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constraints that lead to the elimination of the re-
dundant solutions. The method we propose does not
involve any assumptions on the symmetry proper-
ties of the scattering force; therefore it applies
also to problems not covered by previous re-
sults. ~ ' Inparticular, itapplies alsoto the scatter-
ing in the presence of external fields, where rota-
tional, pari. ty, and time-reversal invariance may
be violated. Our results can be used also for phase

determination in the scattering of electromagnetic
waves by an arbitrary obstacle, and unlike previous
approaches we no longer depend on the assumption
that the scatterer is rotationally or parity invari-
ant.
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A quantum-mechanical unified theory of foreign-gas pressure broadening of atomic lines
which includes the impact and statistical theories and duration-of-collision effects is developed.
The model consists of an absorber atom with two internal states u (upper) and l (lower) inter-
acting with a structureless perturber gas via two spherical pairwise additive potentials V„(r)
and V&(r), e.g. , a simple model of an alkali-atom line perturbed by a rare gas. The dipole-
moment correlation function is analyzed in the time domain using Liouville (tetradic) tech-
niques. The correlation function reduces exactly to a two-body form P(t) containing the proper
thermal weight factors. Detailed balance is obeyed and no t A(~ —~p)/kT ) &1 restriction is
required. The impact theory follows from a long-time analysis of P(t). Sum rules or spectral
moments are used to study short-time behavior revealing conventional statistical-theory ef-
fects (including satellite bands) and the important duration-of-collision effects which link the
statistical and impact regimes. The sum rules are expressed as quadratures involving po-
tential functions and the quantum-mechanical radial distribution function. Unified methods
for calculating the total line shapes are suggested: (1) Pads approximants (ratios of poly-
nomials) can be used to interpolate from the known short-time behavior to the known long-time
beahvior; this requires the least computational effort; (2) exact results for this model may
be obtained numerically from the overlap integrals of radial wave functions (Franck-Condon
factors) for the two potentials V„and V&, (3) classical phase (trajectory) expressions are
given which are reasonable approximations in both the impact and statistical limits. A number
of related topics are discussed including diabaticeffects, collision-induced absorption, non-
Lorentzian wings of molecular vibration-rotation bands, and the Condon approximation for the
dipole-moment transition strength vs r. The use of line shapes to probe atomic interactions,
especially in excited states, is emphasized and the suggestion made that experiments be done
over as wide a temperature range as possible with the measured line shapes in computer-
readable form. The entire line-shape problem is described as the study of the spectrum of
an atom-perturber "quasimolecule" (with primarily unbound states).

I. INTRODUCTION

The goal is to present a systematic theory of the
absorption line shape for a single atomic line

(electronic transition) broadened by foreign-gas
perturbers. ' Some discussion will be given of
how the theory can be extended to more complex
cases, including overlapping atomic line shapes
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and molecular lines and bands. The motivation
behind such work is that we would like to be able,
in a deductive fashion, to pass from a knowledge
of detailed interatomic interactions to the line shape
and vice versa.

At low perturber-gas densities single lines ap-
pear Lorentzian in shape with a width and shift
proportional to the perturber-gas density. At
higher gas densities anomalous peaks or "satellite
lines" often appear, which at high densities may
dominate the line. Even if satellites as such are
absent, significant deviations from the Lorentzian
shape are found in the far wings. A similar situa-
tion occurs from molecular bands: When the far-
wing absorption can be isolated, it does not follow
a sum of Lorentzian shapes of the lines in the
band.

The explanation of the Lorentzian shape as be-
cause of the interruption of the radiative or absorp-
tive process by perturber collisions was given by
Michelson and Lorentz' at the turn of the century.
This impact theory was given its first definitive
statement by Baranger. 6 Some of the non-
Lorentzian features of lines were originally ex-
plained by the statistical theories of Holtzmark, '
Kuhn, and Margenau. In the statistical theory
the motion of the perturbers is assumed to be slow
so that an atom emits or absorbs with a frequency
dependent only on the positions of the perturbers.
The line shape is obtained by suitable averaging
over the perturber positions. Molecular bands
have been studied in the context of the impact theory
but there have been few attempts to explain the
anomalous behavior observed in the far wings.

There is one important physical effect that is
missing from both the impact and statistical the-
ories —the finite duration of a collision. In the
impact theory this time is neglected, it is set to
zero. In the statistical theory it is assumed in-
finite; the perturbers are clamped, without motion,
for each configuration in the averaging process.

There has been no quantum-mechanical theory
that attempts to combine the impact and statistical
theories and duration-of-collision effects in a way
that allows practical computations. It is the aim
of this paper to develop such a quantum-mechanical
unified theory. Of the routes open we have chosen
to fashion the theory in terms of quantities that can
be calculated with modest effort: Fourier trans-
forms of interatomic potential energy functions,

sum rules involving the potentials and the atom-
perturber pair distribution function, and impact-
theory width and shift parameters which may be
taken from fits of experimental data or calculated.

One of the major differences between this paper
and others is in its systematic use of sum rules or
spectral moment relations, primarily due to
Kubo. ' '4 These are used to investigate the sta-

tistical theory, duration-of-collision effects, and
in the synthesis of the expression for the total line
shape.

The strong ties between atomic line broadening
and other topics, especially molecular electronic
spectra, are examined. It is felt that the lack of
interplay between these fields in the past has unduly
retarded the development of line-shape theory.

The model and the theory emphasized in this
paper have been deliberately chosen as a com-
promise between the accuracy of the results ex-
pected and the computational complexity involved.
Extensions are discussed which should give more
accurate results with a concomitant increase in
effort. All of these theories ultimately demand
more refined experimental measurements of line
shapes at low to moderate perturber-gas densities—
measurements extending further into the line wings
and taken over a wide range of temperatures.

Section II presents the model and shows that the
calculation can be reduced to the study of a two-
body expression including initial atom-pertuber
correlations. Sections III-V show how the three
effects, impact, duration-of-collision, and the
statistical theory, arise from the basic expression.
Section VI demonstrates the synthesis of the three
features into a single dipole-moment correlation
function and hence, through the Fourier trans-
form, to a single line-shape expression. Discus-
sion is kept to a minimum in Secs. II-VI to avoid
interrupting the flow of the derivation. The full
discussion appears in Sec. VIIA. Section VII B
examines a series of other topics, pointing out the
useful connections that can be established between
line-shape theory and these other areas, especially
between atomic and molecular spectroscopy.

II. BASIC FORMULATION

A. Model and Absorption Coefficient

The physical system envisioned is a very dilute
gas of N„atoms (A) emitting and absorbing radia-
tion, mixed with a denser gas of N distinct
(foreign) perturber atoms (P) which are assumed
structureless. The model is simple but we shall
see that it retains the most important features of
the real problem. Extensions to treat more gen-
eral cases are discussed in Sec. VII.

Each atom is a.ssumed to be stationary (infinitely
massive) and the perturbers assumed independent
of one another. This model is, in effect, " the one
that has been used successfully in past studies of
both the impact and statistical theories. The den-
sity of atoms is assumed low enough that the ab-
sorption of each atom can be treated independently.

The expression for the absorption coefficient'
(in units of fractional absorption/cm) is then N„
times that for a single atom in the volume 'U, viz. ,
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@(f) -=&9 (0) 'P (f)& (2. 2)

A(ar)=4 m[1 —e ~""]~, e '"'&p(0) p(t)&dt
g F00

(2. 1)
The absorption coefficient is essentially the Fourier
transform of the autocorrelation function 4(f) of
the dipole-moment (Heisenberg) operator p of the
atom,

N

+Z Z V, (r„)ln&&ul
f11~ u, l

(2. 9)

Every term in H is diagonal in the atomic-state
subspace so that its eigenstates i 4'& are products
of atomic states [ a& and perturber states ( t/r»; n&

satisfying

1
S((u) -=-

27r .= e '"'4(t)dt

with spectrum S(e),

(2. 3)

[(—8 /2m)v +V (r)]lg„o& =E, , Ig~;n&

(2. io)
The Boltzmann operator from Eq. (2. 9) is

In the above expressions U is the volume and
P-=1/(kT). The thermal average for an arbitrary
operator ~ is

&s& =-Tr(e "s)/Tr(e ")
=Z '(P)Tr(e ~"s) (2. 4)

where H is the total Hamiltonian of the system A
and bath P, excluding the interaction with the radia-
tion field. Z(P) is the partition function.

