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The normalization of the electron density associated with approximate variational solutions
of the Thomas-Fermi (TF) equation for neutral atoms is discussed, and the applicability of a
procedure of Anderson, Arthurs, and Robinson for obtaining the closest approximation is in-

vestigated.

It is concluded that using single-parameter trial functions, the normalization re-

quirement for the electron density cannot be strictly satisfied when the numerical value of the
parameter is determined from the minimization of the difference between the complementary

upper and lower bounds to the exact TF energy of a neutral atom.

It is also concluded that,

using multiple-parameter trial functions, this procedure is applicable since the numerical
values of all but one of the parameters can be found from the minimum between the comple-
mentary bounds without violating the normalization requirement.

I. INTRODUCTION

Recently there has been a renewed interest in
obtaining approximate analytical solutions of the
Thomas-Fermi (TF) equation' both for neutral®?
and charged! atoms and for neutral diatomic mol-
ecules.>® The theories behind these approximate
solutions all make use of various variational prin-
ciples.

By resorting to variational principles, it has been
possible to eliminate a shortcoming of the original
TF theory. In the case of a neutral atom, this
shortcoming consists in the fact that the exact solu-
tion of the TF equation is associated with a radial
electron density which decreases as the inverse
fourth power of the distance from the nucleus,®
whereas the Hartree approximation,” the quantum-
mechanical equivalent® of the TF theory, gives an
exponential decrease. By making use of the flexi-
bility in imposing boundary conditions in a varia-
tional approach, i.e., by prescribing how the ap-
proximate solution of the TF equation should go to
its assigned value at infinity, versus only requiring
what the value of the solution should be at infinity,
it has been possible to obtain approximate analyt-
ical solutions®® which are associated with radial
electron densities that decrease exponentially with
the distance from the nucleus of an atom.

In calculating specific physical quantities for a
system, such as a neutral atom, on the basis of
approximate solutions of the TF equation, the cor-
rect normalization of the electron density of the
system is important (see Appendix A). It appears
that a recently suggested® variational approach for
obtaining the closest approximation to the exact
solution of the TF equation (for neutral atoms)
cannot be applied to one-parameter trial solutions
without violating the normalization requirement for
the electron density. The purpose of this paper is
to comment on this point. The discussion of the

o

normalization problem at this time is believed to

be needed, since calculations using a one-param-
eter function associated with an only approximately
normalized electron density have already appeared!®
in the literature.

II. DISCUSSION

Complementary variational principles for a TF
atom were first formulated by Firsov'* and later
generalized by Arthurs and Robinson'? for a system
containing an arbitrary number of electrons and
nuclei. Restricting attention to a neutral atom, the
complementary variational principles establish an
upper bound J and a lower bound G for a particular
approximate solution of the TF equation in such a
manner that the exact TF energy E of the atom lies
in the interval

G<(u/ZHE<J . (1)

In Eq. (1), Z is the atomic number, u=3(3)?/3;2%/3
23 45, where ay is the first Bohr radius, and
E=-0.7687 Zz"% ¢f/ay, where ¢, denotes the mag-
nitude of the electronic charge.

The complementary bounds G and J are defined
as (using opt for optimum)

G= G(lpc)opt ’ (2a)

and

s
J'J<dx ) (2b)

where G(¥;) and J(dy,;/dx) are given'? by the ex-
pressions

T 1/dve\?® . sz -1/2
G%)—L [‘z(ﬁ) —2pd/2y ]dx

‘ (3a)
and
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In Egs. (3a) and (3b) the functions i and 3, are
trial functions depending on a number of appropri-
ately chosen parameters, i.e.,

ZpG:zPG(Cf’Cg’ ey C:G) (4a)

and

sz:sz(CIJ9 CzJ, ..

where i andj need not be equal.

The variational principle for calculating the lower
bound G, Eq. (3a), seems to have been first given
by Wesselow,!® and independently by Fliigge and
Marschall,* while that for the upper bound J, Eq.
(3b), was first formulated by Firsov.

The variational principle for the lower bound G
has an immediate connection with the TF equation.
If the negative!® of the integral of Eq. (3a) is sub-
stituted into the Euler-Lagrange equation,®

. €Y, (4D)

9 ) 9

EPRRE T
where
1 [(dpg \? -
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then the TF equation

a%e _ ¥3"*
Tt T AT
results. The variational principle for the upper
bound J does not have such a direct interpretation.
Also, while the variational principle for bound G

is exact, that for bound J is only approximate, in
the sense that in obtaining Eq. (3b) certain terms
have been neglected.?

