

where the parameters Mo Np M„and N, are given
in terms of the quantities defined by Eqs. (2. 12) and
and (2. 19) by the relations
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FIG. 1. Signal-field ab-
sorption line-shape function
for an atom driven exactly on
resonance by a pump field for
which Q = 5w. The negative
values of the absorption func-
tion represent stimulated
emission, i. e. , amplification
of the signal field.

IV. CORRELATION FUNCTIONS FOR ABSORPTION AND

SPONTANEOUS EMISSION

Further discussion of the absorption of radiation
by the driven system under consideration is greatly
facilitated by formulating the problem of absorption
in more general terms. The rate of absorption of
energy from a weak perturbation may be expressed
quite generally in terms of a certain atomic corre-
lation function, which is evaluated in the absence
of the perturbation. Let us introduce the operators

a—= Io)(1 I
a =

I
1)(O (4 1)

in terms of which the atomic matrix elements may
be expressed as

n=(a),
n=(a'a),
m = (aa') .

o.*= (a'), (4. 2a)

(4. 2b)

(4. 2c)

The absorption line-shape function may be ex-
pressed in terms of the correlation function

pared either to VP' or to 5~. The latter two quan-
tities, as given by Eqs. (3. 19a) and (3. 22), thus
obey, in accordance with the energy-balance equa-
tion (3. 10), the approximate relation

(3. 24)

throughout most of the frequency interval in ques-
tion. It is clear from this relation that the ampli-
fication of the signal field in the frequency interval
described by Eq. (3. 21) occurs primarily as a re-
sult of quanta which are transferred to the signal
field from the pump field. (For I av ~

& 0, it should
be noted, the reverse process occurs: The signal
field is attenuated, and the rate of attenuation of the
pump field is correspondingly reduced. )

g, (t) = (I a(t), a j ) (4. 3)

%'( )=
I

x'8', I'J'" dt '"'g, (t),
and hence satisfies the integral relation

J~'(v)dv =»
I

&'&,'I'(m-n) .

(4. 4)

(4. 5)

The Heisenberg expectation value in Eq. (4. 3) is
evaluated in the presence of the pump field alone.

It is convenient to express the function g, (t) as

g.(t) =gg(t) -g,(t),
where

g, (t) =- ( a(t)a ),
g, (t) -=(ata(t)) .

(4 8)

(4. 7)

(4. 8)

g, (t) = n ~„.(t)+ n+&.„(t), (4. 9)

where the functions 'LL(t) are the same functions
that appear in Eqs. (2. 14).

The function g, (t) defined by Eq. (4. 7) is given
in the Markoff approximation by the expression

g~(t)='L (t)(aa )+'Ll„+(t)(a a ) +'LL „(t)(a aa )

+ LL „(t)( aa a ) = m'lL (t) + u * 'LL „(t) ,

(4. 1o)
where the latter relation follows from Eqs. (4. 2)
and the identities a a = 0 and a aa = a .

By substituting Eqs. (4. 9) and (4. 10) into Eq.

The function g, (t), the Fourier transform of
which is proportional to the emission spectrum
for the pumped atom for frequencies near ~«, has
been evaluated separately for the cases of radiative
and collisional relaxation in Befs. 1 and 2, respec-
tively. The method, which is based on the Markoff
approximation, leads directly to the relation
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~'(v)=2
l

~ ~o
l

Re[g,(-tv)], (4. 12)

where g, (s), the Laplace-transform function of

g, (t) [defined by a relation similar to Eq. (2. 15)]
is given, according to Eq. (4. 11), by the relation

g,(s) = (m-n) it (s)+ n*['ll „(s)—%i (s)] .
(4. 13)

By substituting Eqs. (2. 16) into this relation and
then making use of the resulting expression in Eq.
(4. 12), we find, with the aid of Eq. (2. 11a), exactly
the value for%"'(v) which is given by Eqs. (3. 8)
and (3. 11a).

The absorption spectrum we have found is repre-
sented by a function quite different in form from

(4. 6) we find that the atomic correlation function
which determines the absorption spectrum is given
by the relation

g,(t)=(m-n) ~..(t)+a+[~.„(t)-&..(t)] .
(4. 11)

We may note that the integral relation (4. 5) follows
directly from this relation and the identities
%l, (t = 0) = 1 and 9, „(t= 0) =M„(t= 0) = 0, which may
be obtained by evaluating Eq. (2. 14) at t = 0.

The absorption line-shape function as given by
Eq. (4. 4) may be expressed as

the function which represents the emission spectrum
evaluated in Refs. 1 and 2. This difference is most
remarkable in the limit of intense pump fields,
where the absorption line-shape function takes on
appreciable negative values within a wide range of
signal-field frequencies. The negative values are
the result of the contribution of the term propor-
tional to n in Eq. (4. 13), which, although it makes
no net contribution to the integral in Eq. (4. 5),
importantly modifies the shape of the absorption
spectrum.

It is worth noting, finally, that the general cor-
relation-function approach described in this section
enables us to see that the range of validity of our
analysis extends well beyond the simple model we
have discussed. Inasmuch as the signal field plays
no direct role in our more general treatment, our
results should apply whenever the two levels in
question are driven by a suitable pumping mecha-
nism. In the case in which the pump field induces
transitions by means of two-photon processes, for
example, it has been shown that the atomic density
matrix obeys equations analogous to Eqs. (2. 9).
It follows therefore that in this case the absorption
line-shape function (evaluated for the case of one-
photon absorption, i. e. , for v = ~,0) is similarly
related to the function we have found.
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