The theory will be developed for a line corre-
sponding to a transition between two nondegenerate
levels of the atom, l (lower) and u (upper). The
transition is assumed to be a "high-energy" one,
1, 8. ,

N
88 --BH~ g -BH ( )

n~l

Although the Boltzmann operator is written as a
product of Boltzmann factors for the atom and per-
turbers, the atom-perturber correlations induced
by the interaction V (r) are inc'luded. This point
is important because many past treatments have
assumed that the factorization' ' meant an absence
of all (initial time) correlations. The factorization
in the presence of correlation persists in this theory
because the atom's position, fixed at the origin,
is not a dynamical variable. The final assumption
made for the model is that the dipole-moment
matrix element p,„, is a scalar constant. "

P(E„—E,)»1, (2. 5) B. Time-Dependence, Sum Rules

so that inelastic collisions coupling l and u are
neglected. This approximation also applies to
widely spaced vibrational levels in molecules. The
Hamiltonian H includes three types of terms: the
free-atom term

(2. 6)

which uses the projection operators ( n& &o. ( for
the atomic states, the free-perturber terms

The Liouville operator formalism ' ' is used to
handle time dependence, i.e. ,

v (f) = e"' v(0) . (2. 12)

Ls= [H, s] (2. 13)

The Liouville operator L, is defined by its action on
an arbitrary operator 6 by the commutator rela-
tion

a„(n) = (-e'/2m)v„',

and the interaction terms

a„(n) = V„(r„)I
u & &u I

+ v, (r„) I
I & &I

(2. 7)

(2. 8)

or equivalently by its action on the "basis vectors"
) a& &b ( of the Liouville space

(2. 14)

where the potentials are assumed spherical, and
x„measures the distance from the ~th perturber
to the center of the stationary atom. Other terms
in H are omitted according to previous assump-
tions: The fixed atom yields no atomic kinetic
energy term, the high-energy transition leads to
the omission of any off-diagonal inelastic terms
involving (u& &l (, and independent perturbers
means the omission of perturber-perturber interac-
tions V». Assuming the interactions H„p are addi-
tive, the total Hamiltonian can be written using
Hp Hpp + HAp

H& +Hp

aYld

c(f)=&u(o)e ' v(o))

S(~) =&nb(L- ~)u &

(2. iS)

(2. i6)

A notable property of S(e) is the set of sum rules

(In this section and throughout the remainder of the
paper we use frequency units I= 1. ) In the usual
notation in which H is a matrix (two subscripts) L
is a tetradic (with four). Thus, L is distributive
but not associative over products of ordinary quan-
tum-mechanical oper ator s.

The autocorrelation function and its spectrum
can now be written
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or moment relations it generates. The nth mo-
ment is

M„=—f d&o &u "S(~)

or equivalently, from Eq. (2. 18),

M„= (p, L"p&

(2. 17)

(2. 18)

These expressions for the M„are the quantum-
mechanical sum rules' '4 which, in this case, re-
late the spectral moments of the transverse elec-
tromagnetic susceptibility, Eq. (2. 17), to time-
independent thermal averages involving the dipole-
moment operator and powers of the Liouville op-
erator, Eq. (2. 18).

In the time domain differentiation of 4 (t) in Eq.
(2. 15) yields

(2. 19)

and hence the power-series expression
tl

c (t)=Z
n&l

(2. 20)

c (t) =(p, e' '
p, & (2. 21)

reduces exactly to a two-body expression in the
thermodynamic limit:

limN, 0- ~, p =N/'U = const (2. 22)

The autocorrelation function will be cast in the
form

This relation is of critical importance to the theory
developed in this. .paper. It expresses the time-
dependent function 4(t) in terms of the time-inde-
pendent equilibrium averages M„. These relations
are discussed in detail in Sec. IV. One other for-
mal relation which an approximate theory should
attempt to satisfy should be noted, the principle of
detailed balance ' relating S(v) to S( —&u).

C. Reduction to Two-Body Form

The goal of this section is to show that the X-
body expression for the autocorrelation function

where ] (;a& is a product state over all perturbers,
with the atomic state a =u or l as a parameter and
[ a& is the atomic state.

The action of L on an arbitrary operator gives
one of two results of interest for our case,

L
I
~.& &~~

I
= (E. E-+L~) I+.& (+~I, (2 28)

where

L,e =Z [ Hq(n) s- OH( n)] (2. 27)

and the single-perturber Hamiltonian is

H, (n) =- —(v„'/2~)+ &,(r„), (2. 28)

where the index sets above are {a,b t={u, l] or
{f,u).

The correlation function from Eq. (2. 21) is

c(t)=~'(t)) & [(~.
l

e "o[1 e '"o] 'l p,„,l

xe '"0' exp[p&e' ~' —1)„] . (2. 30)

Equation (2. 30) is the basic result of this section.
In this expression the operators L, and the thermal
averages (. . &„a=u, l contain only the interac-
tion of the atom with a single perturber.

The primary difference between our expression
and similar ones that have been derived in the
past ' is the explicit inclusion of the proper ther-
mal factors in the averages. These include the
initial-state correlations which will be important
throughout the analysis. Many further differences
from past treatments will arise because of the
manner in which Eq. (2.30) is evaluated.

x(e.
l

p I
~.' & &~.

' I""p I
~.&]

The dipole-moment operator p. has only one ma-
trix element p,„,= p. ,*„which is assumed independent
of r Wit.h this assumption made 4 (t) canbe written
in the following form (see the Appendix):

@(t)=[1+e "o] 'l p,»l e'"o'exp[p(e' ~' —1),]

C (t) ~ e'"o' exp ( p(e'~~' —1&,) (2. 23)
III. IMPACT APPROXIMATION

LS= [H„,6]+4 [HFp(n)+HAp(n), S] .
E

(2. 24)

The general eigenstate ( 4'& of H has the product
form

plus a similar term for —vo. The utility of this
result lies in the fact that L, is a two-body operator
only (one perturber and the atom) and that the ther-
mal average( &, is taken over the two-body sub-
space.

The detailed form of L from Eq. (2. 9) is

The impact approximation arises when the long-
time behavior of 4 (t) is considered. We will see
that "long time" means long compared to the dura-
tion of a typical collision. The impact approxima-
tion has been derived numerous times 6'~' so it
will not be fully rederived here. A derivation in
the time-dependent Liouville formulation~4'~' will
be sketched and some conclusions drawn.

The nontrivial part of the basic expression for
the correlation function from Eq. (2. 30) is

(2. aS)
(e'~r' —1&, =i f (L, e'~r'&, ds (3.1)
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For simplicity, imagine the case in which the
lower-state potential V, vanishes. ' A typical ma-
trix element of Eq. (3. 1) neglecting the Boltzmann
factor is

(klH„e'" 'e 'H&'lk) -(kl e'""e '"t'H, Ik)
(3.2)

Since V, vanishes this reduces to

(kl V e'""e '"~'I k) (3.3)

For large s and noting V, =0, scattering theory
gives 26'~7

(s.4)

where 0' ' is the wave operator for scattering by
V„. The result is

(s. 5)

where we have introduced the T matrix. From Eq.
(3. 5) we conclude that the integrand of Eq. (3. 1)
approaches a constant for large s; the integral be-
comes proportional to t.

With thermal averaging and the transition fre-
quency ~0 reinserted we get

Im(T), = ——,'(vcr„), (3.7)

where i is the velocity. The correla, tion function
in Eq. (3.6) gives a I orentzian line shape with
width u and shift d,

~= pIm(T), ,

d = p Re(T), .
(s. 8)

(s. 9)

In the more general case when V, is not assumed
to vanish, (T), is replaced by

t(1 —S, S„'), (s. io)

containing the S matrices for elastic scattering in
both the upper and lower states.

The validity conditions for the impact approxi-
mation have been frequently discussed. The cor-
relation function in Eq. (3.6) is valid only for times
substantially longer than 7„ the duration of colli-
sion. The spectrum given by the impact approxima-
tion will then certainly fail at distances A~ from
the line position uo greater than.

4(t) =exp(t~, t+tp Re(T),t+ plm(T&i

ItI�
) (s. 6)

The imaginary part of T and the total cross section
o„are r elated by the optical theor em '

In dealing with a high-energy transition, the in-
terest is in the spectrum in the vicinity of the line
at +&@, so the negative-frequency term in Eq. (2. 30)
will be neglected. The nontrivial part of the posi-
tive-frequency term is extracted from Eq. (2. 30)
and written as

4.( )t-=expl p&e"" —.I &, )

with spectrum

s.((u)=- J dte '"'P, (t)

(4. 1)

(4. 2)

The information missing from the impact ap-
proximation is the detailed behavior of P.(t) for
short times. In Sec. II, we saw that the short-
time behavior of R correlation function, its power-
series expansion, can be studied in terms of sum
rules. These will be developed below.