Once trial functions, such as those in Eqs. (4a)
and (4b), are chosen and the integrals in the varia-
tional principles, Eqs. (3a) and (3b), are evaluated,
the quantities G(y;) and J (dy,/dx) are functions of
the parameters in ), and 3, only, i.e.,

6Wg)=6(c¢, ¢, ..., C%) (5a)
and
J(%%L):J(C{, cd,...,c/). (5b)

From Egs. (5a) and (5b), the optimal values of
the bounds, G(@¥g).y: and J (dy,/dx),,, , are deter-
mined by finding those values of the parameters
which satisfy the set of simultaneous equations

aG(cf,cs, ..
aC?

., C%)

=0, +o s
(6a)
aG(c§, ¢§, ... ,CF)

8C? =0
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and
aJ(cy, aCi’:}...,cf) 0, s
! (6b)
aJ(C{, CY, ..., Q:o

FYoH

Calling the parameters which satisty Egs. (6a) and
(6b) optimal parameters, and denoting them by
cf°, ¢, ..., ¢ 00, 6%, ..., Cj°, the op-
timal trial functions ., and ¢;, are expressed
by

Yeo=¥s(CE?, CF°, ..
and

bro=0,(C{°, C3°, ..., CI°). (o)

Using Eqs. (7a) and (7b), it follows that the op-
timal bounds, Eqgs. (2a) and (2b), can be written as

., C%) (72)

G=Gg)op = Glg,) = G(CF?, C§°, ..., C°°)
(8a)
and
d d
J:J("d_il'>opt =J('jdwxi,;>==](cimy go’ ’ C}Ta)’
(8b)

where, in general, even if i=j, C§°+C{°, etc.

So far we had two different functions for calculat-
ing the two different bounds, G and J. We can,
however, choose one trial function ¢ for calculating
both bounds by requiring that

be=s=¢ . (9)
In this case, we can write the trial function as
(1):(],')(61,62,-“,_0—,3), (10)

where C,, Cs, ..
parameters.

Repeating the previous discussion with the trial
function in Eq. (10), one obtains G(¢)=G(C;, C,,
..., C,) from Eq. (3a), and J(d¢/dx)=J(Cy, Cs,

., C,) from Eq. (3b). Making use of Eq. (6a),
one obtains the optimal parameters C{°, C5°, ...
C¢° for bound G, and by making use of Eq. (6b),
one obtains the optimal parameters C{°, C3°, ..
CP for bound J. With these symbols one can re-
write Eq. (1) as

G(C¢°, e, ..., Cs)<(u/Z®)E
<J(C{°,C3°, ..

., C, are appropriately chosen

)

°

., CJo).
(11)

It is evident from Eq. (11) that, with a particular
trial function ¢, one can use either the variational
principle for bound G, or the variational principle
for bound J, to obtain the approximate solutions

bgo=0(C5°, C§°, ..., C5°) (12a)
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or
$so=0 (C{*, CF*, ..t , CF°), (12b)

to the exact solution of the TF equation. Anderson
et al. )’ however, suggest that the closest approxi-
mation to the exact solution is neither ¢, nor ¢,,,
but the one that can be determined by minimizing
the difference between the complementary upper
and lower bounds J and G, i.e., by finding those
parameter values which make the expression

H(¢>)=J(%> - G(9) (13)

a minimum. Since
G(p)=G(Cy, Csy..., Cp)

and

J('@) :J(619 a‘2’ ey Ek) ’

dx
it follows that H(¢), Eq. (13), can be written as
H((P):H(El, 62, vee y Ek) . (14)

Using Eq. (14), we find the minimum of H(¢) by
solving the set of simultaneous equations

8H(Cy, Cp, ..., Cp)

=0,

_ _ (15)
,0H(C, Csy ... Cp)

=0.
ack

Calling the parameters which result from Eq.
(15) optimal parameters, and denoting them by
Cle, Cfe, ..., CH° we express the optimal trial
function by

b= (T, TU, ..., TH). (16)

With these notations, the smallest difference be-
tween the bounds is given by

H=H($)op = H(d ) = HICT, TF°, ..., CF°).
(17)
Since, in general, C#+#C¢°+C{°, etc., the
bounds G(C¥°, C#°, ..., CH#)and J(C¥°, CT¥°,

, C°) are no longer the optimal lower and up-
per bounds G(C¢°, C§°, ..., CS°) and J(C{°, C3°,
..., CJ°, respectively. .

