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A multiconfiguration Hartree-Fock method has been used to compute low-lying autoionization
states of Li and Na . The electron-detachment potentials for these systems have also been
computed and agree well with a similar calculation by Weiss. The present formulation per-
mits a simple construction of projection operators used in determining autoionization states
for e -alkali-atom systems. For Li three autoionization states have been found below the
ls 3& level and four below the 1s 3p level. Only one autoionization state is found for Na .

I. INTRODUCTION

The existence of states of compound nuclei made
up of an excited target nucleus and an incident nu-
cleon has long been known to give rise to the strong
resonances found in nucleon-nucleus elastic scat-
tering. Similar phenomena existing in atoms such
as the sharp maxima in optical absorption and the
resonant peaks of electron-atom scattering cross
sections can be equally well explained by the com-
pound or autoionization states in atoms. The cal-
culation of energy levels of these states of the com-
pound atom (relative to an absolute energy scale)
js difficult since the accurate computation for the
energy of systems with two or more electrons is
known to be tedious. However, recently developed
techniques for calculating the ionization potential
(IP) and electron affinity (EA} of atoms can be used
to compute these levels relative to the atomic en-
ergy levels.

The calculation of the EA itself used to be a diffi-
cult task, because the EA is the small difference
between two comparatively large number, the atom-
ic energy Eo and the ion energy E . An accurate
result can be obtained only if Eo and E are compu-
ted with a high degree of precision or if Eo and E
are known to be computed with the same absolute
error.

Weiss' has used a method of superposition of con-
figurations (SOC} to calculate the detachment po-
tentials for alkali ions and other atoms. The method
consists of writing a trial function for the N-elec-
tron system as a linear superposition of terms
which include the ground-state Hartree-Fock func-
tion and a number of virtual excited orbitals. The
calculation of the energies is carried out in a man-
ner which produces approximately the same error
in both the N and the(N- 1)--electron systems. His
results agree very well with experimental values. '

In the present work we calculate the energies of
the N-electron and the (N 1)-electron systems in-
a manner similar to Weiss. ' The (N- 1}-electron

The present formalism follows closely the analy-
sis of Salmonaand Seaton whichwas applied there to
scattering states of the electron-alkali-atom sys-
tem. Before discussing how configurations of the
(N —1)- and N-electron systems are constructed, we
outline the method used to obtain the analytic sin-
gle-particle states utilized in the mixing.

The single-particle states used here are deter-
mined by diagonalizing (self -consistently) the (N 2)—
electron closed- shell Hartree- Fock Hamiltonian
in the manner of Clementi

where the u', are spin orbitals

(2)u", (i ) = u" (i )y, (i ),
with spatial functions expanded in a set of Slater
orbitals

The lowest orbitals of the appropriate species are
identified as core orbiials and are determined in
a self-consistent fashion. We label the core spin-
orbitals by a, , i =1, . . . , N —2. TheHartree-Pock
Hamiltonian is then given by

@sr' ———V —2Z/r+ V —W, (4)

system is described by a single configuration of
orbitals obtained from an analytic Hartree-Fock
description using a self-consistent V" potential.
The N-electron system is described by a fixed-core
multiconfiguration Hartree-Fock wave function
which uses the same orbitals obtained for the (N-1)-
electron system. This formalism is briefly dis-
cussed in Sec. II. Section III gives the application
of this formalism to obtain the electron-detachment
potentials of Li and Na . In Sec. IV we apply a
projection formalism to compute the autoionization
states for the e -Li and e -Na systems. Conclu-
sions and a brief discussion are given in Sec. V.

II. FORMALISM
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where (N) =PL Q C„„QC(22 S; o —g0)

Vu,"(i)= Q v(a„a,) u,"(i)

N-2
It'u,' (i ) = 5 v( a„u",) a, ( i )

g =1

x Q C(l„l„L;m„m„M)
my mv

Ds(a,a2 ~ ~ ~ a„2u,' u', ) . (9)

v(a&, a~) =2 )chai(r) a„(r)/ir —r
& i

The choice of the V" approximation for the single-
particle states is made for two reasons. First we
desire a reasonable single-configuration repre-
sentation of the ground and excited states of the
(N —1)-electron system andthese are best repre-
sented by the V approximation. Further, as
shown by Salmona and Seaton, the formalism for
describing the N-electron system is materially
simplified if the single-particle orbitals diagonalize
the core Hartree-Fock Hamiltonian.