We will work with P(t) defined by

P(t) =(e' t' —1), . (4. 3)

Since the thermal average in Eq. (4. 3) involves
e ~"~, it is useful to write I., in terms of H, itself
from Eq. (2. 27),

L,O = H„e —6H, = [H„e]+EVe .
The difference potential AV is

~v(r) -=v„(~) —v, (r) .

(4. 4)

(4. 5)

There is a straightforward set of relations be-
tween the derivatives of P,(t), which are the mo-
ments of interest, and the derivatives of P(t), which

are directly computable. The two sets of moments
p, „,and p,„are defined as

A typical numerical value, e.g. , for Cs-Ar is
l » l =O(100 cm '). The conditions above show
that the impact theory breaks down at any density
far enough in the wings. There is another obvious
restriction: nr in Eq. (3. 8) cannot violate the con-
dition of Eq. (3. 11). This gives a restriction on

the perturber -gas density,

p=x/v&o(D-') .

We conclude that the impact theory is restricted
to a certain interval h~ around the unperturbed
line and is useful only when the perturber-gas den-
sity is low. In the time domain, the key to going
beyond the impact approximation lies in a careful
study of the short-time behavior of C (t). This is
taken up in See. IV.

IV. SUM RULES: DURATION-OF-COLLISION EFFECTS

(3.11)

where v is a typical velocity and D an atomic size.
A lower limit for D is the de Brogliewavelength~
which gives

and

(4. 6)

al»l =o(aT) . (3. i2) (4. 7)
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The relations for the first few moments are

D o+=1

P (+=PA y

2 2P2~=P Py+PP2

P3+ = P P )+3P P 2P y +PA 3
3 3 2

(4. 8a)

(4. 8b)

(4. 8c)

(4. 8d)

([H„n]&,= o

for 8 arbitrary. This follows from

( [H, , o]&, ~ Tr(e ~"~ [H„e]}= Tr([e ~"t, H, ]8j = 0

(4. 9)

The first few moments are
(4. 10)

The general relation of the p.„,to the p.„ is exactly
that between the moments of a distribution and the
Thiele semi-invariants' ' of the distribution.
The problem is now reduced to calculating the mo-
ments p,„of the function P(t). To use L, efficient-
ly, note the simple relation

p, ,=4w f dr r'g, (r)[«(r)]'+(2w/m) f, drr'g, (r)

x ((2/r) AV(r) hV'(r) —[4V'(r)]'f, (4. 17)

4w~. (~Z/5 )', (4. 18)

where v is a characteristic atomic volume and AE
a characteristic interaction energy (h explicitly
included). The second term in Eq. (4. 17) is
written

where the prime denotes differentiation with respect
to the scalar r T. he second integral in Eq. (4. 17)
represents in explicit calculable form the dura
tion of c-olli-sion contribution to the line shape
through the spectral moments of order three. To
explain the role of the duration of collision 7, the
magnitudes of the two terms in Eq. (4.17) can be
estimated. The two terms can be written in a
manner which exhibits the duration of collision ex-
plicitly. The first term, the "pure potential term, "
in Eq. (4. 17) is written as

P, p
——Q

p 2 = &(«)'&,

p. =&(t V)'&, +«V[H„«j&, .

(4. iia)

(4. 11b)

(4. 11c)

(4. 11d)

(2wo/m)(t Z'/hD'), (4. 19)

where D is a characteristic length associated with
the potentials V, and AV. This second term can
be rewritten

The moments p.„,are 2wv(t E/5)(aaE/7.'), (4. 2o)

Pp+=1

t 1+
——p(AV&t

p2. =p'((t V&&)'+p&(t V)'&g

(4. 12a)

(4. 12b)

(4. 12c)

.= '(&«& )'+8 '&(«)'& «V&

,pf((gV)'&, +(aV[H„SV]&,j . (4. 12d)

One of the salient features of these expressions
is that the Hamiltonian H, does not appear until
the third-order term p. 3, or p.3. The first and,
second moments contain only the difference poten-
tial AV.

Each of the p.„expressions can be further re-
duced to a form involving the quantum-mechanical
radial distribution function g, (r) defined such

where v, is the duration of collision.
There are thus two contirubtions to p, 3, the first

related to AV alone, and the second depending on
the duration of collision 7.„or equivalently, on the
mass nz. The 7,-dependent term becomes small
as the collisions become slow (r, - ~) or as the
mass becomes large. Intuitively, the v, -dependent
term represents a dynamical modulation effect in
which the motion of the perturber alters the contri-
bution of AV to the line shape. For the higher-
order moments, similar conclusions follow. There
will be terms dependent on AV alone and terms
depending on various powers of rn ' or 7,2 which
represent dynamical or duration-of-collision ef-
fects.

V. STATISTICAL APPROXIMATION

(0(r)& =-4w f drrag, (r)6(r) (4. 18)

p, , =4w f drr'g, (r)sV(r)

p, =4w J drr g, (r)[A (V)r]

(4. iS)

(4. 16)

The third moment involves H, and reduces to

In the classical limit g, (r) has the simple form

(4. 14)

The first and second moments in terms of g, (r)
are

At the end of Sec. IV, we saw that if the perturber
motion was eliminated by letting 7,-~, or better,
m , then terms containing only hV and no others
remained in the spectral moments. This we call
the statistical limit or, loosely, the statistical ap-
proximation. "

In the statistical approximation,

I.,e- V„e —6V,

and when working in the r representation, b, V is
simply the scalar function AV(r). The nontrivial
part of the correlation function becomes
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e.(t) = exp[ p&e""—1& ] (5.2)

and

y (t) {efkvt

s ((o) = 2v(6((u —av)),

(5.3)

(5.4)

Written in terms of the radial distribution function,

s(s)) =8m' f"drr'g, (r)5[sr —t V(r) j (5. 5)

Equation (5.2) is an expression of the statistical
theory of Holtsmark, Kuhn, and Margenau, but
containing the proper statistical weight factors
through the average ( . ), . Omission of these
weight factors in the past has caused some difficul-
ties (see Sec. VII).

The P(t) function, cf. Eq. (4. 3), and its spectrum
are particularly simple,

S.(&u) = 2v e ' 15(~ —&u, ) + pn & [~ —(~, —e~) ]
+ ( p'n'/2! )5[(u —(~0 —2e )]+ ~ ] (5 9)

The spectrum $,(v) consists of a central or un-
shifted component and a series of "red satellites"
at frequencies cu0 —e~, ~0 —2e~, etc. In the dilute-
gas case pn «1, leaving a strong central compo-
nent and a series of satellites of rapidly decreasing
strength.

In the more general case of a finite-range poten-
tial such that b, v(r) =0 for r &a, it is instructive to
expand Q, (t) in powers of the reduced density pas

which is small in a sufficiently dilute gas. From
Eq. (5. 3),

P(t) =4m f drr g, (r)e' '""—4n f' drr, (r)

=- [4,(t) —c] (5. 1O)

v, (r) = ~v=+ 0&r&0

o5r«a (5 6)

a&x

Ev(r) = —e~,V, (r) = —sg,

V, (r)= t V(r) =O,

The resultant correlation function is

P(t)=34 w(a' —v')e '& (e "&' —1)

= n(e "~' —1) (5. V)

where a absorbs the additional factors. In Eq.
(5. 7) the perturber contributes a factor of e "~' —1
when it lies between r =a and ~ =a and contributes
nothing otherwise. The correlation function p, (t)
can be expanded in a power series in the density,

ca 0 -44 egt

Q~(t) = 8 Z
0=0

2 2
-Pe q -f Ngf ~ + e-2f 6g&

The full spectrum with ~0 included is
(5. 8)

This spectrum is strictly related to the statistical
or static distribution of the perturber around the
atom, hence the name. The functions Q(t) and

s(e) describe the spectrum that arises from a
single per turber. Subsequent exponentiation of

P(t) to give P, (t) merely combines the contributions
of the X perturbers independently.

From Eq. (5. 5) it is apparent that the spectrum
at frequency ~ produced by a single perturber
arises from points at which b, v(r) =u with an addi-
tional weighting factor r g, (r) giving the (initial
state I) probability that the perturber is in the unit

spherical shell at r The exp.ression of Eq. (5. 5)
is equivalent to the use of the Franck-Condon prin-
ciple of molecular spectroscopy, cf. Sec. VII.