Anderson et al. ® demonstrate the procedure of
obtaining ¢, by choosing the one-parameter trial
function

d=00)=A+yVx)e ™™ (Ci=v), (18)

which has been suggested by Roberts.® [The ap-
proximate solution ¢(y), Eq. (18), has been ob-

tained by Roberts by making use of a normalized
approximate electron density of Jensen!” and the
complementary bounds of Firsov.!!]

5
Substituting Eq. (18) into Egs. (3a) and (3b),
Anderson et al.® find that the quantities
o)== 452 =2 [L+yy)e™ | 2ay
(19a)
and
J<d¢(7)) = _25_)5_ 2-7/3,)/4_ _1'7_6_,)/2 (lgb)
dx
have their optimum values of
G(¥%°) = - 0. 6810 (e2/ay) (19¢)
and ‘
J(y7%=-0.6699 (e¥/ay) , (19d)

when the parameter y has the values of y°°=1. 905
and v/°=1. 750, respectively.

Next, Anderson et al.® find that H(y7°)=0.0148
%(e&/az) when, from Eq. (15),

yH0=1.7822 .
From the fact that
H(y") = (") - G(y"%) = 0. 0148(e}/ a)

is smaller than either

H(y%%)=J(y°°) - G (y°°)=0.0341(e¥/ap)
or

H(y'%)=d(y7°) - G(y") = 0. 0159(e}/ a) ,

Anderson et al.® conclude that ¢ (") is a closer
approximation to the exact solution of the TF equa-
tion (for a neutral atom) than either ¢(y°)or ¢(y”).

In this author’s view none of the three possible
approximate solutions is rigorously normalized,
since all three of them are one-parameter func-
tions. The point that one-parameter functions,
determined from variational principles, cannot be
rigorously normalized has been raised earlier,?
but Anderson ef al.® seem to have taken the contrary
view.

In order to show that ¢ (y%%), (%), and ¢(y"°)
are, indeed, not rigorously normalized, let us
start out with a general discussion of the normali-
zation problem.

Introducing the dimensionless variable x by

x=4(22/971)Y 3 (v/ap) ,

where 7 is the distance from the nucleus, in units
of the Bohr radius az, the TF theory' for a nucleus
of charge Ze, surrounded by N electrons leads to
the (nonlinear) differential equation

¢ (x)= p(x)* 3/x" 2, (20)

where the double prime on ¢ denotes the second
derivative of ¢ with respect to x. For a neutral
atom, N=Z, Eq. (20) is to be solved! with the
boundary conditions
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$0)=1, (21a)
$(2)=0, (21b)
¢'(©)=0, (21¢)

where the prime on ¢ denotes the first derivative
of ¢ with respect to x. The above boundary condi-
tions, as shown by Gomb4s,® assure that the nor-
malization condition

[pav=2, (22)

where p is the electron (number) density, and the
integration is over all space, is satisfied.

When Eq. (20) is solved exactly,(by a numerical
procedure'®), then p can be expressed either as

pr=(Z/4mu®) "’ /x) (23a)
or as
pr=(2/4mu®) (¢/x)*' %, (23b)

where the subscripts L and R on p refer to the left-
hand side and right-hand side of Eq. (20), respec-
tively.

Obviously, with the exact solution of Eq. (20),
the normalization condition in Eq. (22), which can
also be written (since we have spherical symmetry)
as

41rf0°°p ridr=2, (24)

is satisfied both for p=p; and for p=pg. In the
case of the exact solution of Eq. (20), as shown by
Gombéas,'® the normalization condition in Eq. (24)
is equivalent to the boundary condition in Eq. (21c).
For the exact solution of Eq. (20), therefore, the
boundary conditions in Egs. (21a), (21b); and (21c)
automatically guarantee the normalization of the
electron density p.