The procedure used for choosing the Slater or-
bitals to be coupled in Eq. (3) is as follows. Al-
though we self-consistently diagonalize in the V" s

approximation, the set of Slater orbitals which we
use is that set obtained by Clementi in the V"
approximation, augmented with additional Slater
orbitals to better represent the lowest-lying ex-
cited states of the valence electron. For those
angular momentum species not included in the
Clementi calculation we have simply chosen a rea-
sonable basis set and in some cases have optimized
parameters to obtain low-lying excited valence
states of these angular momentum species. In the
present calculation only states with symmetry / =0,
1, 2 have been included.

The ground state and lowest-lying excited states
of the (N —1) electron system are represented by
the single configuration

The single-particle states generated from Eq.
(1) diagonalize the Li' Hartree-Fock Hamiltonian.
The Slater basis functions of Eq. (3) take the form

P„„(~)= „N,r"~ ' e- "~" (10)

where N» is a normalization factor and the param-
eters n~, y~for a given angular momentum species
are listed in Table I. We have used 10(8, 5) or-

TABLE I. Parameters of the Slater basis functions.

L=O

Here & is the normalization and the C',„aremixing
coefficients. The states chosen to be coupled are
such that + is an eigenstate of L, S, M, M, =O

and v=( —1) . In addition we impose u" e u" for
triplet states. Equation (9) can readily be made
orthogonal to Hartree-Fock representations of the
ground state and lowest-lying excited states of the
(N —1)-electron system obtained above by simply
restricting the summations over y and v to exclude
those states desired. Thus we see one of the ad-
vantages of using the same single-particle states
for both the (N 1)- and-N-electron systems.

The calculation of the total energies of the (N —1)-
and N- electron systems is carried out in a standard
fashion, by evaluating (@"(N 1) I H(N -1) I

+"(N—-1)}
and (+"(N)IH(N) I 0 (N) }, respectively.

III. EA's OF Li AND Na

4'" (N - 1}=D s(a, ay ~ ~ ~ a„2u," ) (8)

where D&, is a determinental function for N- 1
electrons. Here the a& are the core spin-orbitals
and u", 4 a& is the single-particle valence spin-
orbital (e. g. , for Li we have a, = 1st, az —-1st, and

u,",=2sk, 2PN, 3sf, . . . ) obtained as described
above. The assumption that the excited states of
the (N—1)-electron system can be represented by
single-particle excitations of the valence electrons
restricts the application to the lowest-lying exci-
ted states. The wave function Eq. (8}is an eigen-
state of orbital angular momentum I.= l» M=m»
spin angular momentum S = 2, M, = o, and parity
v=(- 1)'.

We describe the N-electron system by a fixed
closed core of N- 2 electronswith themulticonfigu-
ration mixing of states of the valence and binding
electron

Li

Na 1
3
3
3
3
3
3
3
3
3

4.707 10
3.50000
2.480 30
l.735 00
1.000 00
0.660 00
0.350 00
0.100 00
0.050 00
0.001 00

11.000 00
12.368 50
8.02540
5.705 90
3.63100
2.15370
1.108 10
0.708 30
0.350 00
0.10000

Sp Xk A'

2 3.50000
2 1.800 00
2 1.000 00
2 0.71109
2 0.497 82
2 0.333 00
2 0.100 00
2 0.001 00

5.500 00
8.393 70
5.420 60
3.56460
2. 283 30
1.000 00
0.500 00
0.333 00

2.500 00
1.20000
0.600 00
0.33300
0.100 00

3.200 00
1.500 00
0.700 00
0, 333 00
0.100 00
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TABLE II. Single-particle eigenvalues E„in the V
approximation.