A simple nontrivial case for which P(t) and s(&o)

can be calculated analytically is the square well
with a repulsive core

where &f&, (t) and c are of order a'. The full correla-
tion function is then

e.(t)=e" [I+ pe. (t)+( p'/2!)4.'(t)+ . ] . (5. 11)

The spectrum can be obtained by repeated convolu-
tion of the spectrum s, (co) of P, (t). This gives

S.(u) ) = e "[5(~ —~, ) + ps,
~

(p'/2!)s. *s,~. „+ ] . (5. 12)

Here convolution is defined in the conventional
manner,

F*G-=f du&'F(~ —~')G(~') (5. 13)

Each term in the expansion in Eq. (5. 12) has a
simple interpretation. The undisplaced term (with

probability e ")arises from all states in the en-
semble for which no perturber lies within the sphere
r «a. The second term (with probability pe ")ac-
counts for all states in the ensemble for which
exactly one perturber lies within the sphere x& a
and gives rise to the one-perturber spectrum
s, (v —vo). The third term [with probability
( p /2! ) e "]arises from having two perturbers
within the sphere. The spectrum for this third
term is produced by considering all possible contri-
butions of the pair of per turber s independently and
therefore leads to a convolution of the two single-
perturber spectra. Higher-order terms can be
interpr eted similarly.

An important phenomena in the statistical theory
arises in the case in which EV(r) has a relative
minimum or maximum at some point. We will see
that in the region of such a potential extremum,
s(&o) has a singular behavior which will be inter-
preted as a "satellite. "

To understand the phenomenon in a qualitative
way, let us restrict attention to low densities and
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the single-perturber spectrum s(v). Let AV(r)
as an example have a minimum —g~ at the radius
r =r„. In the neighborhood of r, AV(r) can be
expanded,

The spectrum in this region can similarly be ap-
proximated, cf. Eq. (5.4),

s (v ) = 8m r~~, (r„)

Therefore,

s(~) =0 for (5. 16)

8v r' g, (r„) 1

+26. V"( r)]' ' ((u+e )' '

Thus, s(v) has a singularity in the "red" wing at
v = —&~ and vanishes further out in the red wing.
The singularity is integrable, as it must be. This
we interpret as a red satellite band. Higher-order
convolutions of this singular one-perturber spec-
trum give "images" of the singular point at fre-
quencies —2c~, —3&~, etc. At low densities, the
high-order images are quite weak.

Using Eq. (5.4) it is also quite simple to derive
the famous "~ ' law" of Kuhn and Margenau when
EV(r)- s~(v/r) . This law was predicted and mea-
sured at the inception of the statistical theory. The
relation is the more important in that it contains,
in a simple way, the van der Waals coefficient
e~, the difference between the van der Waals coef-
ficients E„and e, for the two states.

VI. TOTAL LINE SHAPE

The major ingredients of a unified theory have
been discussed earlier in this paper. They allow
a mixed development of the theory with a minimum
of calculation. If upper- and lower-state potentials
are assumed, then the full statistical line shape
can be calculated. A limited number of moments
involving the duration-of-collision effects can also
be calcujated rather easily. The shift and width
parameters can also be calculated or can be fitted
from experimental observations at low densities.

The particular approach employed in this section
is a simple one. Many variants can be devised
which may ultimately be superior in actual applica-
tions. Some are discussed in Sec. VII. One par-
ticular technique for constructing a unified theory
has been chosen for expository purposes.

A. Synthesis of the Correlation Function

The absorption spectrum can be calculated from

the Fourier transform of the correlation function,
viz, ~

(~) f dt e float eP4(t)
m 0

(6. 1)

This implies the power-series expansion

(6.4)

As a practical matter, we will assume. that a lim-
ited number of the p, „~ in Eq. (6.4) are known.
From Eq. (4. 11) it follows that p, » = pi~ =0. An

explicit expression for p, i~ as part of Eq. (4. 17)
has been given. The long-time behavior of Q~(t)
has been studied in Sec. III and found to be linear
in t.

Let us then assume that some knowledge of the
short- and long-time behavior of Pn(t) is available.
The task is then to synthesize an approximation to

cf. Sec. IV. In Secs. IV and V, we have seenthat
P(t) can be broken down effectively into two parts,
which will be called Qs(t), the statistical compo-
nent, and QD(t), the dynamical component,

(6. 2)

Ps(t ) contains only the statistical-theory terms;
it has been discussed as the statistical approxima-
tion of Sec. V. Qn(t) is defined to contain all other
terms in Q(t). Thus Q~(t) contains the duration-
of-collision terms and also includes the long-time
effects which give rise to the impact approxima-
tion.

The statistical term Qs(t) can be calculated quite
straightforwardly, given V, (r) and V„(r) An .ef-
ficient method of doing thisistocalculate s(&u) on a
discrete mesh (&u;] from the expression of Eq.
(5. 5), then Fourier transform the result to obtain

Qs(t). This approach can be orders of magnitude
faster than evaluating Eq. (5.3) directly by r in-
tegration.

The dynamical function Q~(t) is difficult to cal-
culate directly. Information is available, however,
about both the short-time and long-time behavior
of QD(t). For short times, a limited number of
terms in the power-series expansion of Qn(t) can
be calculated through the sum-rule relations, with
the number limited by the algebraic complexity of
the expressions for the high-order sum rules. In
Sec. IV, Eq. (4. 11) we saw that each sum rule con-
tained both terms with 2 V alone, and terms involv-
ing dynamical effects through H, . Writing Q(t) as
a sum, the derivatives, Eq. (4. 7) can be grouped
in a parallel way,
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QD(t) which has the correct power-series expansion
around t= 0 and has long-time behavior which is
linear in t. One simple way to do this is to use
the (two-point) Pade approximant. 6 A function

f (t) is approximated in the form

(6. 6)

The ratio of the jth-order polynomial P&(t) to the
kth-. order polynomial Q, (t) is the (k, j) Pade ap-
proximant off (t) when the power-series expansions
around t =0 of both sides of Eq. (6. 5) are identical
to terms of order t~"". (By convention, the lead-
ing term in Q„ is unity. ) This is a normal (one-
point) Pade, with the point chosen at t=0. A two-
point form, using t =0 and ~, will be utilized to
establish the proper behavior of the correlation
function. As t ~, the approximant must become
linear in t. This requires j =-0+1.

The situation is actually more involved than this.
The real and imaginary parts of QD(t) must be even
and odd, respectively, because the spectrum is
real, and both must be linear in t for large t.
Ther efore set

(6, 6)

S+(R) S+6*S+D

where

s =,~" dte'"'e"A"' A=S D .+A J~

(6. i2)

(6. ia)

The moments p,„,of s,(~) are related to the mo-
ments p.„,,~ of s,~ and p.„„D of s,D in a simple
way,

The major feature which distinguishes this general
line-shape expression from the many others that
have been written down from time to time is that
detailed prescriptions have been presented through-
out the paper to numerically calculate or otherwise
estimate the various functions involved, $6, P,
Q, R, and S„(t) with only a modest amount of effort.
This has been the goal: to construct a theory that
is rather general but also allows easy calculations.

Although the spectra corresponding to the ap-
proximate correlation functions cannot be evaluated
in closed form, there are a number of general con-
clusions that can be drawn. First, note that the
total spectrum can be obtained as a convolution of
two separate spectra called s.~ and s,~, in the fol-
lowing way:

and
n't

&n. -~+
I & -~,.D &i,.sio ~)

(6. 14)

Img, (t) =R„.,(t)/S„(t) . (6. V)

y, (t) =i,r6t' —p,"'t'+O(t'),
and the long-time behavior is

(6.9)

c'D«)--(p6/«)
I tI +t(~6/s6)t+ o(t ') . (6. 10)

Fixing the four unknowns in Eq. (6. 8) requires
values of the sum rules p, », p, 4~ and the linewidth
and shift from the impact approximation (the
Lorentzian line-shape parameters).

B. Unified Line-Shape Expression

The complete expression for the unified line-
shape spectrum S„L6(&u) can now be written out
using the above ingredients,

S (~) = 1/2~ f dt e""6-""e-6"'"'D"'
ULS oo

(6. 11a)

where

(t) = —IP„„(t )/Q„(t )]' +tR„„(t)/s„(t) . (6. lib)

Further, require that P/Q be real and positive for
positive arguments, R be real and odd, S„(t) be
real, positive, and even, and the positive square
root be taken in Eq. (6. 6). As a simple example
of the above forms, the approximation

t p, t'
pD(t) I 1 t6 +

1 t21+«t 1 +spt

can be chosen. The initial behavior of QD(t) is then

The higher-order moments are determined, in-
tuitively, by the far wings of the line, although
this is by no means a rigorous relationship. If the
statistical moments are generally much larger than
the dynamical moments of the same order, then
one can say, approximately, that the line wings
are determined by the statistical terms. This
would imply the "wing theorem" ' discussed in the
past, which says that the far wings of the line are
given correctly by the statistical theory alone, by
the spectrum s.6(&u). A comparison of Eqs. (4. 18)
and (4. 20) indicates, for example, that the ratio
of the dynamical to the statistical moments of order
3 is of order of magnitude (X/D)', where A. is the
de Broglie wavelength and D a characteristic length

associated with the potential. For most atomic
cases, high-energy transitions, the ratio will be
small, of the order of a few percent for heavy
atoms and heavy perturbers.