In the case of an approximate solution ¢, to ¢,
however, Eq. (20) becomes

¢;1z¢2/2/x1/2 ,
and the quantity
—¢2/2/x”2

is a function of x. In this case the equivalency of
Egs. (23a) and (23b) is lost because A#0. This is
true for any approximate solution ¢,, without re-
gard to the number of parameters it depends on.
This fact is also responsible for a loss of the
equivalency of Egs. (21c) and (24) since the proof, '®
that one follows from the other, was based on the
equivalency of Eqs. (23a) and (23b). This means,
that unless additional steps are taken, so that Eq.
(24) is satisfied with both p=p; and p=pg, the ap-
proximate solution ¢, satisfying Egs. (21a)-(21c),
cannot be normalized. That this is so can be seen
by writing down the explicit expressions for Eq.
(24). Using Eqgs. (23a) and (23b), we find that

a= gy
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4nf(]prrzdr=Zf()wx¢;'dx

=Z [x () = py() + ¢,(0) ] (252)

and

4ﬂfowa1’2dr=Zfowxl/ngi/zdx . (25b)

From inspection of Eq. (25a), using Egs. (21a)-
(21c), it is seen that the quantity in the square
brackets has the value of unity and, therefore, the
normalization condition with p=p; is always satis-
fied. This is true for any approximate function
¢4 regardless of how many parameters it depends
on.

From an inspection of Eq. (25b), however, one
concludes that the normalization condition with p=ppg,

fomxl/%i’zdx:l , (26)

can only be satisfied for special values of the pa-
rameters on which ¢, depends.

Consequently, if ¢,=¢(y), as given in Eq. (18),
then the normalization requirement in Eq. (26) can
only be satisfied either with a unique value of v,
let us say vV, or perhaps with a possible “spec-
trum” of values of y, letus say »*, y’, .... For
the present, we assume, that there is only one
unique value of y, v =+", which satisfies Eq. (26).
(For a discussion of the possible existence of a set
of such values of v, y=9%, y=y7, ..., see Ap-
pendix B), If y" is determined from Eq. (26), then
no undetermined parameter is left in Eq. (18), and
no use can be made of any of the three variational
principles discussed earlier. Conversely, if the
optimal value of y is determined either from the
variational principles for the bounds G and J, or
from their minimum H, then one cannot expect that
Eq. (26) is satisfied unless by coincidence y°,
y7°, or "9 happens to be also y¥. This, however,
is not the case and, for this reason, ¢(y¢°), ¢ (%),
and ¢(y”°) are not associated with a normalized
electron density.

Numerical integration of Eq. (26) leads to the
values

fo“’ X2 p(y%°=1,905)/ 2 dx=0. 9382 ,
fo” %2 ¢ (y7°=1.750)* 2 dx=1. 210, (27)

fo” xM2p(H0=1.1822)2dx=1.146 ,

which clearly show that, contrary to the assertion
of Anderson et al.,® the one-parameter function
¢(y) is not associated with a normalized electron
density, regardless which one of the three varia-
tional principles is used to fix the value of y.

Inspection of Egs. (27) also shows that Eq. (26)
may be satisfied when

’}’H0<YN<‘VG° or ,},Jo<,yN<,yGo,
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but in this case no use can be made of variational
principles.

For a multiple-parameter function, the finding
of the extremum of either G, J, or H can be carried
out with the simultaneous consideration of the
normalization requirement. This procedure was
followed earlier by the author? using the four-
parameter trial function

¢=o¢la, b, a, B)=(ae **+ be™*)?, (28)

and the variational principle for G in Eq. (3a).
This resulted in the approximate solution ¢ (2%,
bGos’ aGos’ BGos) where

. a%%=0.7111,
5%9s=0. 2889,

a®s=0.175,
B¢ =1.6625 .

(29)

In Eq. (29) the s on the superscript Go means that
the optimal values of the parameters have been
obtained not only from Eq. (6a), but by the simul-
taneous consideration of Eq. (6a) and Eq. (26),
i.e.,

fow % ¢(a, b, a, ) 2dx=1. (30)

The trial function in Eq. (28) is a four-parameter
function, but not all four parameters are indepen-
dent since by virtue of the boundary condition in
Eq. (21a) it follows that a+b=1. Consequently,
one has to determine the optimal values of only a,
a, and B. The optimal values for these param-
eters, displayed above, have been obtained by a
numerical procedure. For numerical calculations
it was convenient to introduce the variable = 8/a,
so that the task was the finding of the extremum of
G(a, n, a). This has been done in the following way.
First a value for o was picked at random. Then a
value for » was picked. Finally, Eq. (30) was used
to find that value of a with which the normalization
condition is satisfied. This was followed by picking
different values for », in succession, and by the
determination of the corresponding a values. When
those values of a and n were found which made
G(a@,n,a) a minimum, with the fixed a value, then
n has been kept constant and the value of a has
been modified, in succession, and new values for
a were computed from Eq. (30). This further low-
ered the magnitude of G (@, n, ). This cycling has
been repeated until the minimum of G (q, n, @) has
been found which corresponds to the parameter
values displayed in Eq. (29).