tions for the outer two electrons which included

yp(S) =2s, 2s3s, . . . 2s8s; 3s, . . . 3s8s; 4s;
Ll Xa-

1S
2s
3S
4s
5s
6s
7s
8s
9s

10s

2P
3p
4p
5p
6p
7P
8p
9p

3d
4d
5d
6d
7d

—5. 584 72
—0.392 61
—0. 146 93
—0.071 67
—0.032 50
—0.001 00

0. 165 67
1.863 78

10.014 69
62. 979 64

—0. 257 27
—0. 11302
—0. 060 02
—0.001 00

0.037 00
0. 604 14
2. 996 75

16.215 37

—0. 11112
—0.051 75

0.017 57
0. 846 10
6. 218 42

—81.51944
—6.147 36
—0.363 62
—0.140 11
—0.057 31

0.088 20
1.661 61
8.937 12

36.207 18
161.384 48

—3.59437
—0.218 35
—0. 100 45

0.003 03
1.11334
5.907 55

21.209 26
79.891 23

—0.11133
—0.05145

0.06437
1.28819
7.20673

bitals for s(p, d) species. The energy eigenvalues
E„ofEq. (1) are given in Table II. The eigen-
vector associated with the lowest-energy s state is
identified with the 1s orbital and is treated self-
consistently. We label the eigenstates of Eq. (1)
by 1s, 2s. . . 10s; 2P, 3P, . . . 9P; 3d, 4d, . . . 7d in
order of increasing energies. However we note
that only those states nl with n & 4 can be consid-
ered to be reasonable Hartree-Fock approximations
to the hydrogenlike excited states of the valence
electron. Although all eigenstates are localized,
some have energies in the continuum. This is
desirable because it is known that the mixing of
continuumlike states is important to obtain good
energies.

The Hartree-Fock energy for the 1s 2s(2S) con-
figuration of Li is found to be —14.865 44 Ry. This
is to be compared with the Weiss' value of —14.8654
Ry.

The energy of the 'Sgroundstate of Li was com-
puted using Eq. (9) with a mixing of 34 configura-

2P', . . . 2P8p; 3P', . . . 3psp; 4p';

3d, . . . 3d7d; 4d2

Is~3d (~ D) 0.2815
Is 3P (2P) 0.2796

Is 3s ( S) 0.2457

(( p)
Li (&P)
Li ('S)
Li ('D)
Li (3S)
Li (~P)
Li ('S)

0.2776
0.276 I

0.2727
0.27 I8

0.2456
0.2398
0.2286

Li Is 2p(~p) OI353

The energy computed in this manner was found to
be —14.91049 Ry. Taking the difference between
this value and the Hartree-Fock energy of Li com-
puted here, we obtain an electron affinity for Li of
0. 04505 Ry (0. 613 eV) as compared to the value
of 0. 62 eV obtained by Weiss. '

Subsidiary calculation were performed in which
only some of the configurations listed in Eq. (11)
were mixed. We give results for n = 1(2s ), n = V

(2s, 2s3s, . . . 2s8s), n = 14(2s, . . . 2s8s; 2P, . . .
2p8p), and n = 34. The results are presented in
Table III. The contribution to the polarizability of
Li from the 2s state is also calculated to check the
goodness of our single-particle wave functions.
The 2s-2p coupling gives 167.297 which agrees ex-
actly with Karule and Peterkop. ~

We have investigated the Li system in the ~S,
"P, and ' 'D states and find that it does not bind.

For Na we have proceeded in a manner similar
to the Li calculation. The EA obtained is 0.03941
Ry (0.536 eV), which agrees with the value of 0. 54
eV by Weiss. '

TABLE III. Convergence of the electron-affinity of Li.

Electron affinity (Hy)
Li Is 2s( S) 00

1
7

14
34

—0.075 35
().006 57
0.044 90
0.045 05

Li- ('s) -o.o45I

FIG. l. Hartree-Fock energy levels for Li and the
multiconfiguration Hartree-Fock ground state and meta-
stable excited states of Li .
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No ls' 2s'2p 4p ('P) 0.2632
Na Is'2s'2p'3d ('0)0.2523

Na Is'2s22p64s(2S) 0.2235
Na- ('S)

Na ls 2s 2p 3p ( P) 0.1453

Na ls22s~2p63s (2$) Q.Q

Na (' S ) -0.0394

FIG. 2. Hartree-Fock energy levels for Na and the
multiconfiguration Hartree-Fock ground state and meta-
stable excited state of Na .

IV. AUTOIONIZATION STATES OF e--Li AND e-- Na
SYSTEMS

In the calculation of autoionization states, we use
the approach developed by Feshbach, ' and applied
to atomic systems by several other authors.
The projection operator has the form

(12)

where +" are the atomic ground and excited states.
In Sec. II, weexpressedtheorbitalsof the "bind-

ing" electron in terms of the single-particle or-
bitals obtained for the (N- 1)-electron system.
This makes the construction of the projection opera-
tor particularly convenient. By excluding any
excited state from the sum, the "binding" state is
made automatically orthogonal to that state.