One might be tempted to devise simpler theories
which merely attempt to convolute a Lorentzian
with the statistical spectrum. This could lead to
gross errors in the wings, since the wings might
be dominated by the Lorentzian line shape. (This
can be appreciated by noting that all of the mo-
ments, excluding only the zeroth, diverge for the
I orentzian shape and cause the moments of the
line to diverge. ) A refinement of such a simple
idea might attempt to convolute the statistical shape
with a spectrum which is I orentzian near the cen-
ter but falls off rapidly in the wings due to the con-
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struction of its correlation function which possesses
finite derivatives at t =0. This would still be in
conflict with the rigorous results by the following
argument: The dynamical correlation function
developed in this paper is of the form

with

(t) ePS &&(& & (6. 15)

Q,~(t) = I+tat +I&t +0(t ) (6. 16)

It follows that the zeroth, third, fourth, and higher
moments of s,~(&u) exist, while the first and second
moments vanish. This implies that the dynamical
spectrum s,~(~) cannot be everywhere positive.
To obtain the proper total line shape, the statistical
spectrum must be convoluted with a dynamical
spectrum which is not everywhere positive 1 This
is not what intuition would have suggested.

The total correlation function in Eq. (6. 11)will
approach, at sufficiently low densities, a form

&a&-el&i

in the sense that, for most t,
~"""' -~.(t)~s~e. (t)~ -o .

(6. 17)

(6. 16)

VII. DISCUSSION

A. Derivation of the Theory

The history of line-shape theory and experiment
is extensive but will not be reviewed here. 36

The development of sum-rule techniques is more
recent. '0 '4' '

In Sec. II the basic expression [Eq. (2. 1)] for
the absorption coefficient was stated in terms of

The Fourier transform of the unified-theory cor-
relation function should therefore approach the
Lorentzian shape. Of course at any density, suf-
ficiently far in the wings, the Lorentzian shape
will not be valid, as was pointed out in Sec. III.
This can be seen as well from the fact that all of
the moments of the true line shape exist at any
density; in fact, the moments of the line decrease
with decreasing density. The higher moments of
the Lorentzian line shape diverge at any density,
as already mentioned. That all the moments exist
for the true line shape can be seen by considering
their general form (cf. Sec. IV). The integrals
giving rise to the moments converge at small x due
to the Boltzmann factor cutoff in g(r) At lar. ge x
the integrals converge because the potentials
generally behave like ~ in that region, and pro-
ducts and derivatives of the potentials will fall off
even more rapidly.

The unified line-shape expression has been con-
structed, Eq. (6. 11), and some of its features ex-
amined. A general discussion of the entire deriva-
tion and related topics is given in Sec. VII.

the autocorrelation function of the dipole-moment
operator p, . This relation expresses the dissipa-
tive property (absorption) in terms of the fluctua-
tions of a corresponding microscopic variable. "'
The absorption is related by simple factors to the
imaginary part of the frequency and wavenumber-
dependent susceptibility tensor y (k, &u). We have
omitted the k dependence and tensorial character
of g for simplicity. Neither of these omissions
are important or particularly relevant to our model
problem. ' '"

By assuming that the absorbing atom is station-
ary, consideration of two other effects is circum-
vented, viz. , Doppler effects and recoil effects.
Both of these effects can be estimated by studying
two limiting cases and we will see that they only
affect seriously a narrow region around the center
of the line.

In the first limiting case we assume that the
atom's mass is large compared to the perturber
mass. To a good approximation the atoms trans-
late uniformly with a Boltzmann distribution of
velocity, and each perturber collision with the atom
is essentially an independent event. This gives a
Doppler broadening Av of the lines, e.g, , for Cs
at room temperature, ' hv=0. 02 cm ', a negligible
effect. This heavy-atom case is essentially the
one we have considered.

The other limiting case is when the atom mass
is small compared to the perturber mass, and a
"recoil" effect occurs, At each collision the atom
exchanges very little energy with the perturber so
it undergoes long "chains" of collisions, each with
essentially the same energy. The momentum vec-
tor is reoriented at each collision but its magnitude
is little changed. Each atom in the ensemble gives
its own contribution to the line shape S(&u; E) which
is a function of its (essentially constant) energy.

The total line shape is obtained by averaging

8(u&) = 1 dE p(E) e ~ S(~;E)
0

where p(E) is the density of states. The theory ap-
propriate to this limiting case would be a "semi-
microcanonical" version of the theory presented
in this paper with the final line shape obtained
through averaging as in Eq. (7. 1).

The situation in reality lies between the two lim-
iting cases. An estimate of the effects can be made
in this case also. Viewing the process in the time
domain, the difference between the two cases will
become noticeable in the correlation function at a
time equal to the mean free time between collisions

The spectra for the two cases would then de-
viate for frequencies I L~) &v&'. Since v& &r, in
a dilute gas, the deviations will occur primarily
in the region of validity of the impact theory. '

The next important assumptions, Eqs. (2. 5)-
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(2. 9), involve the structure of the Hamiltonian,
particularly the atom-perturber and per tur ber-
perturber interactions. These assumptions imply
that the theory will be most accurate at low-gas
densities (where measurements are available" ).
Interaction potentials are not generally pairwise
additive. ' ' Only the induction or van der Waals
forces are. For excited states which contribute
heavily to optical cross sections, the van der Waals
contribution is large, and the additivity results in
the proper treatment of overlapping collisions as
long as all impact parameters are large. The col-
lisions need not be "weak"; they are only required
to act indePendently. Due to the large energy dif-
ference between states u and l as compared to kT
as has been assumed in the model, it is perfectly
legitimate to neglect inelastic transitions between
these states due to the breakdown of the Born-
Oppenheimer approximation. "' There are cases
when inelastic transitions may be important. Elec-
tronic transitions in a free atom always involve at
least one state with angular momentum J greater
than zero. It follows that the state must be (2J+ I)-
fold degenerate. The degeneracy is destroyed by
the atom-perturber interaction and inelastic transi-
tions can occur between these closely spaced states
during collisions. " See Sec. VII 86. The problem
of rotational degeneracy (vectorial nature of p, )
has also been studied within the impact the-
ory. '"' 60 Any complete treatment of the line-
shape problem must eventually include the inelastic
processes.

The Liouville formalism was introduced, Eqs.
(2. 12), etc. , to allow generalizations to be made.
Liouville techniques have proved useful in multi-
line broadening problems in the impact approxima-

17~ 4 1 ~ 60 62

The reduction to the two-body form (one atom,
one perturber) of Eq. (2.30) giveninthe Appendixwas
straightforward and exact for the model consid-
ered, in the thermodynamic limit. Only the parti-
tion function was approximated; this changes a
normalization factor and can easily be corrected,
a minor point withal. Since the reduction is exact,
the resulting line-shape expression at this point
will be valid even at distances from the line ) hv (

&kT/h. The impact approximation ' was briefly
derived in Sec. III to point out its form and limita-
tions in the time domain.

The sum rules' "are introduced in Sec. II and
used in Sec. IV. Since the sum rules involve ther-
mal averages of various combinations of AV and

H, it is imperative that the atom-perturber inter-
actions be included in the Boltzmann factor as we
have done. Thus a product of the free-particle
density matrices (Boltzmann operators) for the
atom and the perturber may not be used in calculat-
ing the sum rules. The correlations (at t =0) must

be included. In the impact approximation the cor-
relations in the initial state can properly be
ignored. Sum rules have been used in many appli-
cations but few discussions have attempted to treat
atomic line broadening. '

By successive integration by parts, the moments
of any order can be reduced to averages over the
quantum-mechanical radial distribution functions

g, (r). For most systems at room temperature or
above, g, (r) can be expressed accurately as its
classical limit times a correction series'0 "in
powers of 5 .

The statistical approximation' ' is studied in
Sec. V. There is a slight distinction between the
statistical limit and the approximation. " The
statistical approximation has been generally suc-
cessful in limited applications to date. " The first
calculations of the statistical spectrum for a non-
trivial potential were done by Bergeon et al . ' '"
for the Lennard-Jones (6-12) potential BV~ar "
—bx . The major simplification used in that work
was to set the radial distribution function g(r) =1.
This is not a bad assumption for large r but is a
totally untenable one for small r where g(r) is ex-
pected to cut off extremely rapidly. The net re-
sult is that the strength of the "blue" wing (high-
frequency side of the line) can be greatly overes-
timated. Similar calculations have been done for
lower perturber gas-densities, ' ' ' revealing the
satellite structure described in Eq. (5. 17). It is
gradually becoming recognized that the satellite
bands arise from extrema in AV(r). This has been
exploited to estimate excited-state potential pa-
rameters from the satellite positions.