It has been necessary to dwell on this procedure
at some length, since finding the minimum of
G(a, n, a) without the simultaneous consideration of
Eq. (30) would result in a different set of param-
eters, say a%, b°, a®, 8¢, and the approximate
solution ¢ (a%, ¢, a®, %) would not satisfy Eq.
(30).

In summary, we can say that for an m-parameter
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function, the finding of the extremum of either G,
J, or H can be carried out with the simultaneous
consideration of the normalization requirement,
and one can obtain the optimal values of (m ~1) pa-
rameters from any of the three variational prin-
ciples and find the value of the mth parameter from
the normalization condition.

Anderson et al.,’ using the parameter values in
Eq. (29), also calculate

(2%, %, a®%, %)= ~0.5728(c}/az) ,

(31)
G(a®%, b8, wCos, BCo%)=-0.6816(c/ay) ,
and from these values they find that
J -G=0.1088(e3/ap) . (32)

They compare Eq. (32) with the corresponding
quantity from the trial function in Eq. (18), i.e.,
with

J = G=J(y%) - G(»%°)=0.0341(c%*/a,) , (33)

and conclude that the solution in Eq. (18) is a better
approximation to the exact solution than the approxi-
mate solution in Eq. (28). Apart from the fact that
Eq. (18) is associated with an electron density which
is not strictly normalized, while Eq. (28) with one
that is strictly normalized, it is doubtful that such

a comparison is very meaningful, since the bounds
J (a®°, p%°s, @%, g%°%) in Eq. (31), and J (¥°°),

in Eq. (33), are not optimal bounds.

If we have a number of approximate solutions ¢,
¢z, P3, ..., each depending on any number of pa-
rameters, then it is a meaningful question to ask
which one of these functions is the best approxima-
tion to the exact solution of the TF equation. Should
one obtain the optimal values for each of these func-
tions from the minimum between the complementary
bounds, i.e., calculate

HlaHavHS; ceey

then the best approximation should be the one for -
which the magnitude of H;(=1, 2,3, ...) is the
smallest.

III. CONCLUSIONS

It is concluded, that for multiple-parameter trial
functions, the finding of the minimum between the
complementary bounds, as suggested by Anderson
et al.,? can serve as a procedure for determining
the best approximation to the exact solution of the
TF equation (for a neutral atom), provided that the
normalization condition is simultaneously consid-
ered. It is also concluded, that for single-param-
eter functions this procedure cannot be carried out.

APPENDIX A

The question of novmalization of p. In quantum
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mechanics, using the variational technique, the
expectation value & of a measurable quantity Q of
an N-electron system is calculated from®

Q= [ ¥xQ, Y dr, (A1)

where Q,, is the operator associated with the quan-
tity @, ¥, is a trial function with optimal param-
eters, and dr stands for the volume element of all

coordinates. If the trial function is not normalized,
i.e., if
J¥iv,dar#N, (A2)
then Eq. (Al) has to be rewritten as
a=[v*Q, v, dr/[ viydr. (A3)

When ¥, is not normalized, and instead of Eq.
(A3) only Eq. (A1) is used, then the calculated value
of & is not only in error numerically, but may be
meaningless. That this is so can be seen by choos-
ing

Q=E, and Q. =%,

where E, is the ground-state energy of a system
whose Hamiltonian is 3¢. When ¥, is not normal-
ized, then the calculated ground-state energy E,
might turn out to be lower than the true ground-
state energy, which is not a permissible result.

In the TF theory, the particular physical quantity
& is calculated from

2= [ falo)dv=4n [~ fa(p(n) 72 ar, (a4)

where p is the spherically symmetric electron
(number) density and 7 is the distance from the
nucleus. The detailed form of the function f de-
pends, of course, on the particular quantity £, so
that for two different quantities, €, and Q,, we
have fq, #fqs etc.

Since the electron density p(7) can be expressed
in terms of the solution of the TF equation ¢, and
¢ depends on a number of parameters, it is seen
from Eq. (A4) that the value of & depends on the
variational parameters. Consequently, if these
variational parameters have been obtained with an
unnormalized electron density then, in this au-
thor’s opinion, no significance can be attached to
a comparison of calculated and measured values of
Q.