Approximations to autoionization states of the
e -alkali-atom systems can be readily obtained in
the formalism used here. The accuracy of the
binding energy (relative to the energy of the ex-

cited valence state to which the additional electron
binds) will be comparable to that obtained for the
electron affinity. As described in Sec. II, single-
configuration Hartree-Fock wave functions can be
obtained for the low-lying excited states of Li and
Na. Equation (9) can be used for the wave function
of the autoionization state if the summation over
y and v excludes the ground-state orbitals and
other excited valence orbitals of energy lower than
that of interest.

In Fig. 1 we show the Hartree-Fock spectrum
of the low-lying states of Li with configuration
1s2n/. Autoionization states below the 1s Bs state,
for example, can be obtained by excluding the or-
bitals 1s, 2s, 2P from the summation in Eq. (9).
In this manner we have obtained several shallow
autoionization states below the 1s Ss and 1s 3p
levels. Elastic scattering calculations by Karule
and Peterkop'~ in the strong-coupling (2s-2p)
approximation have detected no resonances below
the 2p excitation threshold, in agreement with the
present results. However, since they have not
coupled higher excited states the resonances asso-
ciated with the autoionization states obtained here
were not included. The experimental results' for
the elastic scattering of electrons from Li are
suggestive of the resonances near the 1s 3P thresh-
old, but the data are insufficient to be conclusive.

The same method has been used to search for
autoionization states of the e -Na system. We
show in Fig. 2 the only state found for this case,
but it is difficult to say whether this is due to weak-
er interactions or due to the smaller number of
single-particle states with large spatial extent that
are include in the mixing.

V. CONCLUSIONS

We have formulated an analytic multiconfigura-
tion Hartree-Fock method of determining accurate
values for the electron affinity of alkali atoms.
This allows for a simple application of the projec-
tion techniques necessary for the determination of
the autoionization states for the e -alkali system
and the location of these states, relative to the
atomic excited states, can be found with essentially
the same degree of accuracy as the electron-affini-
ty calculation. The detection of these autoioniza-
tion states depends on the widths of the levels, and
we have not attempted to determine values of these
widths in this work.
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The 1/Z expansion method is used to calculate the eigenvalues of the 2p3p P and 2p3d
'& D

states of the helium isoelectronic sequence. The results are compared to variational calcula-
tions for neutral helium. Wavelengths are predicted for a number of transitions originating
in doubly excited states of the heliumlike ions up to Fe xxv . The results for neutral helium
are compared to recent beam-foil experiments and alternative line identifications are made.
The predicted wavelength for the 2p3dBD-2p 3P transition is 3014 A, in close agreement with

the line observed by Berry et al. at 3012 +2 A.

I. INTRODUCTION

The existence of doubly excited states in neutral
helium has been known for many years through
studies of the helium arc spectrum'3 and the en-
ergy-loss spectrum in electron-helium scattering. 3

States such as the 2pnl'3L sequence give rise to
sharp spectral lines since they are prevented from
autoionizing by parity and angular-momentum selec-
tion rules. Recent studies of these states by the
trapped-electron method and beam-foil spectro-
scopy' emphasize the need for accurate calcula-
tions of their positions and radiative lifetimes. In
addition, lines involving doubly excited states of the
heliumlike ions have been observed in solar flaresv
and the solar corona.

The 2p33P state has been studied by several
authors. 9 '2 The most extensive calculations by
Aashamar, ' including mass polarization and rela-
tivistic effects, predict a 2p3 P-1s2p P transition
frequency of 312217 cm ' in slight disagreement
with the old experimental value, 312118 cm ', ~ but

in agreement with the new value of 312 214 cm '. '
The 2P3P 'P states of the helium sequence have been
studied by Drake and Dalgarno. "

In this paper, the I/Z expansion perturbation
method is applied to the bound 2p3d' D and 2p3p P

II. 1/Z EXPANSION MlETHOD

An accurate and efficient method of generating
wave functions for the entire helium isoelectronic
sequence is provided by the Hylleraas-Scherr-
Knight variation-perturbation procedure. ' The
Schrodinger equation to be solved is

where

II= HD+ Z Vi2

(3)

I'ts = I/&ta (4)

The unit of energy is Z a.u. , and the unit of length
is Z a(l. Introducing the perturbation expansions

states of the helium sequence. Wavelengths are
predicted for transitions originating from the doubly
excited states for the heliumlike ions with Z~ 26
(Fe xxv ). Variational calculations for neutral
helium are presented as a check on the accuracy of
the perturbation expansion. The results suggest
that the line observed by Berry et al. at 306+1 A
is the 2p3d'D-ls3d'D transition (X= 305.4 A).