Attempts have been made to identify the shift
of the peak with the first moment and the half-width
of the absorption line with the second moment.
Only in rare cases will there be a correspondence
between the peak position (mode) and the first
moment (mean). "

It is not difficult to estimate the line shape that
the theory predicts at very high densities. From
Eqs. (4.3), (4. 7), and (4. 11), expanding P(t) in a
power series, we have

P, (t) =exp[ —ip(h )V, t —,'p((EV)'), t'+ O(t—')]

(7. 2)
If the density is sufficiently high the O(t') term can
be neglected. The spectrum at high densities is
therefore, approximately, a shifted Gaussian,

8,(v)~expg& —&0 —P(aV), ']/[ P((a V)'), ]' ]
(7. 3)

The Gaussian result in Eq. (7. 3) is the general
high-pressure result for independent perturber
models and is not confined to the statistical approx-
imation. This is because the first two moments of
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the line are given exactly by the statistical result;
no dynamical effects occur until the third-order
term as explained in Sec. V. The Gaussian ap-
proximation does not depend on the interaction being
weak. It depends on the density being high enough
so that a large number of perturbers act indepen-
dently and simultaneously on the atom. The Gaus-
sian is then essentially a consequence of the cen-
tral-limit theorem. This has been discussed by
Kubo" as slow modulation in stochastic theories
of line shape.

A unified theory for the line shape is developed
in Sec. VI. Past attempts divide into: (a) formal
theories which give no method for practical calcu-
lations or are simplified until some line features
can be calculated, (b) simple and essentially clas-
sical theories for which calculations can be done
for the entire line shape. In the first category are
theories by Ohno, Ross, ' Bezzerides, ' ' Mead
and others. " Some of these involve many-body
effects occurring in resonance broadening. The
work of Fiutak' occupies an intermediate position.
In the second category the first significant work
was by Anderson and Talman. Independent per-
turbers were assumed to move on straight-line
paths at a single speed, producing a frequency shift
dv~x . The theory was shown capable of giving
impact, statistical, and intermediate line shapes.
Takeo' has done a similar analysis for square-
well and Lennard-Jones potentials, showing how
they give rise to satellite bands. [A discontinuous
potential such as the square well cannot be used
in a sum-rule approach because the higher mo-
ments will diverge, cf. Eq. (4. I'7).]

The most noteworthy unified theory to date with
calculations is the work of Fox and Jacobson. ' '
Again the theory is classical, assuming independent
perturbers moving in the lower-state potential
V, (r). Frequency perturbations arise from the dif-
ference potential b, V(r). The theory appears rea-
sonably successful in predicting line shifts and
half-widths. The approach appears difficult to gen-
eralize to more complex cases, especially mole-
cular bands. The theory offered in this paper on
the other hand, is fully quantum mechanical and
should not be difficult to generalize to include multi-
line and diabatic effects (vide infra). The particular
decomposition into statistical and dynamical terms
we have chosen is not unique. A more general de-
composition could be written

(V. 4)
where 0 ~ n & 1 and "approx, k" corresponds to
fitting k terms in the power series with Pade or
other forms. We have used n =1. There are still
other ways to construct an approximate unified the-
ory. One might work entirely in the frequency

domain as many of the Liouville approaches have,
particularly for plasma line broadening. ' ' An-
other method is the continued-fraction development
in the frequency domain'04'0~ (close to the Pade
formulation). 'Oe In the continued-fraction approach
one can ensure that to each order of approximation
the r esulting spectrum is positive def inite io4

More ambitious schemes are even easier to devise
in principle, up to and including a complete numer-
ical computation of the two-body correlation func-
tion Q(t) or its spectrum s(&u).

One point should always be kept in mind: No
one has yet discovered a dynamical principle (in
ordinary wave mechanics) thatallows a conscientious
calculation of a cross section without calculating
the wave functions themselves as an intermediate
step. Therefore, anyone who calculates rigorous
cross sections also calculates wave functions, and
it is the details of these wave functions (or their
appropriate matrix elements) which give the
"spectra of collisions" and ultimately the spectral
line shape.

One very interesting point about our theory can
be traced back to Eq. (2. 29) which (for the positive
frequency component) has the basic form

S,((u —&u, p) ~r[e'~"'] (V. 6)

where F indicates the Fourier transform. This
implies that line-shape measurements at various
densities should be related to the single complex
function f (f), i. e. ,

f(t) =p 'In(6: '[S((u —(oo, p)]] (V. 6)

where F ' is the inverse transform. Therefore,
if the experimental line-shape data at a number of
densities are reduced by Eq. (?.6) a single function
f(f) should result, independent of density. This
conclusion is independent of any approximate
schemes involving moments, Pade approximants,
etc. , it is a prediction based on the form of the
theory. The practical difficulties of Fourier trans-
forming experimentally obtained data are not trivial
but surely the game is worth the prize. The ques-
tion then would be, over what range of densities
will Eq. (?.6) turn out to be valid' ?

1. Stochastic Theories

Much of line-shape theory can be discussed using
stochastic models. Kubo"' ' has done this in an

B. Connections with Other Problems

The problem studied in this paper and the tech-
niques suggested to solve it can hardly be viewed
in isolation. There are links between our problem
and a number of others that have barely been ex-
plored. 'o' ' ' We hope the discussions below will
help to stimulate even more interest in these re-
search areas.
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admirable way, showing how the impact and sta-
tistical theories arise, and how dynamical modula-
tion effects can be included. He has also pointed
out connections with kinetic theory, NMR, Moss-
bauer spectra, etc.

2. Experiments

Experiments have not been discussed because
numerical calculations are not presented in this
paper. Excellent data are available, how-
ever. "'" '" There are extensive studies of
alkali-atom lines (especially Cs) broadened by
noble gases. Suggestions about future experiments
are given below and in Sec. VIII.

3'. Interatomic Potentials

spectrum defined by the appropriate radial Schro-
dinger equations (nonharmonic! ). The diatomic
rotational levels similarly pass over into the var- .
ious angular momentum states in the decomposition
of the atom-atom-scattering wave function (non-
rigid rotators! ).

The decomposition of the molecular wave function
into a product of electronic (e), vibrational [or
translational (f)], and rotational [or angular mo-
mentum (I)] factors is an important simplification
in spectroscopy, one that has been used in this
paper. '" It follows that the strength S(n', o.") of
an electronic transition at a particular frequency
1s134

One of our goals is to relate spectral line shapes
to interatomic potentials. There are numerous,
ways to study interatomic forces,
and spectroscopy, ~ ' ' especially molecular
spectroscopy, "'"' has been one of the best tech~
niques. The development of a reliable unified the-
ory can extend the usefulness of spectroscopy in
this regard. The study of li.ne shapes is essentially
the oddly way to study the details of interatomic in-
teractions involving excited states which can decay
by optically allowed transitions.

4. Bound and Unbound States

The formulation used in this paper treats bound
and unbound (scattering) states of the atom-per-
turber pair in consistent but somewhat different
manners. In the statistical approximation both
types of states are included with their proper
weighting through the radial distribution function
g, (x). This is to be contrasted with explanations
in the literature which tend to ascribe satellite
structure to either bound Or unbound states. '

The impact-theory portion includes only scattering
states, as these alone lead to the simple long-time
behavior characteristic of the impact theory. It
is possible to study separately the contributions
from bound states, quasibound states, and scatter-
ing states. This has been pursued in spectro-
scopic"'"' and other contexts. """

5. Molecular Electronic Spectroscopy

Most diatomic molecules studied spectroscopical-
ly have binding energies of 1 to 10 eV. '
Atom-perturber systems such as Cs/Ar are esti-
mated to have binding energies of order 10 2 eV
=AT„, . Diatomic analyses in the main begin by
assuming the harmonic oscillator-rigid rotator
model, and include other effects as corrections to
these simple assumptions. ' " For the atom-
perturber case the unbound states are dominant.
The molecular vibrational levels pass over into un-
bound relative translational states with a continuous

=
~ f +,*.yq, "d x. ,f q,*.y,"d x, f y, ,y, "d x,

~

(7. 7)
The only nontrivial factor in Eq. (7. '7) is the trans-
lational (or vibrational) overlap integral" whose
squared modulus is called the Franck-Condon fac-
tOr 131'132)135