What an unnormalized electron density means
can also be illuminated from a different viewpoint.
In the TF model, the electrons are regarded as a
perfect gas obeying Fermi-Dirac statistics and oc-
cupying a sphere in phase space of radius P. For
a given atom, i.e., for a given number of elec-
trons, this radius P in phase space is a fixed quan-
tity. An unnormalized electron density now means
that an atom is assigned a volume of phase space
which is not the correct one. Also, since the Har-
tree approximation can be shown® to yield the TF
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approximation, this correspondence can only be
meaningful if the number of electrons is the same
in both cases.

APPENDIX B

The uniqueness of the pavameter vy". One might
ask the question “Is there a proof that there exists
only a single value of y, ¥ =y¥, rather than a
“spectrum” of values of y, y=9%, ¥/, ..., for which
the normalization condition, Eq. (26), is satisfied?”
To answer this question, we follow the procedure
of assuming the opposite of what we want to prove
and then show that it leads to unreasonable require-
ments.

First, we assume that with y=v? the normaliza-
tion integral in Eq. (25b),

an [ oy riar=2, (B1)

is satisfied. Next, we assume that Eq. (25b) is
also satisfied with another value of ¥, y=5', where
y'=y"¥ 4+ Ay, This assumption demands that

4nf0wa(YN+Ay)1fzd'r=Z . (B2)

A Taylor-series expansion of pz(y') in Ay results
in

pr()=pr(y M+ a9 =pply M)+ Dy pr (YY) +- -+,
(B3)

where the prime on pj denotes the derivative of pj
with respect to y¥. If | Ay <y¥, then the above
series expansion, with only a linear term in Ay,
is a sufficiently good approximation to pg(y*). If
| Ay | <", then terms higher than linear in Ay
must also be included in Eq. (B3). This, however,
would only unnecessarily complicate the proof with-
out adding anything to it so that we shall restrict
attention to Eq. (B3).%!

Since the left-hand sides of Eqs. (Bl) and (B2)
are both equal to the same quantity Z, it follows
that

fuwa(V”)rzd1’=f0wa(y”+ ay)riar .
Using Eq. (B3), we may rewrite Eq. (B4) as
Jy ey riar

(B4)

:jo”pﬂ(y")yzdymyfo” orGyMriar. (B5)

If pr(y?) is a continuous function of ¥, which
is a reasonable assumption to make, then pi(y¥)
will also be a continuous function of y¥. If
pR(y¥)#0, then Eq. (B5) can only be satisfied if
Ay=0, which means that »'=y ¥, so that there is
no “spectrum” of values of v, but only a single
value, y=y", which satisfies the normalization
condition in Eq. (25b).

It would appear from Eq. (B5) that the value of
y=v! may still be assumed if pk(y Y =0. This, how-
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ever, is not the case since Eq. (B5) is based only
on the first two terms of the Taylor expansion of

pr(y¥+Ay). I terms higher then linear in Ay are
also taken into account, then integrals of the type

(Ay)™

m! pE (M) ridr, m=2,3, ...

0

would also appear on the right-hand side of Eq. (B5).

The demand that Eq. (25b) be satisfied with y=3*
can now be met only if the derivatives of all orders
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of pr(y¥) with respect to y* vanish which, certain-
ly, is an unreasonable requirement.
Since py is related to ¢, by Eq. (23b), i.e., by
pr(¥) = (2/411%) [, (n)/x]*' 2, (B6)
we can say that Eq. (26) is satisfied only at a single
value of y, y=y", provided that the derivatives of

all orders of pg(y) with respect to v, at y=9", do
not vanish.

lFor a review of the subject (and references) see (a)

P. Gombés, in Encyclopedia of Physics, edited by S.
Fliigge (Springer-Verlag, Berlin, 1956), Vol. XXXVI; (b)
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The proof just given would fail (since the Taylor ex-
pansion is no longer meaningful) in the event that [ Ay |
>y¥  a possibility that cannot be ruled out, a priovi.
Ideally, the proof should further be generalized so as to
cover this latter case, too. A brief reflection, however,
shows that this conceivable lack of “uniqueness’ on the
part of the vy value that satisfies Eq. (26) does not mate-
rially affect the fundamental conclusions stated in the
text in the two sentences just above Egs. (27). Whether
there is just one unique value of vy, satisfying Eq. (26), or
a “spectrum’ of such values, the fact still remains, that
determination of a particular value of v from Eq. (26)
excludes the possibility of making use of any of the three
variational principles discussed. Hence, the conclusions
referred to remain valid in either case.