Qgtglt ~

f'
&t ~ t" =

~ J (~ ~ 4t" dxt
I

Knowledge of the transition strength as a function
of energy a 3a the molecular theory should lead to
the full two-body spectrum s(e) studied earlier.
s(~) is the Fourier transform of Q(t), Eq. (4. 3),
which can be written out in matrix-element form
using eigenstates of H, and II„,

where ~„,= E„—E, . The two-body correlation
function can therefore be written in terms of the
squared modulus of the overlap factor, !&l!u)!
which is exactly the Franck-Condon factor. %within
the wide limits of validity of the Born-Oppenheimer
approximation this shows the equivalence of the
standard molecular approach and our techniques
for our model. Baranger was one of the first to
show that complete knowledge of the overlap inte-
grals is sufficient to calculate the shape of a col-
lision-broadened line. '

In the calculation of Franck-Condon factors the
strongest transitions normally occur when the
positions x and x' for equal momenta in the upper
and lower states are the same ("vertical transi-
tions"). In the statistical limit the perturber mass
becomes infinite and only the vertical transitions
remain. There is a, sum rule (of the conventional
oscillator-strength variety) due to Zablonski, de-
veloped for molecular spectroscopy, "' that says
that the sum of the transition strengths from a
single vibrational state to all other states (of the
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other electronic level) is a constant, independent
of the single state chosen. Therefore, in the sta-
tistical limit the transitions collapse to pure ver-
tical transitions, each with the same constant
weight. This is the reason behind the particularly
simple expression for the statistical spectrum,
Eq. (5. 4). For finite perturber mass the Franck-
Condon factors have a "spread" of a certain amount
around the vertical transitions. This can be ob-
served by looking at the distribution of Franck-
Condon factors around the locus of their maxima
(the Condon parabola) in any tabulation. '" "' This
spread, apart from the pure quantum effects that
give discrete states, is a measure of the motional
or nonstatistical-limit effects in molecular spectra.
In the atom-perturber model the spread corre-
sponds to the duration-of-collision effect that has
been discussed. Jablonski has studied the "spread"
using %KB techniques for application to the line-
broadening theory,

Molecular spectroscopy is not confined to bound-
state phenomena. A diatomic molecule can absorb
a photon and undergo a transition to an upper un-
bound state (photodissociation). The Schumann-
Runge bands of 0, in the uv are notable examples
of this. ' Herzberg' has pointed out the strong
connections between such molecular continuum
absorption and atomic line broadening but more
studies of these relations are needed.

6. Diabatic and Adiabatic Processes

A realistic atom-perturber model must take into
account the degeneracy of the electronic states,
e. g. , the components of the alkali-atom doublets
are twofold ( P, ~, ) and fourfold ( P, &, ) degenerate.
During a collision these degeneracies are lifted
and inelastic transitions can occur between the
various sublevels.

As the perturber passes by the atom at moderate
distances the atomic angular momentum J will be
coupled to the internuclear axis in an adiabatic
manner. This is Hund's case (c) coupling for
angular momenta in diatomic spectroscopy. ' ' At
even closer separations there will be mixing of the
doublet components with a change to Hund's case
(b) coupling. When the perturber is far away, J
will become uncoupled and remain fixed in space.
This is the diabatic limit. "'"

From the point of view of scattering theory, the
inelastic (diabatic) processes can be described by
a many-channel set io.J of coupled equations con-
taining both the energy levels V (r, 0) and the
coupling terms V„,.(r, 5)."'"' Here 5 refers to
the angle angular momentum variables. For the
atom-perturber case, within a given J manifold
there are only 2J+1 open channels. If Hund's case
(b) is considered, transitions can occur between
different J manifolds. Efficient numerical methods

for solving the coupled equations in many-channel
processes have been developed recently. '

The primary difficulty in these calculations is
the choice of proper potentials V and V

Some evidence of the difficulties involved comes
from the appearance of violet satellites in Cs at
distances as much as 400 cm ' from the line for
the P,&, component. '"'" This indicates some un-
usual behavior of the P, &2 excited-state interaction
potential which might result from incipient cross-
ings" of split terms within the J=-,' manifold.
Sum rules' ' should continue to be of value even in
these multichannel problems.

7. Classical and SemiClassical Methods

In collisions of heavy atoms, classical and semi-
classical methods"'"' can often be used success. —

fully for dynamical calculations. The work of Fox
and Jacobson cited earlier' ' is an example. In
particular, the width zo in the impact theory can
often be obtained rather reliably by classical-path
methods because long-range (weak) forces give
substantial contributions. In the past there have
been ma, ny efforts to find classical approximations
for quantum problems because classical calcula-
tions are generally thought to be easier. However,
Gordon states": " for less than about 50 chan-
nels, it is now actually easier to solve the rigorous
equations for quantum scattering than to solve the
classical equations of motion. "

8. Collision-Induced Phenomena

There are a number of spectral processes that
only occur during collisions, and analyses of these
have much in common with the dur ation- of -colli-
sion effects discussed earlier.

A mixture of He and Ar gas, for example shows
a broad nonresonant absorption band in the far in-
frared. " " This is due to the transient dipole
moment of the He-Ar pair which only exists during
collision (when the pair is a "transient" heteronu-
clear molecule). The first analysis of this colli-
sion-induced translational absorption was done by
Poll and Van Kranendonk" using moment methods.
Calculations of the entire spectrum have been done
by Tanimoto, '" Trafton, '" and McQuarrie and
Bernstein'~ for realistic models. The relation of
the absorption measurements to the determination
of interaction-potential parameters I:as been pointed
out by the author. ' ' From the molecular point of

'view, translational absorption is a vibration-rota-
tion band with the "vibrational" levels in the con-
tinuum. ' A similar analog of molecular Baman
scattering occurs in collision-induced light scatter-
ing. '" Another related phenomena is collision-
induced vibrational relaxation. '

Each of these phenomena: absorption, light
scattering, or vibrational relaxation probes the
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corresponding "spectrum of the collision" in detail
just as the unified theory does.

(t) ~ e((Q6+(6-ul)( t & 0 (7. 10)

We have shown how this must be modified at short
times to include the statistical and duration-of-
collision effects. The many-line formulation of the
impact theory is a, matrix generalization of Eq.
(7 10) 166, 166

((1 (t)(x:1 e""6"" P d, t&0 (7. 11)

where d is a vector corresponding to the set of line
strengths, +~ is the diagonal matrix giving the un-
broadened line positions, m is the transition ma-
trix with diagonal elements for shifts and broaden-
ing and nondiagonal elements for line coupling, and

P is the diagonal matrix of thermal weight factors.
It is clea, r that an error is made in assuming the

validity of Eq. (7. 11) for short times, just as in
the isolated line case. A remedy for this difficulty
could be

d exp[i (u6t +i Re( v )f (t) —Im(7)g(t) j P d

(7. »)
Here only two functions have been used so that all
collisional effects are corrected by the same fac-
tors f (t) and g(t). These must both possess power-
series expansions around t =0 and become equal
to t when t is large, as do the Pade forms sug-
gested in Sec. VI. No statistical-'theory corrections
have been included in Eq. (7. 12) other than what
are included in f (t) and g(t), since we expect the
statistical-theory contributions to be small (dura-
tion-of-collision effects are most important). Most
of any detailed "statistical" structure is already
included in the set of co~ line frequencies (vide
infra). Both moment analyses and impact studies'66

have been carried out in the past for molecular

9. Molecular Infrared and Microwave Spectra

In the broadening of molecular absorption bands
in the infrared there are unexplained deviations
from the impact theory in the far wings which can
be understood using the techniques of this paper.
The impact theory is valid for molecular line
broadening at low gas densities and not too far from
the individual lines, throughout the infrared and
microwave regions. ' The impact theory must be
generalized to allow "line coupling" when sets of
lines are involved. Gordon ' was the first to
study such processes systematically. The line
coupling manifests itself in off-diagonal terms in
the "Liouville matrix" which couples one dipole-
matrix element (corresponding to a spectral line)
to another (spectral line). The ordinary scalar
impact theory for an isolated line gives the corre-
lation func tion

spectra but no attempt has been made to combine
the two types of analysis as in Eq. (7. 12).

The most graphic examples of the breakdown of
the impact approximation in the molecular case are
the observations of Benedict et aE. '69 and Burch
et al. " on CO&. In the free molecule there is no
absorption due to a given vibrational transition v„
beyond the rotational-band head position v„„. For
the broadened band, Lorentzian forms were as-
sumed' and summed over the lines in the band.
The observed absorption in the region 200 cm '
beyond the band head was nearly 3 orders of magni-
tude less than the predicted Lorentz absorption.
The band shape in the wings appeared empirically
to fit a sum of shapes of the form"

E„=BJ(d+ I ) + E„ (7. 14)

where the constant B depends on the particular
vibrational state, and E~ is the vibrational energy.
To be specific consider the 8 branch defined byJ' (upper state) =d" +1 (lower state). One can plot
E~ as a function of J' and E„"as a function of J"
with the points J' and J"+ 1 corresponding. The
difference curve, giving the transition energies or
line frequencies, is parabolic with a maximum as
a function of J (for the usual ease of B"&B'). Such
parabolic difference plots (Fortrat diagrams) are
common in molecular spectroscopy. The band
head, the maximum of the Fortrat parabola where
the density of absorption lines per unit frequency
is high, is thus analogous to the satellite singu-

A((u) exp[ —a(~ (d —(d6 —(d )"] for

(7. 13)
with b =0.8. Note that this line shape possesses
all frequency moments as it should. These mea-
surements extend so far into the wings (If b~ & kT)
that a quantum-mechanical analysis may be neces-
sary. Equation (7. 12) should be capable of giving
results such as Eq. (7. 13).

The formation of rotational-band heads accom-
panying vibrational (or electronic) transitions is
closely related to the formation of satellite bands,
but this seems never to have been pointed out be-
fore. The relation suggests even closer contact
between atomic and molecular line-broadening
problems. In the atomic case, for satellite forma-
tion in the statistical limit, one is concerned with
the different forms of the translational states or
potential energy vs r for two different electronic
states. In addition a selection rule operates. In
the statistical limit of vertical transitions, the
selection rule is tr=0 (and AE=hV) (Sec. y). In
the molecular case there is, analogously, a dif-
ferent dependence of the rotational levels on J for
two different vibrational states and a corresponding
selection rule, AJ= +1.

The rotational energy dependence is
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larity which arises when the interatomic potential
energy difference curve has an extremum leading
to an anomalously large amount of absorption near
a single frequency.

A pplications

There are numerous applications for unified line-
shape theories in astrophysics and planetary-
atmosphere studies that we can touch upon. The
far wings of lines are often important because
radiant energy can be transported over large dis-
tances in the weakly absorbing wing regions. For
example the terrestrial atmospheric "window""' "
in the 8- to 12- p, region is controlled by the far
wings of certain H~O bands which are hundreds of
cm ' from the window. '" The impact theory is
totally invalid at these frequency separations. The
redistribution problem in radiative-transfer theory
in astrophysical problems can also be studied using
a unified theory. ' '~ Measurements of other
planetary atmospheres also depend on a knowledge
of line-wing behavior. " The major applications
of electronic line-shape studies, as we see them,
are to develop the theoretical techniques and study
the fundamental problems of atomic interactions
in ground and excited states.

11. Resonant Broadening, Plasmas, and High-
Density Systems

There are three major areas of line broadening
which have not been discussed: resonant (or self-)
broadening, ' line broadening in plasmas, ' and

high-density systems. ' ' Sum-rule techniques
should be useful in studying all of these problems.

VIII. CONCLUSIONS

The unified theory of line shapes developed in
this paper has several distinguishing features: It
is fully quantum mechanical; it includes atom-
perturber statistical correlations in the initial
state; it is couched in an approximate form designed
for reasonably simple numerical calculations;
a major part of the analysis has been done using
sum-rule or spectral-moment techniques. It is a
unified theory because it includes the impact and
statistical theories. In addition it offers a method-
ical analysis of the duration-of-collision effects
which are then used to link the impact and statis-
tical contributions together in the final syneresis.

The particular line-shape expression developed
in this paper, Eq. (6. 11), (including Pads approxi-
mants for interpolation in time), should not be
taken as representing any ultimate theory of line
shapes. The more important purpose of the time-
domain analysis of this paper has been to elucidate
many features omitted or not thoroughly treated
in past work, particularly the sum rules and the
short-time behavior. For actual computational

purposes the Pade form may be successful. On
the other hand, essentially classical prescriptions
may also be computationally convenient, in the
form

ACKNOW( LEDGMENT

I wish to thank my wife for her persistent en-
couragement throughout the writing of this paper.

1s

APPENDIX

Equation (2. 30) is derived from Eq. (2. 29) which

0' (f ) = (exp((&/@ ) f [+„(s) —A, (s )]ds }—1)

(8. 1)
The A's in the expression might be chosen as the
potentials or as the Lagrangians for the separate
motions in the two potentials V'„and V, . ' It is
only a matter of time before P(t) will be computed
using a fully quantum-mechanical (though numeri-
cal) procedure. These more elaborate calculations
can then serve as testing grounds for simpler, but
appr oximate theories.

The ultimate goal of any unified theory of line
shapes is a detailed understanding of the relation
between line shapes and the underlying atomic and
molecular properties that give rise to them, e.g. ,
excited-state potentials in atomic systems and the
complex anisotropic intermolecular potentials.
Furthermore, a detailed understanding of spectral
absorption phenomena is essential in studying radi-
ative transfer in the atmospheres of the Earth,
other planets, and stars.

The ties between pressure broadening of atomic
lines and molecular electronic spectra are quite
strong, The two-body correlation function Q(t)
which played a major role in this paper can be con-
sidered the Fourier transform of the absorption
spectrum Q(~) of the diatomic quasimolecule atom
perturber (AP). The designation quasimolecule is
used because in any pressure-broadening situation
the overwhelming majority of the states of this
pair of atoms in the volume 'U will be unbound. The
resulting quasimolecular spectrum, therefore, has
a very singular character in the neighborhood of

cop. From the experimental point of view it would
be quite interesting to find an AP pair amenable to
study over such a wide temperature range that both
the conventional molecular electronic spectrum of
AP (low temperatures) and the pressure-broadened
quasimolecular spectrum of A perturber by the P
gas (high temperatures) could be studied.

A number of further studies flow naturally from
this one, e.g. , numerical calculations, extension
to include rotational degeneracies and diabatic
effects, and a detailed unified theory of molecular

shape s 183-185
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The "two-body" (AP interaction) partition functions
are

x&+.
I
pl+.' &&+.'I""t I+.& (») Z„(P)= Tr, e "~'", a=u, t (A9)

tt t&&t'ul&t& 't&+)I &&t' t

The third term also decomposes,

(p.t&~.'le'"I~."&& +l "I~.&

(A2)

+ pt.&~.'Ie"'I+1"'&&~."I+.&) .
The time-development operator e'~' then gives

(A3)

The first term in the summation is simple. The
second term is

z(p) = [z, (p)]"(e-",.-" ) .

Defining the two-body thermal average as

~ '&" &. -=2, (P)'T [ ''"'"],
(A 10)

(Al 1)

so that the expression for 4 (t) is now reasonably
simple, we have

These functions differ by 0('U ') for a =u and t, and
the corrections can easily be estimated. We will
ignore these differences, which are important only
at rather high densities, and write

ettstt EB& e I-B
BIB a

+a 2+b

for (a, t&] =(u, t) and ft, uj.
Reassembling C'(t) in Eq. (Al) now gives

&'(p)~ (eB"e*"p lt. tl &y, tie'"1 *'1'
y t&

(A4)
g, (t) (1 -B(op)-1I ~ I

2 eta&pt [~-1& teL (t1 t&& ]N

+e "B(pl+ e~p)'I). tl'

tpt [Q 1&'tLu(1&t& ] It (A12)

+e Bs e '"o'I »I„, l
&&t&;ule

" ' 'l&t&;u&), (A5)

where

For tl&(t) to exist in the thermodynamic limit, it
will be assumed (and later verified) that for times
t of interest, the expressions

N

H, =Z H, (n), a=u, t (A6)
'U '(e' ~""& a=u, t (A13)

and

coo = E„—Ei (A7)
g(f)=1+0 'f(f) . (A14)

differ from unity by a term of order '. To dem-
onstrate the limit schematically, let g(t) represent
+-1&etL (1&t&

The product-state forms reduce further, giving

P &g. t
I
e Btt1 etL1

I

-g. t&

. tl BIIt( & tLt( &-tip t&.
n~1 t(&~ [g-1&eiLg(1&t& ] N (A16)

Then the limit is

limN, 'U-~, X/V = p, [g(t)]"-e'~"& . (A15)

Specifically this limit converts terms of the form

[g &y
. tl e BH1(&& etL1(-1&t

I y . t&]&t (A6)

and similarly for the H„, L„ term.
The partition function reduces in a similar way.

to

exp[ p(e'"""—1&,]

This leads to Eq. (2. 30) of the paper.

(A17)
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